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Abstract

We analyze the impact of side information about the distortion measure in problems of quantization.

We show that such “distortion side information” is not only useful at the encoder, but that under certain

conditions, knowing it only at the encoder is as good as knowing it at both encoder and decoder, and

knowing it at only the decoder is useless. Thus, distortion side information is a natural complement to

side information about the source signal, as studied by Wyner and Ziv, which if available only at the

decoder is often as good as knowing it at both encoder and decoder. Furthermore, when both types of side

information are present, we characterize the penalty for deviating from the often sufficient configuration

of encoder-only distortion side information and decoder-only signal side information.

Index Terms

Wyner-Ziv coding, distributed source coding, quantization, smart compression, sensor networks

I. INTRODUCTION

In settings ranging from sensor networks and communicationnetworks, to distributed control and

biological systems, different parts of the system typically have limited, noisy, or incomplete information

but must somehow cooperate to achieve some overall functionality.
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In such scenarios, it is important to understand a variety ofissues. These include: 1) the penalties

incurred by to the lack of full, globally shared information; 2) the best way to combine available

information from different sources; and 3) where differentkinds of information is most useful in the

system.

A simple example of such a scenario was introduced by Wyner and Ziv [1], and is illustrated in

Fig. 1(a). An encoder observes a signal1 xn to be conveyed over a digital link to a decoder who also has

some additionalsignal side informationwn, which is correlated withxn. An analysis of the fundamental

performance limits for this problem [1], [2] [3], [4], [5] reveals both that such side information is useful

only if available at the decoder, and that in many cases a properly designed system can realize essentially

the full benefit of this side information (i.e., as if it were known to both encoder and decoder) even if it

is available only at the decoder.

Encoder Decoder
bitsxn x̂n

wn

(a) Signal side informationwn at the decoder.

Encoder Decoder
bitsxn x̂n

qn

(b) Distortion side informationqn at the encoder.

Fig. 1. Compressing a sourcexn with side information.

In this paper, we introduce and analyze a different scenario, illustrated in Fig. 1(b). As before, the

encoder quantizes its observations into a collection of bits, which the decoder uses to reconstruct the

observations to some level of fidelity. But now the encoder has somedistortion side informationqn

describing the relative importance of different components of the observed signal, which enters into our

model as a parameter of the distortion measure in a suitable way.

We develop the fundamental rate-distortion trade-off for this problem. Our analysis reveals, under

reasonable conditions, both that such side information is useful only if available at the encoder, and that

in many cases a properly designed system can realize essentially the full benefit of this side information

(i.e., as if it were known to both encoder and decoder) even ifit is available only at the encoder. As such,

distortion side information plays a complementary role to that of signal side information as developed

by Wyner and Ziv.

1 Throughout this paper, sequences are denoted using superscripts and sequence elements with subscripts (e.g.,xn =

(x1, x2, . . . , xn)), and random variables and sequences distinguished by the use of sans serif fonts (e.g.,xn = (x1, x2, . . . , xn)).
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Finally, we show that these kinds of source coding results continue to hold even when both distortion

side informationqn and signal side informationwn are jointly considered, under suitable conditions.

Specifically, we demonstrate that a system where only the encoder knowsqn and only the decoder

knows wn can be asymptotically as good as a system with both types of side information known at

both the encoder and the decoder. We also derive the penalty for deviating from this often sufficient side

information configuration.

In terms of background, an analysis of the value and efficientuse of distortion side information

available at only the encoder or decoder has received relatively little attention in the information theory

and compression communities to date. The rate-distortion function with decoder-only side information,

relative to side information dependent distortion measures (as an extension of the Wyner-Ziv setting

[1]), is given in [4]. And a high resolution approximation for this rate-distortion function for locally

quadratic weighted distortion measures is given in [6]. However, we are not aware of an information-

theoretic treatment of encoder-only side information withsuch distortion measures. In fact, the mistaken

notion that encoder-only side information is never useful is common folklore. This may be due to a

misunderstanding of Berger’s result that side informationthat does not affect the distortion measureis

never useful when available only at the encoder [7], [3], a point to which we will return in the paper

(Theorems 4 and 5 in the sequel) to develop additional insight.

Before proceeding with our development, it is worth stressing that there are a wide range of applications

where distortion side information may be available in some parts of a system but not others. As one

example, in a sensor network a node may have information about the reliability of the measurements,

which can fluctuate due to calibration or processing. As another example, in audio, image, or video

compression systems, the encoder can apply signal analysisto determine which parts of the signal are

more or less sensitive to distortion due to context, maskingeffects, and other perceptual phenomena

[8]. While the conventional approach to exploiting such side information in practice in these kinds of

examples involves sharing it with decoders via a side channel, the results of this paper suggest that this

can be an unnecessary and inefficient use of bandwith.

An outline of the paper is as follows. Section II introduces the formal problem model of interest.

Section III then develops the rate distortion tradeoffs forsource coding with only distortion side informa-

tion, and in particular identifies conditions under which such side information is sufficient at the encoder.

Section IV then extends the problem of interest to include both signal and distortion side information

in the case of continuous-sources in the high-resolution regime. For this scenario, several equivalence

and loss theorems are developed that quantify the degree to which some side information configurations
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yield the same and different rate-distortion behaviors. Section V then develops bounds on losses incurred

at lower resolution when complete side information is not available. Finally, Section VI contains some

concluding remarks. Throughout the paper, most proofs and longer derivations are deferred to appendices.

II. PROBLEM MODEL

The general rate-distortion problem with side informationz corresponds to the tuple

(X, X̂,Z, px(x), pz |x(z|x), d(x, x̂; z)). (1)

Specifically, a source sequencexn consists of then samples drawn from the alphabetX and the side

information z likewise consists ofn samples drawn from the alphabetZ. These random variables are

drawn according to the distribution

pxn,zn(xn, zn) =

n
∏

i=1

px(xi) · pz |x(zi|xi). (2)

A rate R encoderf(·) maps the sourcexn as well as possible encoder side information to an index

i ∈ {1, 2, . . . , 2nR}. The corresponding decoderg(·) maps the resulting index as well as possible decoder

side information to a reconstruction̂xn of the source, which takes values in the alphabetX̂. Distortion

in a reconstruction̂xn of a sourcexn is measured via

dn(xn, x̂n; zn) =
1

n

n
∑

i=1

d(xi, x̂i; zi), (3)

where we explicitly denote the dependence, in general, of the distortion measure on the side information.

As usual, the rate-distortion function is the minimum rate such that there exists a system where the

distortion is less thanD with probability approaching 1 asn → ∞.

Of particular interest in this paper is the case in which the side informationzn can be decomposed

into two kinds of side information, which we term “signal side information” wn and “distortion side

information” qn, i.e., zn = (wn, qn). The former, whose elements take values in an alphabetW, corre-

sponds to information that is statistically related to the source but does not directly affect the distortion

measure, while the latter, whose elements take values in an alphabetQ, corresponds to information that

does not have a direct statistical relationship to the source but does directly affect the distortion measure.

Formally, we capture this decomposition via the following definition:

Definition 1 A decompositionzn = (wn, qn) of side informationzn into signal side informationwn

and distortion side informationqn for a rate-distortion problem with sourcexn and distortion measure

d(x , x̂ ; z) is admissibleif the following Markov chains are satisfied:

qn ↔ wn ↔ xn (4a)
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and

dn(xn, x̂n; zn) ↔ (xn, x̂n, qn) ↔ w . (4b)

Several remarks are worthwhile before proceeding with our development.

First, note that (4a) is equivalent to the condition

pz |x(z|x) = pw |x(w|x)pq|w (q|w), (5)

and that when (4b) holds, we can (and will), with slight abuseof notation, used(x, x̂; q) in place of

d(x, x̂; z).

Second, Definition 1 allows much flexibility in decomposing some side information into signal and

distortion components. Indeed, such decompositions always exist — one can always simply letqn = wn =

zn. Nevertheless, we will see thatany such decomposition effectively decomposes the side information

into a component whose value is obtained at the encoder, and acomponent whose value is obtained at

the decoder.

Third, when separating phenomena that have physically different origins, such decompositions arise

quite naturally. Moreover, in such cases, the resulting signal and distortion side informations are often

statistically independent, in which case additional results can be obtained on the relative value of different

side information availability configurations. Hence, in our treatment we will often impose this further

restriction — which corresponds to a situation in whichqn andxn are independent not just conditioned

on wn as per (4a), but unconditionally as well — on the side information requirements of Definition 1.

Moreover, in this caseqn is independent of(xn,wn) as well. However, it should be emphasized that

admissible decompositions that satisfy this further restriction are not always possible, and later in the

paper we characterize the penalties incurred by the lack of asuitable decomposition.

It is also worth emphasizing that a further subclass of side information scenarios withqn and wn

independent corresponds to the case in which signal side information is altogether absent (wn = ∅), in

which caseqn andxn are independent. This case will also be of special interest in parts of the paper.

Finally, without any constraints on the structure of the distortion measured(x, x̂; q) and the nature

of its dependency on the side informationq, very little can be inferred about the value of such side

information at the encoder and/or decoder. Hence, we will typically be interested in special forms of

the distortion measure to obtain specific results, a simple example of which would be the modulated

quadratic distortiond(x, x̂; q) = q · (x − x̂)2 for x, x̂ ∈ R. Each of our key theorems will make clear

what particular restrictions on the form of the distortion measure are required.
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In the remainder of the paper, we consider the sixteen possible scenarios depicted in Fig. 2, corre-

sponding to whereqn and wn may each be available at the encoder, decoder, both, or neither. Our

notation for the associated rate-distortion functions makes explit where the side-information is available.

For example,R[Q-NONE-W-NONE](D) denotes the rate-distortion function without side information and

R[Q-NONE-W-DEC](D) denotes the Wyner-Ziv rate-distortion function wherewn is available at the decoder

[1]. Similarly, when all information is available at both encoder and decoder,R[Q-BOTH-W-BOTH](D) de-

scribes Csiszár and Körner’s [4] generalization of Gray’s conditional rate-distortion functionR[Q-NONE-W-BOTH](D)

[9] to the case where the side information can affect the distortion measure.

a b

c d

xn x̂n

qn

wn

i
f(xn, a · qn, b · wn) g(i, c · qn, d · wn)

Fig. 2. Scenarios for source coding with distortion side informationqn and signal side informationwn. The labelsa, b, c,

and d are 0 (respectively, 1) if the corresponding switch is open (respectively, closed) and the side information is unavailable

(respectively, available) to the encoderf(·) or decoderg(·) as shown.

As pointed out by Berger [10], all the rate-distortion functions may be derived by consideringqn as

part of xn or wn (i.e., by considering the “super-source”x̃n = (xn, qn) or the “super-side-information”

w̃n = (wn, qn)) and applying well-known results for source coding, sourcecoding with side information,

the conditional rate-distortion theorem, etc. The resulting expressions are a natural starting point for our

development. We begin with the simpler case in which there isno signal side information.

III. SOURCE CODING WITH DISTORTION SIDE INFORMATION ALONE

It is straightforward to express the rate-distortion tradeoffs for quantization when distortion side

information is present, but signal side information is not.In particular, we obtain the following.

Proposition 1 The rate-distortion functions when there is distortion side informationqn but not signal
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side informationwn are:

R[Q-NONE](D) = inf
px̂|x(x̂|x):E[d(x ,x̂;q)]≤D

I(x ; x̂) (6a)

R[Q-DEC](D) = inf
pu|x(u|x),v(·,·):E[d(x ,v(u,q);q)]≤D

I(x ; u) − I(u; q) = inf
pu|x(u|x),v(·,·):E[d(x ,v(u,q);q)]≤D

I(x ; u) (6b)

R[Q-ENC](D) = inf
px̂|x,q(x̂|x,q):E[d(x ,x̂;q)]≤D

I(x , q; x̂) = inf
px̂|x,q(x̂|x,q):E[d(x ,x̂;q)]≤D

I(x ; x̂ |q) + I(x̂ ; q) (6c)

R[Q-BOTH](D) = inf
px̂|x,q(x̂|x,q):E[d(x ,x̂;q)]≤D

I(x ; x̂ |q). (6d)

The rate-distortion functions in (6a), (6b), and (6d) follow from standard results (e.g., [7], [3], [4], [9],

[1]). To obtain (6c) we can apply the classical rate-distortion theorem to the “super source”x̃n = (xn, qn).

In the remainder of this section, we turn our attention to developing conditions under which having

the distortion side information only at the encoder is as good as having it at both encoder and decoder.

Before developing our formal results, we first describe two simple examples of such behavior in a fairly

qualitative manner. These examples both establish that theassociated conditions will not be degenerate,

and provide preliminary intuition.

A. Motivating Examples

To develop an appreciation for how having distortion side information available only at the encoder

can be as effective as having it at both encoder and decoder, we begin with two motivating examples,

corresponding to a discrete and continuous source, respectively.

1) Discrete Source:Consider a sourcexn whosen samples are drawn uniformly and independently

from the finite alphabetX with cardinality|X| ≥ n. Let qn correspond to then binary variables indicating

which source samples are relevant. Specifically, let the distortion measure be of the formd(x, x̂; q) = 0

if and only if eitherq = 0 or x = x̂. Finally, let the sequenceqi be statistically independent of the source

with qi drawn uniformly from the
(

n
k

)

subsets with exactlyk ones.2

If the side information were unavailable or ignored, then losslessly communicating the source would

require exactlyn · log |X| bits. WhenHb(k/n) < (1 − k/n) log |X|, a better (though still sub-optimal)

approach when encoder side information is available would be for the encoder to first tell the decoder

which samples are relevant and then send only those samples.Using Stirling’s approximation, this would

require aboutn · Hb(k/n) bits (whereHb(·) denotes the binary entropy function) to describe which

2If the distortion side information is a Bernoulli(k/n) sequence, then there will be aboutk ones with high probability. We

focus on the case with exactlyk ones for simplicity.
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Fig. 3. Source coding with erasure distortion side information model. In this example, onlyk = 5 of the n = 7 source

samples are relevant (i.e., the unshaded ones). Source encoding can be implemented by exactly fitting a fourth-degree curve to

the relevant points, which corresponds to using the Reed-Solomon decoding algorithm, as described in the text. The resulting

curve is described byk elements, yielding the optimum achievable compression ratio of k/n.

samples are relevant plusk · log |X| bits to describe the relevant source samples. Note that if the side

information were also known at the decoder, then the overhead required in telling the decoder which

samples are relevant could be avoided and the total rate required would only bek · log |X|. This overhead

can in fact be avoided even without decoder side information.

To see this, we view the source samplesxn, as a codeword of an(n, k) Reed-Solomon code (or

more generally any Maximal Distance Separable (MDS) code3) with qi = 0 indicating an erasure at

samplei. We use the Reed-Solomondecodingalgorithm to “correct” the erasures and determine thek

corresponding information symbols, which are sent to the receiver. To reconstruct the signal, the receiver

encodesthe k information symbols using the encoder for the(n, k) Reed-Solomon code to produce the

reconstruction̂xn. Only symbols withqi = 0 could have changed, hencex̂i = xi wheneverqi = 1 and

the relevant samples are losslessly communicated using only k · log |X| bits.

As illustrated in Fig. 3, it is worth recalling that Reed-Solomon decoding can be viewed as curve-fitting

and Reed-Solomon encoding can be viewed as interpolation. Hence this source coding approach can be

interpreted as fitting a curve of degreek to the points ofxi whereqi = 1. The resulting curve can be

specified using justk elements. It perfectly reproducesxi whereqi = 1 and interpolates the remaining

points.

Finally, an analogous approach can be used for continuous sources. In particular, for such sources

the Discrete Fourier Transform (DFT) plays the role of the Reed-Solomon code. Specifically, to encode

the n source samples, we view thek relevant samples as elements of a complex, periodic, Gaussian,

3The desired MDS code always exists since we assumed|X| ≥ n. For |X| < n, near-MDS codes exist, which give

asymptotically similar performance with an overhead that goes to zero asn → ∞.
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Fig. 4. Quantizers for distortion side information available at encoder and decoder. When the side informationq indicates the

horizontal error (respectively, vertical error) is more important, the encoder uses the codebook lattice and partition function on

the left (respectively, right) to increase horizontal accuracy (respectively, vertical accuracy).

sequence with periodn, which is band-limited in the sense that only its firstk DFT coefficients are

non-zero. Using periodic, band-limited, interpolation wecan use only thek samples whereqi = 1 to

find the corresponding nonzero DFT coefficients, which are subsequently quantized. To reconstruct the

signal, the decoder reconstructs the temporal signal corresponding to the quantized DFT coefficients.

Rather than developing this analogy further, we instead next develop some additional insights afforded

by a rather different approach to continuous sources.

2) Continuous Source:Consider the quantization of a single pair of samples (i.e.,x ∈ R
2) from a

continuous source. The distortion side informationq is binary, corresponding to two possible additive

difference distortion measures. In one measure, the first ofthe samples is more important than the other.

In the other measure, it is the second sample that is more important. As one example, each of the two

measures could be weighted quadratic measures.

If the side informationq were available to both encoder and decoder, then one could choose a codebook

lattice and encoder (i.e., partition function) for each of the two values of the side information. Such a

solution is as depicted in Fig. 4.

When the side information is available only at the encoder, then one requires a solution that involves

a single, common codebook lattice. However, we can still usetwo partition functions chosen according

to the value of the (binary) side information. For this example, such a solution is as depicted in Fig. 5.

Comparing Fig. 5 with Fig. 4, it is straightforward to see, neglecting edge effects and considering

a uniformly distributed source, that having the distortionside information only at the encoder incurs
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Fig. 5. Quantizers for distortion side information available only at the encoder. A common codebook lattice is used, independent

of the realized side information, but when the side information indicates that the horizontal error (respectively, vertical error)

is more important, the encoder uses the partition on the left(respectively, right) to increase horizontal accuracy (respectively,

vertical accuracy).

A B C
D

Fig. 6. A fixed-codebook / variable-partition encoder. In this simple example, the codebook is a simple hexagonal lattice in

two dimensions, and there are four different partitions, corresponding to two bits of distortion side information.

no additional distortion. Later in the paper we will make such statements more precise through high-

resolution analysis, but our qualitative discussion to this point suffices to reveal the basic intuition and the

fundamental role that fixed-codebook / variable-partitionencoders (see, e.g., Fig. 6) play more generally

in the associated systems. Moreover, this encoding strategy generalizes readily to arbitrary block lengths,

and can be implemented with only linear complexity in the block length, as described in [12].

We know turn developing our main results of the section, characterizing when distortion side infor-

mation at the encoder is sufficient more generally.

B. Sufficiency of Encoder-Only Side Information

We begin by comparing the rate-distortion functions in Proposition 1. In particular, knowingqn only at

the encoder is as good as knowing it at both encoder and decoder wheneverR[Q-ENC](D) = R[Q-BOTH](D),
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from which we obtain the following equivalent condition.

Proposition 2 Knowingqn only at the encoder is as good as knowing it at both encoder anddecoder,

i.e., R[Q-ENC](D) = R[Q-BOTH](D), if and only if I(x̂ ; q) = 0 for somex̂ that optimizes(6d).

To prove Proposition 2, it suffices to equate (6c) and (6d) andnote that if in this case somêx optimizes

(6d), it also optimizes (6c).

Proposition 2 admits a simple interpretation. In particular, sincepx̂ |q(x̂|q) represents the distribution

of the codebook, the conditionI(x̂ ; q) = 0 corresponds to the requirement that the codebook distribution

be independent of the side information. In the language of our example of Section III-A.2, this says that

encoder-only side information can only be sufficient if and only if a common codebook can perform as

well as can be achieved by separate codebooks (tuned to each possible value of the side information).

There are two natural scenarios whereI(x̂ ; q) can be zero: the case of uniform sources with group

difference distortions, and the case of erasure distortions. We consider each separately, in turn.

1) Uniform Sources with Group Difference Distortions:Let the sourcex be uniformly distributed over

a groupX with the binary relation⊕. For convenience, we use the symbola⊖b to denotea⊕b−1 (where

b−1 denotes the additive inverse ofb in the group). We define a group difference distortion measure as

any distortion measure where

d(x, x̂; q) = ρ(x̂ ⊖ x; q) (7)

for some functionρ(·; ·). As we will show, the symmetry in this scenario insures that the optimal

codebook distribution is uniform. This allows an encoder todesign a fixed codebook and vary the

quantization partition based onqn to achieve the same performance as a system where both encoder and

decoder knowqn. This uniformity of the codebook, made precise in the following theorem, provides

a general information theoretic explanation for the behavior observed in the Reed-Solomon example of

Section III-A.1.

Theorem 1 Consider a sourcex that is uniformly distributed over a group with a distortionmeasure of

the form(7), where the distortion side informationq is independent ofx . Then

R[Q-ENC](D) = R[Q-BOTH](D). (8)

For either finite or continuous groups this theorem can be proved by deriving the conditional Shannon

Lower Bound (which holds for any source) and showing that this bound is tight for uniform sources. We

use this approach below to give some intuition. For more general “mixed groups” with both discrete and
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continuous components, entropy is not well defined and a moreelaborate argument based on symmetry

and convexity is provided in Appendix A.

Lemma 1 (Conditional Shannon Lower Bound) Let the sourcex be uniformly distributed over a dis-

crete group,X, with a difference distortion measure,ρ(x⊖ x̂; q). Define the conditional maximum entropy

variable v∗ as the random variable that maximizesH(v |q) subject to the constraintE[ρ(v ; q)] ≤ D.

Then, the rate-distortion function withqn known at both encoder and decoder (and hence also the

rate-distortion function withqn known only at the encoder) is lower bounded by

R[Q-ENC](D) ≥ R[Q-BOTH](D) ≥ log |X| − H(v∗|q). (9)

For continuous groups, we can replace|X| and H(v∗|q) in (9) (as well as the following proof) with the

Lebesgue measure of the group and the differential entropyh(v∗|q).

Proof:

I(x̂ ; x |q) = H(x |q) − H(x |q, x̂) (10)

= log |X| − H(x |x̂ , q) (11)

= log |X| − H(x̂ ⊖ x |x , q) (12)

≥ log |X| − H(x̂ ⊖ x |q) (13)

≥ log |X| − H(v∗|q), (14)

where (13) follows since conditioning reduces entropy, and(14) follows from the definition ofv∗ since

E[ρ(x̂ ⊖ x ; q)] ≤ D.

Proof of Theorem 1:Choosing the test-channel distribution̂x = v∗ + x with the pair (v∗, q)

independent ofx achieves the bound in (9) with equality and must therefore beoptimal. Furthermore,

sincex is uniform, so iŝx and thereforêx andq are statistically independent. ThereforeI(x̂ ; q) = 0 and

thus comparing (6c) to (6d) showsR[Q-ENC](D) = R[Q-BOTH](D) for finite groups. The same argument

holds for continuous groups with entropy replaced by differential entropy and|X| replaced by Lebesgue

measure.

Uniform source and group difference distortion measures arise naturally in a variety of applications.

One example is phase quantization where applications such as Magnetic Resonance Imaging, Synthetic

Aperture Radar, and Ultrasonic Microscopy infer physical phenomena from the phase shifts induced in a

probe signal [13], [14], [15]. Alternatively, when magnitude and phase information must both be recorded,
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there are sometimes advantages to treating these separately, [16], [17], [18], [19]. The key special case

when only two phases are recorded corresponds to Hamming distortion. Let us use this special case to

illustrate how distortion side information affects quantization.

For a symmetric binary sourcex with side informationq taking values in{1, 2, . . . , N} according to

distributionpq(q), the general side-information dependent Hamming distortion measure of interest takes

the form

d(x, x̂; q) = αq + βq · dH(x, x̂), (15)

where{α1, α2, . . . , αN} and{β1, β2, . . . , βN} are sets of non-negative weights.

For this case, the associated rate distortion expressions are, whenD ≥ E[αq],

R[Q-NONE](D) = R[Q-DEC](D) = 1 − Hb

(

D − E[αq]

E[βq]

)

(16a)

R[Q-ENC](D) = R[Q-BOTH](D) = 1 −
N
∑

i=1

pq(i) · Hb

(

2−λβi

1 + 2−λβi

)

, (16b)

whereλ is chosen to satisfy the distortion constraint

N
∑

i=1

pq(i)

[

αi + βi ·
2−λβi

1 + 2−λβi

]

= D. (16c)

The derivations of (16) are provided in Appendix B.

Two special cases of (15) are worth developing in more detailfor additional insight.

a) Noisy Observations:One special case of (15) corresponds to quantizing noisy observations. In

particular, supposex is a noisy observation of some underlying source, where the noise is governed by

a binary symmetric channel with crossover probability controlled by the side information. Specifically,

let the crossover probability of the channel be

ǫq =
q − 1

2(N − 1)
,

which is always at most1/2. Furthermore, a distortion of 1 is incurred if an error occurs due to either

the noise in the observation or the noise in the quantization— but not both; and there is no distortion

otherwise:

d(x, x̂; q) = ǫq · [1 − dH(x, x̂)] + (1 − ǫq) · dH(x, x̂)

= ǫq + (1 − 2ǫq) · dH(x, x̂)

=
q − 1

2(N − 1)
+

(

1 − q − 1

N − 1

)

· dH(x, x̂). (17)

January 15, 2007 DRAFT



14

Fig. 7. Rate-Distortion tradeoffs for noisy observations of a binary source. The solid and dashed curves represents theminimum

possible Hamming distortion when side information specifying the cross-over probability of the observation noise is and is not

available at the encoder, respectively. For the plot on the left the crossover probability for the observation noise is equally likely

to be 0 or 1/2, while for the plot on the right it is uniformly distributed over the interval[0, 1/2].

Evidently, (17) corresponds to a distortion measure in the form of (15) with

αq =
q − 1)

2(N − 1)
and βq = 1 − q − 1

N − 1
,

so the rate-distortion formulas of (16) apply. Note that an optimal encoding strategy when the side

information is available at both encoder and decoder is to encode the noisy observation directly although

with different amounts of quantization depending on the side information [20].

The rate-distortion tradeoffs for this noisy observationsspecial case are depicted in Fig. 7. The left

plot corresponds toN = 2, while the right plot corresponds toN → ∞. In each plot, the solid curve

shows the tradeoff achievable when the side information is available at the encoder, while the dashed

curve shows the (poorer) tradeoff achievable when it is not.

From this special case it is apparent that a naive encoding method whereby the encoder losslessly

communicates the side information to the decoder, then usesencoding for the case of side information

at both encoder and decoder, can require arbitrarily higherrate than the optimal rate-distortion trade-off.

Indeed, to losslessly encode the side information requiresan additional rate oflog N , which is unbounded

in N .
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Fig. 8. Rate-Distortion tradeoffs for a binary source, where the Hamming distortion in quantizing each source sample is

weightedexp(5q). The solid and dashed curves represent the minimum possibleHamming distortion when side information

specifying the weight is and is not available at the encoder,respectively. In the left plot,q is uniformly distributed over the pair

{0, 1} while in the right plotq is uniformly distributed over the interval[0, 1].

b) Weighted Distortion:In a number of applications, certain samples of a source are inherently more

important than others — e.g., edges other perceptually important features in an image, or sensor readings

in high activity areas. Such a scenario corresponds to quantizing with a weighted distortion measure,

which is a different special case of (15). Specifically, we consider a distortion measure of the form (15)

whereβi = exp(γi/N), αi = 0, and the side information is uniformly distributed over{0, 1, . . . , N −1}.

The rate-distortion tradeoffs for this weighted distortion special case withγ = 5 are depicted in Fig. 8.

The left and right plots correspond toN = 2 and N → ∞, respectively. In each plot, the solid curve

shows the tradeoff achievable when the side information is available at the encoder, while the dashed

curve shows the (poorer) tradeoff achievable when it is not.Note that when the side information is not

available, the system is limited to treating all samples equally, while the system with side information

will assign more bits to the samples for which the associatedweights in the Hamming distortion measure

are larger.

This special case of weighted Hamming distortion can also beused to demonstrate that ignoring the

side information at the encoder can result in arbitrarily higher distortion than the minimum required

by optimal schemes. To see this, it suffices to restrict attention to the caseN = 2 and observe that as
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γ → ∞, the system not using side information suffers increasingly more distortion. This is most evident

for R > 1/2. In this rate region, the system with side information losslessly encodes the important

samples and the distortion is bounded by1/2 while the system without side information has a distortion

that scales withexp(γ/2). Thus the extra distortion incurred whenq is not available to the encoder can

be arbitrarily large.

2) Erasure Distortions:The other natural scenario where it is sufficient for distortion side information

to be available only at the encoder is for “erasure distortions” wherebyq ∈ {0, 1} and the distortion

measure is of the form

d(x, x̂; q) = q · ρ(x, x̂) (18)

for some functionρ(·, ·) that is itself a valid distortion measure. In particular, wehave the following

Theorem 2 For any source distribution, if the distortion measure is ofthe form in(18) with qn ∈ {0, 1}n,

then

R[Q-ENC](D) = R[Q-BOTH](D). (19)

Before proceeding with our proof, we remark that as the example of Section III-A.1 suggests, not only

is encoder side information sufficient in the case of erasuredistortions, but the quantizers for optimally

exploiting side information at the encoder alone can be particularly simple.

Proof: Let x̂∗ be a distribution that optimizes (6d). Choose the new randomvariable x̂∗∗ to be the

same aŝx∗ whenq = 0 and whenq = 1, let x̂∗∗ be independent ofx with the same marginal distribution

as whenq = 0:

px̂∗∗|x ,q(x̂|x, q) =











px̂∗|x ,q(x̂|x, q), q = 0

px̂∗|q(x̂|q = 0), q = 1.

(20)

Both x̂∗ and x̂∗∗ have the same expected distortion since they only differ when q = 0. Furthermore, by

the data processing inequality

I(x̂∗∗; x |q) ≤ I(x̂∗; x |q) (21)

so x̂∗∗ also optimizes (6d). Finally, sinceI(x̂∗∗; q) = 0, Proposition 2 is satisfied and we obtain the

desired result.

IV. SOURCE CODING WITH DISTORTION AND SIGNAL SIDE INFORMATION

We now turn our attention to the more general scenario in which there is both signal and distortion

side information in the problem. In contrast to the treatment of Section III, here we will emphasize the
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case of continuous sources, whose elements take values inR
k for some integerk ≥ 1. At the same

time, in examining issues of sufficiency of different types of side information, we will consider a looser

asymptotic sufficiency in the high resolution limit.

When there is no signal side information, one would expect tofind asymptotic sufficiency of encoder-

only distortion side information rather generally. Indeed, asD → Dmin, whereDmin denotes the minimum

attainable value,̂xn → xn. Thus whenxn andqn are independent we may intuitively expectx̂n → xn to

imply I(x̂ ; q) → I(x ; q) = 0. This turns out to be the case under reasonable conditions, as we formally

develop in this section.

More generally, when there is both signal and distortion side information, we show the asymptotic

sufficiency of encoder-only distortion side information and decoder-only signal side information in the

high resolution limit in several natural scenarios of interest.

A. Admissibility Requirements

We begin by defining the class of continuous-source problemsof interest. In addition to the side

information decomposition implied by Definition 1, our results require a “continuity of entropy” property

that essentially states

v → 0 in distribution ⇒ h(x + v |q,w) → h(x |q,w). (22)

The desired continuity follows from [21] provided the source, distortion measure, and side information

satisfy some technical conditions related to smoothness. These conditions are not particularly hard to

satisfy; for example, any source, side information, and distortion measure where

∃δ > 0,−∞ < E[‖x‖δ | w = w] < ∞ ∀w (23a)

−∞ < h(x | w = w) < ∞, ∀w (23b)

d(x, x̂; q) = α(q)+β(q) · ‖x − x̂‖γ(q) (23c)

will satisfy the desired technical conditions in [21] provided α(·), β(·), and γ(·) are non-negative

functions.

For more general scenarios we introduce the following definition to summarize the requirements from

[21].

Definition 2 The collection of a sourcex , a side information pair (q,w ), and a difference distortion

measured(x, x̂; q) = ρ(x−x̂; q) is said to beadmissibleif, in addition to the conditions(4) of Definition 1,

the following conditions are satisfied:
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1) the equations

a(D, q)

∫

exp[−s(D, q)ρ(x; q)]dx = 1 (24a)

a(D, q)

∫

ρ(x; q) exp[−s(D, q)ρ(x; q)]dx = D (24b)

have a unique pair of solutions(a(D, q), s(D, q)) for all D > Dmin that are continuous functions

of their arguments

2) −∞ < h(x |w = w) < ∞, for all w

3) For each value ofq, there exists an auxiliary distortion measureδ(·; q) where the equations

aδ(D, q)

∫

exp[−sδ(D, q)δ(x; q)]dx = 1 (25a)

aδ(D, q)

∫

δ(x; q) exp[−sδ(D, q)δ(x; q)]dx = D (25b)

have a unique pair of solutions(aδ(D, q), sδ(D, q)) for all D > Dmin that are continuous functions

of their arguments

4) The conditional maximum entropy random variablev∗ that maximizesh(v |q) subject to the con-

straint E[ρ(v ; q)] ≤ D has the property that

lim
D→Dmin

v∗ →0 in distribution∀q (26a)

lim
D→Dmin

E[δ(x + v∗, q)|q = q] = E[δ(x , q)|q = q] ∀q. (26b)

B. Equivalence Theorems

Our main results for continuous sources are a set of four theorems describing when different types

of side information knowledge are equivalent. Our results show that the sixteen possible information

configurations of Fig. 2 can be reduced to the four shown in Fig. 9. Our four equivalence theorems

presented below are proved in Appendix C.

We begin by establishing that, under suitable conditions, having the distortion side information at the

encoder and the signal side information at the decoder is sufficient to ensure there is no loss relative to

the case of complete side information everywhere:

Theorem 3 For a scenario in which Definition 2 is satisfied, and a difference distortion measure of

the formρ(x − x̂; q) is involved,qn and wn can be divided between the encoder and decoder with no

asymptotic penalty, i.e.,

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) = 0. (27)

January 15, 2007 DRAFT



19

Decoder missingwn Decoder haswn

Encoder

Missing

qn

R[Q-DEC-W-ENC]
Th. 4 (I)⇐⇒ R[Q-DEC-W-NONE]

m Th. 5 (S+I) m Th. 5 (S+I)

R[Q-NONE-W-ENC]
Th. 4 (I)⇐⇒ R[Q-NONE-W-NONE]

R[Q-DEC-W-BOTH]
Th. 5 (S)⇐⇒ R[Q-NONE-W-BOTH]

m Th. 6 (H+S+I) m Th. 6 (H+S+I)

R[Q-DEC-W-DEC]
Th. 5 (S)⇐⇒ R[Q-NONE-W-DEC]

Encoder

hasqn

R[Q-ENC-W-ENC]
Th. 4⇐⇒ R[Q-ENC-W-NONE]

m Th. 6 (H+I) m Th. 6 (H+I)

R[Q-BOTH-W-ENC]
Th. 4⇐⇒ R[Q-BOTH-W-NONE]

R[Q-ENC-W-DEC]
Th. 6 (H)⇐⇒ R[Q-ENC-W-BOTH]

m Th. 6 (H) m Th. 6 (H)

R[Q-BOTH-W-DEC]
Th. 6 (H)⇐⇒ R[Q-BOTH-W-BOTH]

Fig. 9. Summary of equivalence results for continuous sources. Arrows indicate which theorems demonstrate equality between

various rate-distortion functions and list the assumptions required (H = high-resolution, I =qn andwn independent, S = scaled

difference distortion).

Theorem 3 establishes that there is a natural division of side information between the encoder and

decoder (at least asymptotically). Ultimately, this theorem can be viewed as generalizing prior results on

the lack of rate loss for the Wyner-Ziv problem in the high-resolution limit [5] [6].

In some ways, Theorem 3 is quite remarkable. The admissibility conditions (4) requireqn to be

conditionally independent ofxn given wn, and require the distortion to be conditionally independent of

wn givenqn, xn, and x̂n. However, since our model allows forqn andwn to be statistically dependent,

qn can be indirectly correlated withxn (throughwn) andwn can indirectly affect the distortion (through

qn).

The next pair of theorems show, under appropriate conditions, thatwn known only at the encoder

is useless, andqn known only at the decoder is useless. Hence, deviating from the natural division of

Theorem 3 and providing side information in the wrong place makes that side information useless (at

least in terms of the rate-distortion function). As such, these theorems generalize Berger’s result that

signal side information is useless when known only at the encoder [7].

Theorem 4 For a scenario in which Definition 1 is satisfied,qn and wn are independent,4, and a

difference distortion measure of the formρ(x − x̂; q) is involved,wn provides no benefit when known

only at the encoder, i.e.,

R[Q-*-W-ENC](D) = R[Q-*-W-NONE](D), (28)

where the wildcard “*” may be replaced with an element from{ENC, DEC, BOTH, NONE} (both *’s must be

4Independence is only required when∗ ∈ {DEC, NONE}; if ∗ ∈ {ENC, BOTH}, the theorem holds without this independence

condition.
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replaced with the same element).

Theorem 5 For a scenario in which Definition 1 is satisfied,qn andwn are independent,5 and a scaled

distortion measure of the formd(x, x̂; q) = ρ0(q)ρ1(x, x̂) is involved,qn provides no benefit when known

only at the decoder, i.e.,

R[Q-DEC-W-*](D) = R[Q-NONE-W-*](D), (29)

where the wildcard “*” may be replaced with an element from{ENC, DEC, BOTH, NONE} (both *’s must be

replaced with the same element).

Finally, we can generalize Theorem 3 to show that regardlessof where signal (respectively, distortion)

side information is constrained to be available, having thedistortion (respectively, signal) side information

at the encoder (respectively, decoder) results in the best possible performance attainable subject to that

constraint.

Theorem 6 For a scenario in which Definition 2 is satisfied,qn and wn are independent,6 and the

difference distortion measure involved is a scaled one of the form7 d(x, x̂; q) = ρ0(q) · ρ1(x − x̂), qn

(respectively,wn) is asymptotically only required at the encoder (respectively, at the decoder), i.e.,

lim
D→Dmin

R[Q-ENC-W-*](D) − R[Q-BOTH-W-*](D) = 0 (30a)

lim
D→Dmin

R[Q-*-W-DEC](D) − R[Q-*-W-BOTH](D) = 0, (30b)

where the wildcard “*” may be replaced with an element from{ENC, DEC, BOTH, NONE} (both *’s must be

replaced with the same element).

In essence, Theorem 6 establishes an approximation result:that, under reasonable conditions, the closer

one can get to the ideal of providingqn to the encoder andwn to the decoder implied by Theorem 3,

the better the system will perform.

5Independence is only required when∗ ∈ {ENC, NONE}; if ∗ ∈ {DEC, BOTH}, the theorem holds without this condition.

6Independence is only required when∗ ∈ {ENC, NONE} in (30a) or when∗ ∈ {DEC, NONE} in (30b). For∗ ∈ {DEC, BOTH}
in (30a) or∗ ∈ {ENC, BOTH} in (30b) the theorem holds without this condition.

7The scaled form of the distortion measure is only required when ∗ ∈ {DEC, NONE} in (30b). When∗ ∈ {ENC, BOTH}, the

theorem holds without this restriction.
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C. Loss Theorems

While the results of Section IV-B establish that the providing distortion side information to the encoder

and signal side information to the decoder is best, in this section we quantify the loss incurred by

deviations from this ideal. In particular, our results takethe form of two theorems, which respectively

characterize the rate loss when signal side information is not available at the decoder, and when distortion

side information is not available at the encoder. Finally, corollaries of each of these theorems establish

how statistical dependencies between the two side informations influence the associated losses.

Our two theorems are as follows;8 proofs are proved in Appendix D.

Theorem 7 For a scenario in which Definition 1 is satisfied,qn and wn are independent,9 and the

difference distortion measure involved is a scaled one of the form d(x, x̂; q) = ρ0(q) · ρ1(x − x̂), the

penalty for not knowingwn at the decoder is

lim
D→Dmin

R[Q-*-W-{ENC-OR-NONE}](D) − R[Q-*-W-{DEC-OR-BOTH}](D) = I(x ;w), (31)

where the wildcard “*” may be replaced with an element from{ENC, DEC, BOTH, NONE} (all *’s must be

replaced with the same element).

Theorem 8 For a scenario in which Definition 2 is satisfied,qn and wn are independent,10 and the

difference distortion measure involved is a scaled one of the form d(x, x̂; q) = q · ‖x − x̂‖r for some

r > 0, the penalty (in nats/sample) for not knowingqn at the encoder is

lim
D→Dmin

R[Q-{DEC-OR-NONE}-W-*](D) − R[Q-{ENC-OR-BOTH}-W-* ](D) =
k

r
E

[

ln
E[q]

q

]

, (32)

where the wildcard “*” may be replaced with an element from{ENC, DEC, BOTH, NONE} (both *’s must be

replaced with the same element).

Some remarks are worthwhile. First, Theorem 7 makes clear that the more valuable the signal side

information wn is (i.e., the greater the statistical dependency on the signal as measured by mutual

information), the larger the loss incurred by not having it at the decoder. Moreover, there is no loss if

and only if the signal side information is useless (i.e., independent of the source).

8Note that a special case of Theorem 8 appears in [6] for the case r = 2 and the lefthand and righthand∗’s in (32) being

DEC and BOTH, respectively.

9Independence is only required when∗ ∈ {DEC, NONE}; if ∗ ∈ {ENC, BOTH}, the theorem holds without this condition.

10Independence is only required when∗ ∈ {ENC, NONE}; if ∗ ∈ {DEC, BOTH}, the theorem holds without this condition.
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TABLE I

ASYMPTOTIC RATE LOSS(IN NATS) FOR NOT KNOWING DISTORTION SIDE INFORMATIONq AT THE ENCODER. DISTORTION

IS MEASURED VIA d(x, x̂; q) = q(x − x̂)2, AND γ DENOTESEULER’ S CONSTANT.

Distribution Name Density forq Rate Gap in nats

Exponential τ exp(−qτ ) − 1
2

ln γ ≈ 0.2748

Uniform 1q∈[0,1]
1
2
(1 − ln 2) ≈ 0.1534

Lognormal 1

q
√

2πQ2
exp

h

− (ln q−M)2

2Q2

i

Q2

4

Pareto ab

qa+1 , q ≥ b > 0, a > 1 1
2

h

ln a
a−1

− 1/a
i

Gamma b(bq)a−1 exp(−bq)
Γ(a)

1
2

˘

ln a − d
dx

[ln Γ(x)]x=a

¯

≈ 1
2a

Pathological (1 − ǫ)δ(q − ǫ) + ǫδ(q − 1/ǫ) 1
2

ln(1 + ǫ − ǫ2) − 1−2ǫ
2

ln ǫ ≈ 1
2

ln 1
ǫ

Positive Cauchy 2/π

1+q2 , q ≥ 0 ∞

For comparison, Theorem 8 makes clear that the more significant the distortion side information (i.e.,

the greater the range of values this information can take on as measured logarithmically), the larger the

loss incurred by not having it at the encoder. Moreover, there is no loss if and only if the distortion side

information is a constant with probability 1 (i.e., degenerate).

In Table I, we evaluate the high-resolution rate penalty of Theorem 8 for a number of possible distortion

side-information distributions. Note that for all of theseside information distributions (except the uniform

and exponential distributions), the rate penalty can be made arbitrarily large by choosing the appropriate

shape parameter to place more probability nearq = 0 or q = ∞. In the former case (LogNormal, Gamma,

or Pathologicalq), the large rate-loss occurs because whenq ≈ 0, the informed encoder can transmit

almost zero rate while the uninformed encoder must transmita large rate to achieve high resolution. In

the latter case (Pareto or Cauchyq), the large rate-loss is caused by the heavy tails of the distribution

for q. Specifically, even thoughq is big only very rarely, it is the rare samples of largeq that dominate

the moments. Thus an informed encoder can describe the source extremely accurately during the rare

occasions whenq is large, while an uninformed encoder must always spend a large rate to obtain a low

average distortion.

Finally, note that all but one of these distributions in Table I would require infinite rate to losslessly

communicate the side information. Thus the gains to be had from distortion side informationcannotbe
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obtained by exactly describing the side information to the decoder.

Theorems 7 and 8 emphasize the case when the side informationdecomposes naturally into independent

signal side information and distortion side information components. When such a decomposition is not

possible, it is straightforward to characterize the lossesassociated with not having the side information

everywhere, as we now develop.

Consider a general side informationz that influences the distortion measure viad(x, x̂; z) = ρ0(z) ·
ρ1(x − x̂) and is correlated with the source. Then we have the following corollaries of Theorems 7 and

8, respectively.

Corollary 1 For a scenario in which Definition 2 is satisfied withq = w = z , and the difference

distortion measure involved is a scaled one of the formd(x, x̂; z) = ρ0(z) · ρ1(x − x̂), the penalty for

knowing general side informationz only at the encoder is

lim
D→Dmin

R[Z-ENC](D) − R[Z-BOTH](D) = I(x ; z). (33)

Corollary 2 For a scenario in which Definition 2 is satisfied, and the difference distortion measure

involved is a scaled one of the formd(x, x̂; z) = z · ‖x− x̂‖r for somer > 0, the penalty (in nats/sample)

for not knowingz at the encoder is

lim
D→Dmin

R[Z-DEC](D) − R[Z-BOTH](D) =
k

r
E

[

ln
E[z ]

z

]

. (34)

In essence, Corollary 1 establishes that not having generalside information at the decoder incurs a

loss only to the extent that side information is correlated with the source, while Corollary 2 establishes

that not having such side information at the encoder incurs aloss only to the extent that side information

influences the distortion measure.

To obtain both Corollaries 1 and 2, it suffices to i) letq = w = z in Theorems 7 and 8, respectively, for

the casesR[Q-ENC-W-ENC](D)−R[Q-ENC-W-BOTH](D) andR[Q-DEC-W-DEC](D)−R[Q-BOTH-W-DEC](D), respec-

tively, taking into account the respective footnotes in these theorems; and ii) note thatR[Q-ENC-W-BOTH](D) =

R[Q-BOTH-W-DEC](D) = R[Q-BOTH-W-BOTH](D) whenq = w = z .

V. SOURCE CODING WITH SIDE INFORMATION AT LOWER RESOLUTIONS

While Section IV established the asymptotic sufficiency of encoder-only distortion side information

and decoder-only signal side information in the high-resolution limit, they do not tell how quickly this

sufficiency is obtained as the resolution is increased. Thisrequires a finer grained analysis, which is the

focus of this section. To simplify our analysis, we restrictour attention to scaled quadratic distortion
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measures, but briefly discuss how these results can be generalized to other distortion measures. As we

now develop, our results take the form of two theorems, whichcharacterize behavior at medium and low

resolutions, respectively.

A. A Medium Resolution Bound

The following theorem bounds the rate penalties incurred byincomplete side information at medium

resolutions; a proof is provided in Appendix E.

Theorem 9 For a scenario in which Definition 1 is satisfied, and the distortion measure involved is of

the formd(x, x̂; q) = q · (x − x̂)2 with q ≥ qmin > 0, the rate gap at distortionD is bounded by

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) ≤ J(x |w)

2
· min

[

1,
D

qmin

]

, (35)

whereJ(x |w) is the Fisher Information in estimating a non-random parameter τ from τ +x conditioned

on knowingw . Specifically,

J(x |w)
∆
=

∫

pw (w)

{

∫

px |w (x|w)

[

∂

∂x
log px |w (x|w)

]2

dx

}

dw. (36)

A few remarks are worthwhile. First, similar bounds can be developed with other distortion measures

provided thatD/qmin is replaced with a quantity proportional to the variance of the quantization error;

see the remark after the proof of Theorem 9 in the Appendix E for details. Also, related bounds are

discussed in [22, Appendix D].

Second, Fisher information arises in our bound from a consideration of the underlying additive test-

channel distribution̂x = x + v . In particular, a clever source decoder could treat each source sample

xi as a parameter to be estimated from the quantized representation x̂i. If an efficient estimator exists,

this procedure could potentially reduce the distortion by the reciprocal of the Fisher Information. But

if the distortion can be reduced in this manner without affecting the rate, then the additive test-channel

distribution must be sub-optimal and a rate gap must exist.

Exploiting this insight, our bound in Theorem 9 essentiallymeasures the rate gap by assessing how

much our additive test-channel distribution could be improved if an efficient estimator existed forx

given x̂ . This bound will tend to be good when an efficient estimator does exist and poor otherwise.

For example, ifx is Gaussian with unit-variance conditioned onw , then the Fisher Information term

in (35) evaluates to one and the worst-case rate-loss is at most half a bit at maximum distortion. This

corresponds to the half-bit bound on the rate-loss for the pure Wyner-Ziv problem derived in [5]. But if

x is discontinuous (e.g., ifx is uniform), then no efficient estimator exists and the boundin (35) is poor.
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We should also emphasize that the proof of Theorem 9 does not require any extra regularity conditions.

Hence, if the Fisher Information of the source is finite, it can be immediately applied without the need

to check whether the source is admissible according to Definition 2.

B. A Low Resolution Bound

While the Fisher Information bound from (35) can be used at low resolutions, it can be quite poor

if the source is not smooth. Therefore, we propose the following alternative bound on the rate penalty,

which is independent of the distortion level and hence most useful at low resolution. A proof is provided

in Appendix E.

Theorem 10 For a scenario in which Definition 1 is satisfied, and the distortion measure involved is of

the formd(x, x̂; q) = q · (x − x̂)2, the rate gap at any distortion is at most

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) ≤ D(px |w‖N(Var [x ])) +
1

2
log

(

1 +
σ2

max

σ2
min

)

, (37)

whereN(t) represents a Gaussian random variable with mean zero and variance t, and where

σ2
min = min

w
Var [x |w = w] (38a)

σ2
max = max

w
Var [x |w = w] . (38b)

Again, we make some remarks. First, as with our medium resolution bound, similar bounds can be

developed for other distortion measures, which we discuss after the proof of Theorem 10 in Appendix E.

Second, the bound (37) can be readily evaluated in various cases of interest. As one example, consider

the familiar Wyner-Ziv scenario where the signal side information is a noisy observation of the source.

Specifically, letw = x + v wherev is independent ofx . In this case, the conditional variance is constant

and (37) becomes

D(px |w‖N(Var [x ])) +
1

2
log 2 (39)

and the rate-loss is at most half a bit plus the deviation fromGaussianity of the source. As another

example, ifx is Gaussian when conditioned onw = w, then the rate-loss is again seen to be at most

half a bit, as in [5].

However, in contrast to the bound of [5], which is independent of the source, both our bounds in (35)

and (37) depend on the source distribution. Hence, we conjecture that our bounds are loose. In particular,

for a discrete source, the worst case rate loss is at mostH(x |w), but this is not captured by our results

since both bounds become infinity. Techniques from [23], [24], [5] may yield tighter bounds.
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C. A Finite-Rate Gaussian Example

To gain some sense for when the asymptotic results take effect, we consider a finite-rate Gaussian

scenario. Specifically, let the source consist of a sequenceof Gaussian random variables with mean zero

and variance 1 and consider distortion side information with Pr[q = 1] = 0.6, Pr[q = 10] = 0.4, and

distortion measured(x, x̂; q) = q · (x − x̂)2.

The case without side information is equivalent to quantizing a Gaussian random variable with distortion

measure4.6(x − x̂)2 and thus the rate-distortion function is

R[Q-NONE-W-NONE](D) =











0, D ≥ 4.6

1
2 ln 4.6

D , D ≤ 4.6.

(40)

To determineR[Q-BOTH-W-NONE](D) we must set up a constrained optimization as we did for the binary-

Hamming scenario in Appendix B. This optimization results in a “water-pouring” bit allocation, which

uses more bits to quantize the source whenq = 10 than whenq = 1. Specifically, the optimal test-channel

is a Gaussian distribution where both the mean and the variance depend onq and thuŝx has a Gaussian

mixture distribution. Going through the details of the constrained optimization yields

R[Q-BOTH-W-NONE](D) =



























0, 4.6 ≤ D

0.4
2 ln 4

(D−0.6) , D∗ ≤ D ≤ 4.6

0.4
2 ln 10

D + 0.6
2 ln 1

D , D ≤ D∗

(41)

for some appropriate thresholdD∗. Evaluating (32) for this case indicates that the rate-gap between (40)

and (41) goes to0.5 · (ln 4.6 − 0.4 ln 10) ≈ 0.3 nats≈ 0.43 bits.

ComputingR[Q-ENC-W-NONE](D) analytically seems difficult. Thus, when distortion side information is

only available at the encoder we obtain a numerical upper bound on the rate by using the same codebook

distribution as whenq is known at both encoder and decoder. This yields a rate penalty of I(x̂ ; q).11

We can obtain a simple analytic bound from Theorem 9. Specifically, evaluating (35) yields that the rate

penalty is at most(1/2) · min[1,D].

In Fig. 10 we evaluate these rate-distortion trade-offs. Wesee that at zero rate, the rate-distortion

functions for the case of no side information, encoder-onlyside information, and full side information

have the same distortion since no bits are available for quantization. Furthermore, we see that the Fisher

11Actually, since the rate distortion function is convex, we take the lower convex envelope of the curve resulting from the

optimal test-channel distribution.
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Information bound is loose at zero rate. As the rate increases, the system with full distortion side-

information does best because it uses the few available bitsto represent only the important source

samples withq = 10. The decoder reconstructs these source samples from the compressed data and

reconstructs the less important samples to zero (the mean ofx). In this regime, the system with distortion

side information at the encoder also more accurately quantizes the important source samples. But since

the decoder does not knowq, it does not know which samples ofx̂ to reconstruct to zero. Thus the

system withq available at the encoder performs worse than the one withq at both encoder and decoder

but better than the system without side information. As the rate increases further, both systems with

distortion side information quantize source samples with both q = 1 and q = 10. Thus the codebook

distribution for x̂ goes from a Gaussian mixture to become more and more Gaussianand the rate-loss

for the system with only encoder side information goes to zero. Finally, we note that even at the modest

distortion of−5 dB, the asymptotic effects promised by our theorems have already taken effect.

VI. CONCLUDING REMARKS

Our analysis indicates that side information that affects the distortion measure can provide significant

benefits in source coding. Perhaps, our most surprising result is that in a number of cases, (e.g., sources

uniformly distributed over a group, or in the high-resolution limit) side information at the encoder is just

as good as side information known at both encoder and decoder. Furthermore, this “separation theorem”

can be composed with the previously known result that havingsignal side information at the decoder

is often as good as having it at both encoder and decoder (e.g., in the high-resolution limit). Our main

results regarding when knowing a given type of side information at one place is as good as knowing

it at another place are summarized in Fig. 9. Also, we computed the rate-loss for lacking a particular

type of side information in a specific place. These penalty theorems show that lacking the proper side

information can produce arbitrarily large degradations inperformance. Taken together, we believe these

results suggest that distortion side information is a useful source coding paradigm.

In practice, one area where distortion side information mayprovide benefits is in designing perceptual

coders which use features of the human visual system (HVS) orhuman auditory system (HAS) to

achieve low subjective distortion even when the objective distortion (e.g., the mean square error) is quite

large. Recent examples of such systems have shown gains in image coding [25], [26]. Unfortunately,

current systems often communicate the distortion side information (in the form of model parameters or

quantizer step sizes) explicitly and thus are not as efficient as they could be. Perhaps more importantly,

creating such a perceptual coder often requires the designer to be an expert both in human physiology

January 15, 2007 DRAFT



28

Fig. 10. Rate-distortion curves for quantizing a Gaussian sourcex with distortionq(x − x̂)2 where the side informationq is

1 with probability 0.6 or 10 with probability 0.4. From bottom to top on the right the curves correspond to the rate required

when both encoder and decoder knowq, a numerically computed upper bound to the rate when only theencoder knowsq, the

rate when neither encoder nor decoder knowq, and the Fisher Information upper bound from Theorem 9 for when only the

encoder knowsq.

as well as quantizer design. Consequently, development becomes expensive and time consuming. Using

the abstraction of distortion side information to represent such perceptual effects, however, may help

overcome these barriers.

Obviously our model contains many idealizations that may not be exactly accurate for real sources

(e.g., the distortion side information may not be independent of the source, the source itself may not be

i.i.d., channel coding may be involved,etc). On a theoretical level, many of these non-idealities can be

addressed. For example, while Corollary 1 indicates that knowing general side informationz only at the

encoder may be suboptimal, the loss is essentially due to lack of signal side information. In particular,

even when distortion side information known only at the encoder is correlated with the source, the fixed

codebook–variable partition approach outlined in SectionIII and developed in more detail in [12] can
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still provide significant benefits. Finally, we believe thatinformation spectrum techniques can be used to

establish that the familiar source–channel separation theorem holds and that the results developed here

for i.i.d. models can be generalized to stationary, ergodicscenarios [27], [28], [29].

APPENDIX

A. Proof of Theorem 1

Assume thatp∗
x̂ |x ,q(x̂|x, q) is an optimal test-channel distribution with the conditional p∗

x̂ |q(x̂|q). By

symmetry, for anyt ∈ X, the shifted distribution

pt
x̂|x ,q(x̂|x, q)

∆
= p∗x̂|x ,q(x̂ ⊕ t|x ⊕ t, q) (42)

must also be an optimal test-channel. Since mutual information is convex in the test-channel distribution,

we obtain an optimal test-channel distributionp∗∗ by averagingt overX via the uniform measuredX(t):

p∗∗x̂|x ,q(x̂|x, q)
∆
=

∫

X

pt
x̂ |x ,q(x̂|x, q)dX(t). (43)

To prove that the resulting distribution forx̂ given q is uniform for all q (and hence independent ofq),

we will show thatp∗∗
x̂|q(x̂|q) = p∗∗

x̂|q(x̂ ⊕ r|q) for any r ∈ X:

p∗∗x̂ |q(x̂|q) =

∫

X

p∗∗x̂|x ,q(x̂|x, q)dX(x) (44)

=

∫

X

∫

X

pt
x̂|x ,q(x̂|x, q)dX(t)dX(x) (45)

=

∫

X

∫

X

p∗x̂|x ,q(x̂ ⊕ t|x ⊕ t, q)dX(t)dX(x) (46)

=

∫

X

∫

X

p∗x̂|x ,q(x̂ ⊕ r ⊕ t|x ⊕ r ⊕ t, q)dX(r ⊕ t)dX(x) (47)

=

∫

X

∫

X

p∗x̂|x ,q(x̂ ⊕ r ⊕ t|x ⊕ r ⊕ t, q)dX(t)dX(x ⊕ r) (48)

=

∫

X

∫

X

p∗x̂|x ,q(x̂ ⊕ r ⊕ t|x ⊕ t, q)dX(t)dX(x) (49)

= p∗∗x̂ |q(x̂ ⊕ r|q). (50)

Equation (44) follows from Bayes’ law and the fact thatdX is the uniform measure onX. The next two

lines follow from the definition ofp∗∗ andpt respectively. To obtain (47), we make the change of variable

t → r ⊕ t, and then apply the fact that the uniform measure is shift invariant to obtain (48). Similarly,

we make the change of variablex ⊕ r → x to obtain (49). The last line follows from the definition in

(43).
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Note that this argument applies regardless of whether the side information is available at the encoder,

decoder, both, or neither.

B. Derivation of Binary-Hamming Rate-Distortion Functions (16)

Let us first consider when the side information isnot at the encoder, corresponding to (16a). In this

case, the side information is of no value to the decoder, and thus the source coding problem is equivalent

to quantizing a symmetric binary source with the distortionmeasure averaged over the side information,

viz.,

d(x, x̂) = E[αq + βq · dH(x, x̂)] = E[αq] + E[βq] · dH(x, x̂). (51)

Thus, the relevant rate-distortion function is obtained bysimply scaling and translating the familiar rate-

distortion function for the canonical binary-Hamming case, yielding (16a).

Next, to obtain (16b), the rate-distortion function when the side informationis at the encoder, we begin

by noting that this is the same as that when the side information is available at both encoder and decoder.

Hence, we computeR[Q-ENC](D) andR[Q-BOTH](D) by considering the latter case and noting that optimal

encoding corresponds to simultaneous description of independent random variables [30, Section 13.3.3].

Specifically, the source samples for each value ofq can be quantized separately using the distribution

px̂ |x ,q(x̂|x, q) =











1 − pq, x̂ = x

pq, x̂ = 1 − x.

(52)

The cross-over probabilitiespq correspond to the bit allocations for each value of the side information

and are obtained by solving a constrained optimization problem:

R[Q-BOTH](D) = min
E[d(x ,x̂;q)=D]

N
∑

i=1

E[1 − Hb(pq)], (53)

whereHb(·) is the binary entropy function.

Using Lagrange multipliers, we construct the functional

J(D) =

N
∑

i=1

pq(i) · [1 + pi log pi + (1 − pi) log(1 − pi)] + λ

N
∑

i=1

pq(i) · [αi + piβi],

whose minimum is easily shown to be attained at

pi =
2−λβi

1 + 2−λβi
, (54)

whence (16b) with (16c).
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C. Equivalence Theorem Proofs

Proof of Theorem 3:To obtainR[Q-ENC-W-DEC](D) we apply the Wyner-Ziv rate-distortion formula

in [1] to the “super-source”̃xn = (xn, qn) yielding

R[Q-ENC-W-DEC](D) = inf
px̂|x,q(x̂|x,q)

I(x̂ , q; x |w), (55)

where the optimization is subject to the constraint thatE[d(x , v(x̂ ,w); q)] ≤ D for some reconstruction

function v(·, ·). To obtainR[Q-BOTH-W-BOTH](D) we specialize the well-known conditional rate-distortion

function to our notation yielding

R[Q-BOTH-W-BOTH](D) = inf
px̂|x,q,w(x̂|x,q,w)

I(x̂ ; x |w , q), (56)

where the optimization is subject to the constraint thatE[d(x , x̂ ; q)] ≤ D.

Let us definêx∗ as the distribution that optimizes (55). Similarly, definex̂∗
w as the distribution that

optimizes (56). Finally, definev givenq = q to be a random variable with a conditional distribution that

maximizesh(v |q = q) subject to the constraint that

E[d(x , x + v ; q)|q = q] ≤ E[d(x , x̂∗
w ; q)|q = q]. (57)

Then we have the following chain of inequalities:

∆R(D)
∆
= R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) (58)

= I(x̂∗; q, x |w) − [h(x |q,w) − h(x |q,w , x̂∗
w )] (59)

= I(x̂∗; q, x |w) − h(x |q,w) + h(x − x̂∗
w |q,w , x̂∗

w ) (60)

≤ I(x̂∗; q, x |w) − h(x |q,w) + h(x − x̂∗
w |q) (61)

≤ I(x̂∗; q, x |w) − h(x |q,w) + h(v |q) (62)

≤ I(x + v ; q, x |w) − h(x |q,w) + h(v |q) (63)

= h(x + v |w) − h(x + v |w , q, x) − h(x |q,w) + h(v |q) (64)

= h(x + v |w) − h(x |q,w) (65)

= h(x + v |w) − h(x |w). (66)

Eq. (62) follows from the definition ofv to be entropy maximizing subject to a distortion constraint.

Sincev is independent ofx andw , the choicêx = x + v with v(x̂, w) = x̂ is an upper bound to (55)

and yields (63). We obtain (66) by recalling that according to (4), q and x are independent givenw .
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Finally, we obtain

lim
D→Dmin

∆R(D) = 0. (67)

from (66) using the “continuity of entropy” result from [21,Theorem 1].

Note that although thev in [21, Theorem 1] is an entropy maximizing distribution while our v is

a mixture of entropy maximizing distributions, the specialform of the density is not required for the

continuity of entropy result in [21, Theorem 1]. To illustrate this, we show how to establish the continuity

of entropy directly for any distortion measure whereD → Dmin ⇒ Var[v ] → 0. One example of such

a distortion measure is obtained if we choosed(x, x̂; q) = q · |x − x̂|r with r > 0 andPr[q = 0] = 0.

DenotingVar [v |w ] asσ2
v |w andVar [x |w ] asσ2

x |w and lettingN(α) represent a Gaussian random variable

with varianceα yields

lim sup
D→Dmin

h(x + v |w) − h(x |w) = lim sup
σ2→0

h(x + v |w) − h(x |w) (68)

= lim sup
σ2→0

h(x + v |w) ± h(N(σ2
x |w + σ2

v |w )|w)

± h(N(σ2
x |w )|w) − h(x |w) (69)

= lim sup
σ2→0

D(px |w‖N(σ2
x |w )) − D(px+v |w‖N(σ2

x |w + σ2
v |w ))

+ h(N(σ2
x |w + σ2

v |w )|w) − h(N(σ2
x |w )|w) (70)

≤ D(px |w‖N(σ2
x |w )) − D(px |w‖N(σ2

x |w ))

+ lim sup
σ2→0

[h(N(σ2
x |w + σ2

v |w )|w) − h(N(σ2
x |w )|w)] (71)

= lim sup
σ2→0

∫

[

h(N(σ2
x |w + σ2

v |w )|w = w) − h(N(σ2
x |w )|w = w)

]

dpw (w) (72)

=

∫
[

lim sup
σ2→0

h(N(σ2
x |w + σ2

v |w )|w = w) − h(N(σ2
x |w )|w = w)

]

dpw (w) (73)

= 0. (74)

We obtain (70) since for any random variablev , the relative entropy fromv to a Gaussian takes the

special formD(pv‖N(Var [v ])) = h(N(Var [v ])) − h(v) [30, Theorem 9.6.5]. To get (71) we use the

fact that relative-entropy (and also conditional relative-entropy) is lower semi-continuous [31]. This could

also be shown by applying Fatou’s Lemma [32, p.78] to get thatif the sequencesp1(x), p2(x), . . . and

q1(x), q2(x), . . . converge top(x) andq(x) then

lim inf

∫

pi(x) log[pi(x)/qi(x)] ≥
∫

p(x) log[p(x)/q(x)].
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Switching thelim sup and integral in (73) is justified by Lebesgue’s Dominated Convergence Theorem

[32, p.78] since the integrand is bounded for all values ofw. In general, this bound is obtained from

combining the technical condition requiringh(x |w = w) to be finite with the entropy maximizing

distribution in (25) and the expected distortion constraint in (26) to boundh(x + v |q = q). For scaled

quadratic distortions,h(x + v |q = q) can be bounded above by the entropy of a Gaussian with the

appropriate variance. To obtain (74) we first note thatVar [v ] → 0 implies Var [v |w = w] → 0 except

possibly for a set ofw having measure zero. This set of measure zero can be ignored because the integrand

is finite for all w. Finally, for the set ofw whereVar [v |w = w] → 0, the technical requirement that the

entropy maximizing distribution in (25) is continuous shows that the entropy difference (74) goes to zero

in the limit.

Proof of Theorem 4:When ∗ ∈ {ENC, BOTH} in (28), the encoder can simulatewn by generating

it from (xn, qn). When∗ ∈ {DEC, NONE}, the encoder can still simulatewn correctly provided thatwn

andqn are independent. Thus being provided withwn provides no advantage given the conditions of the

theorem.

Proof of Theorem 5:We begin by showing

R[Q-DEC-W-DEC](D) = R[Q-NONE-W-DEC](D). (75)

When side information(qn,wn) is available only at the decoder, the optimal strategy is Wyner-Ziv

encoding [1]. Let us compute the optimal reconstruction function v(·, ·, ·), which maps an auxiliary

random variableu and the side informationq andw to a reconstruction of the source:

v(u, q, w) = arg min
x̂

E[d(x̂, x ; q)|q = q,w = w, u = u] (76)

= arg min
x̂

ρ0(q)E[ρ1(x̂, x)|q = q,w = w, u = u] (77)

= arg min
x̂

E[ρ1(x̂, x)|q = q,w = w, u = u] (78)

= arg min
x̂

E[ρ1(x̂, x)|w = w, u = u]. (79)

We obtain (77) from the assumption that we have a separable distortion measure. To get (79) recall that

by assumptionq is statistically independent ofx given w and alsoq is statistically independent ofu

sinceu is generated at the encoder fromx . Thus neither the optimal reconstruction functionv(·, ·, ·) nor

the auxiliary random variableu depend onq. This establishes (75).

To show that

R[Q-DEC-W-NONE](D) = R[Q-NONE-W-NONE](D) (80)
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we needwn andqn to be independent. When this is true,wn does not affect anything and the problem

is equivalent to whenwn = 0 and is available at the decoder. From (75) we see that providing wn = 0

at the decoder does not help and thus we establish (80). Note that this argument fails whenwn andqn

are not independent since in that case Wyner-Ziv based onqn could be performed and there would be

no wn at the decoder to enable the argument in (76)–(79).

To show that

R[Q-DEC-W-BOTH](D) = R[Q-NONE-W-BOTH](D) (81)

we note that in this scenario the encoder and decoder can design a different source coding system for

each value ofw. The subsystem for a fixed valuew∗ corresponds to source coding with distortion side

information at the decoder. Specifically, the source will have distributionpx |w (x|w∗), and the distortion

side information will have distributionpq|w (q|w∗). Thus the performance of each subsystem is given by

R[Q-DEC-W-NONE](D), which we already showed is the same asR[Q-NONE-W-NONE](D). This establishes

(81).

Finally, to show that

R[Q-DEC-W-ENC](D) = R[Q-NONE-W-ENC](D) (82)

we require the assumption thatqn andwn are independent. This assumption implies

R[Q-DEC-W-ENC](D) = R[Q-DEC-W-NONE](D) (83)

since an encoder withoutwn could always generated a simulatedwn with the correct distribution relative

to the other variables. The same argument implies

R[Q-NONE-W-ENC](D) = R[Q-NONE-W-NONE](D). (84)

Combining (83), (84), and (80) yields (82).

Proof of Theorem 6:First we establish the four rate-distortion function equalities implied by (30a).

Using Theorem 3 we have

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-DEC](D) ≤ (85)

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) (86)

= 0. (87)
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Similarly,

lim
D→Dmin

R[Q-ENC-W-BOTH](D) − R[Q-BOTH-W-BOTH](D) ≤ (88)

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) (89)

= 0. (90)

To show that

lim
D→Dmin

R[Q-ENC-W-NONE](D) − R[Q-BOTH-W-NONE](D) = 0 (91)

we needqn andwn to be independent. When this is true,wn does not affect anything and the problem

is equivalent to whenwn = 0 and is available at the decoder and (85)–(87) establishes (91). Without

independence this argument fails because we can no longer invoke Theorem 3 since there will be nown

to makexn andqn conditionally independent in (66).

To finish establishing (30a) we again requireqn andwn to be independent to obtain

lim
D→Dmin

R[Q-ENC-W-ENC](D) − R[Q-BOTH-W-ENC](D) ≤ (92)

lim
D→Dmin

R[Q-ENC-W-NONE](D) − R[Q-BOTH-W-ENC](D) = (93)

lim
D→Dmin

R[Q-ENC-W-NONE](D) − R[Q-BOTH-W-NONE](D) (94)

= 0, (95)

where (94) follows since the encoder can always simulatewn from (xn, qn) and (95) follows from (91).

Next, we establish the four rate-distortion function equalities implied by (30b). Using Theorem 3 we

have

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-ENC-W-BOTH](D) ≤ (96)

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) (97)

= 0. (98)

Similarly,

lim
D→Dmin

R[Q-BOTH-W-DEC](D) − R[Q-BOTH-W-BOTH](D) ≤ (99)

lim
D→Dmin

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) (100)

= 0. (101)
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To show that

lim
D→Dmin

R[Q-NONE-W-DEC](D) − R[Q-NONE-W-BOTH](D) = 0 (102)

we needqn andwn to be independent and we need the distortion measure to be of the formd(x̂, x; q) =

ρ0(q)·ρ1(x−x̂). When this is true the two rate-distortion functions in (102) are equivalent to the Wyner-Ziv

rate-distortion function and the conditional rate-distortion function for the difference distortion measure

E[ρ0(q)] ·ρ1(x− x̂). Thus we can either apply the result from [5] showing these rate-distortion functions

are equal in the high-resolution limit or simply specializeTheorem 3 to the case whereqn is a constant.

To complete the proof, we again require the assumptions thatqn andwn are independent and that the

distortion measure is of the formd(x, x̂; q) = ρ0(q) · ρ0(q) · ρ1(x − x̂). We have

lim
D→Dmin

R[Q-DEC-W-DEC](D) − R[Q-DEC-W-BOTH](D) ≤ (103)

lim
D→Dmin

R[Q-NONE-W-DEC](D) − R[Q-DEC-W-BOTH](D) = (104)

lim
D→Dmin

R[Q-NONE-W-DEC](D) − R[Q-NONE-W-BOTH](D) (105)

= 0, (106)

where (105) follows from Theorem 5 and (106) follows from (102).

D. Loss Theorem Proofs

Proof of Theorem 7:We note that according to Theorem 4 and Theorem 6 we can focus solely on

the case

R[Q-*-W-NONE](D) − R[Q-*-W-BOTH](D). (107)

When * = NONE, the rate difference in (107) is the difference between the classical rate-distortion

function and the conditional rate-distortion function in the high-resolution limit. Thus the Shannon Lower

Bound [21] (and its conditional version) imply that

lim
D→Dmin

R[Q-NONE-W-NONE](D) − R[Q-NONE-W-BOTH](D) = h(x) − h(x |w). (108)

Similarly, when * =DEC an identical argument can be combined with Theorem 5.

When * = BOTH, the encoder and decoder can design a separate compression sub-system for each

value ofq. The rate-loss for each sub-system is thenI(x ;w |q = q) according to high-resolution Wyner-

Ziv theory [5]. Averaging over all values ofq yields a total rate-loss ofI(x ;w |q).
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Next we consider the case when * =ENC and the rate-loss penalty is

lim
D→Dmin

R[Q-ENC-W-NONE](D) − R[Q-ENC-W-BOTH](D)

= lim
D→Dmin

R[Q-ENC-W-NONE](D) − R[Q-BOTH-W-BOTH](D), (109)

where the equality follows from Theorem 6.

Using arguments similar to [21] and the proof of Theorem 3, wecan obtain a Shannon Lower Bound

for R[Q-ENC-W-NONE](D), which is of the form

R[Q-ENC-W-NONE](D) ≥ h(x) − h(vD), (110)

wherevD is an entropy maximizing random variable subject to the constraint thatE[ρ0(q) ·ρ1(vD)] ≤ D.

Again using argument similar to the proof of Theorem 3, we have that

lim
D→Dmin

R[Q-BOTH-W-BOTH](D) ≤ h(x |w) − h(vD). (111)

Combining (110) and (111) shows that the asymptotic difference in (109) is at leastI(x ;w).

Next, we obtain the Shannon Lower Bound

R[Q-BOTH-W-BOTH](D) ≥ h(x |w) − h(vD) (112)

by duplicating the arguments in the proof of Theorem 3 since this lower bound does not requireq and

w to be independent. Finally, we can obtain the upper bound

lim
D→Dmin

R[Q-ENC-W-NONE](D) ≤ h(x) − h(vD) (113)

using an additive noise test channel combined with arguments following those in the proof of Theorem 3.

Combining (112) and (113) shows that the asymptotic difference in (109) is at mostI(x ;w).

Proof of Theorem 8:To simplify the exposition, we first prove the theorem for therelatively simple

case of a one-dimensional source (k = 1) with a quadratic distortion (r = 2). Then at the end of the

proof, we describe how to extend it to generalk andr.

We begin with the case where * =NONE. Since Theorems 5 and 6 imply

R[Q-NONE-W-NONE](D) = R[Q-DEC-W-NONE](D) (114a)

and

R[Q-ENC-W-NONE](D) → R[Q-BOTH-W-NONE](D) , (114b)

we focus on showing

lim
D→Dmin

R[Q-BOTH-W-NONE](D) − R[Q-NONE-W-NONE](D) =
1

2
E

[

ln
E[q]

q

]

. (115)
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ComputingR[Q-BOTH-W-NONE](D) is equivalent to finding the rate-distortion function for optimally

encoding independent random variables and yields the familiar “water-pouring” rate and distortion allo-

cation [30, Section 13.3.3]. For eachq, we quantize the corresponding source samples with distortion

Dq = E[(x − x̂)2] (or E[‖xn − x̂n‖r] in the more general case) and rateRq(Dq). The overall rate and

distortion then becomeE[Rq(Dq)] andE[q · Dq].

Thus to find the rate and distortion allocation we set up a constrained optimization problem using

Lagrange multipliers to obtain the functional

J(D) = E[Rq(Dq)] + λ(D − E[q · Dq]), (116)

differentiate with respect toDq, set equal to zero and solve for eachDq. In the high-resolution limit,

various researchers have shown

Rq(Dq) → h(x) − 1

2
log Dq. (117)

(e.g., see [21] and references therein). Therefore, it is straightforward to show this process yields the

conditionDq = 1/(2λq) with 2λ = 1/D implying

lim
D→0

R[Q-BOTH-W-NONE](D) → h(x) − 1

2
log D +

1

2
E[log q]. (118)

To computeR[Q-NONE-W-NONE](D), we note that since neither encoder nor decoder knowsq the optimal

strategy is to simply quantize the source according to the distortiond(q, x ; x̂) = E[q] · (x − x̂)2 to obtain

lim
D→0

R[Q-NONE-W-NONE](D) → h(x) − 1

2
log D +

1

2
log E[q]. (119)

Comparing (118) with (119) establishes (115).

By applying Theorem 4 we see that the case where * =ENC is the same as * =NONE.

Next we consider the case where * =BOTH in (32). In this case, the encoder and decoder can design

a separate compression sub-system for each value ofw and the performance for each sub-system is

obtained from the case with no signal side information. Specifically, the rate-loss for each sub-system is

1

2
E

[

ln
E[q|w = w]

q

∣

∣

∣

∣

w = w

]

(120)

according to the previously derived results. Averaging (120) overw then yields the rate-loss in (32).

Finally, we consider the case where * =DEC in (32). Since Theorem 5 impliesR[Q-DEC-W-DEC](D) =

R[Q-NONE-W-DEC](D) and Theorem 3 impliesR[Q-ENC-W-DEC](D) → R[Q-BOTH-W-BOTH](D), it suffices to

show that

lim
D→Dmin

R[Q-DEC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) =
1

2
E

[

log
E[q]

q

]

. (121)
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We can computeR[Q-BOTH-W-BOTH](D) by considering a separate coding system for each value ofw .

Specifically, conditioned onw = w, computing the rate-distortion trade-off is equivalent tofinding

R[Q-BOTH-W-NONE](D) for a modified sourcex ′ with distributionpx ′(x′) = px |w (x′|w). Thus we obtain

lim
D→Dmin

R[Q-BOTH-W-BOTH](D) → h(x |w) − 1

2
log D +

1

2
log E[q]. (122)

Applying the standard techniques used throughout the paper, we can compute the Shannon Lower Bound

R[Q-DEC-W-DEC](D) ≥ h(x |w) − 1

2
log(D · E[q]) (123)

and show it is tight in the high-resolution limit. Comparing(122) and (123) establishes the desired result.

This establishes the theorem fork = 1 andr = 2. For generalk and r, the only change is that each

component rate-distortion functionRq(Dq) (117) becomes [21, page 2028]

Rq(Dq) → h(x) − k

r
log Dq −

k

r
+ log

[

r

kVkΓ(k/r)

(

k

r

)k/r
]

. (124)

and a similar change occurs for all the following rate-distortion expressions. Since we are mainly interested

in the difference of rate-distortion functions, most of these extra terms cancel out and the only change

is that factors of1/2 are replaced with factors ofk/r.

E. Proofs for Rate Penalties at Lower Resolutions

Before proceeding, we require the following lemma to upper and lower bound the entropy of an

arbitrary random variable plus a Gaussian mixture.

Lemma 2 Let x be an arbitrary random variable with finite varianceσ2 < ∞. Let v be a zero-mean,

unit-variance Gaussian independent ofx and let v be a random variable independent ofx and v with

0 < vmin ≤ v < vmax. Then

h(x) +
1

2
log(1 + vmin) ≤ h(x + v

√
v) ≤ h(x) +

1

2
log(1 + vmax · J(x)) (125)

with equality if and only ifv is a constant andx is Gaussian.

Proof: The concavity of differential entropy yields

h(x + v
√

vmin) ≤ h(x + v
√

v) ≤ h(x + v
√

vmax). (126)
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For the lower bound we have

h(x + v
√

vmin) =

∫ vmin

0

∂

∂τ
h(x + v

√
τ)dτ + h(x) (127)

=

∫ vmin

0

1

2
J(x + v

√
τ)dτ + h(x) (128)

≥ 1

2

∫ vmin

0
J(v

√

σ2 + τ)dτ + h(x) (129)

=
1

2

∫ vmin

0

dτ

σ2 + τ
+ h(x) (130)

=
1

2
log
(

1 +
vmin

σ2

)

+ h(x), (131)

where (128) follows from de Bruijn’s identity [30, Theorem 16.6.2], [33, Theorem 14], (129) follows

from the fact that a Gaussian distribution minimizes FisherInformation subject to a variance constraint,

and (130) follows since the Fisher Information for a Gaussian is the reciprocal of its variance.

Similarly, for the upper bound we have

h(x + v
√

vmax) =

∫ vmax

0

∂

∂τ
h(x + v

√
τ)dτ + h(x) (132)

=

∫ vmax

0

1

2
J(x + v

√
τ)dτ + h(x) (133)

≤ 1

2

∫ vmax

0

J(x)J(v
√

τ)

J(x) + J(v
√

τ)
dτ + h(x) (134)

=
1

2

∫ vmax

0

J(x)dτ

τJ(x) + 1
+ h(x) (135)

=
1

2
log (1 + vmax · J(x)) + h(x), (136)

where (133) again follows from de Bruijn’s identity, (134) follows from the convolution inequality for

Fisher Information [34], [30, p.497], and (135) follows since the Fisher Information for a Gaussian is

the reciprocal of its variance.

Combining these upper and lower bounds yields the desired result. Finally, the inequalities used in

(129) and (134) are both tight if and only ifx is Gaussian.

As an aside we note that Lemma 2 can be used to bound the rate-distortion function of an arbitrary

unit-variance sourcex relative to quadratic distortion. Specifically using an additive Gaussian noise test-

channel̂x = v + x and combining Lemma 2 to upper boundh(x + v) with the Shannon Lower Bound

[21] yields

h(x) − 1

2
log 2πeD ≤ R(D) ≤ h(x) − 1

2
log 2πeD +

1

2
log[1 + DJ(x)]. (137)
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Evidently, the error in the Shannon Lower Bound is at most1
2 log[1 + DJ(x)]. Thus, sinceJ(x) ≥ 1

with equality only for a Gaussian, the sub-optimality of an additive Gaussian noise test-channel is at

least 1
2 log[1 + D].

Proof of Theorem 9:Starting with the bound for the rate gap from (66), we have

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) ≤ h(x + v |w) − h(x |w) (138)

=

∫

[h(x + v |w = w) − h(x |w = w)] pw (w)dw (139)

≤
∫
{

1

2
log

(

1 + min

[

1,
D

qmin

]

· J(x |w = w)

)}

pw (w)dw (140)

≤
∫
{

J(x |w = w)

2
· min

[

1,
D

qmin

]}

pw (w)dw (141)

=
J(x |w)

2
· min

[

1,
D

qmin

]

. (142)

To obtain (140) we note thatv is a Gaussian mixture and apply Lemma 2. This follows since, conditioned

on q = q, v is a Gaussian with varianceE[d(x , x̂∗
w ; q)], wherex̂∗

w was defined in the proof of Theorem 3

to be the optimal distribution when both encoder and decoderknow the side information. By considering

the optimal “water-pouring” distortion allocation for theoptimal test-channel distribution̂x∗
w , it can be

demonstrated that if the distortion isD, thenE[d(x , x̂∗
w ; q)] is at mostmin[1,D/q] for eachq.

To develop a similar bound for other distortion measures essentially all we need is an upper bound

for the derivative ofh(x +
√

τv) with respect toτ . Since entropy is concave, if we can compute this

derivative forτ = 0 then it will be an upper bound for the derivative at allτ .

To obtain the desired derivative atτ = 0, we can write

h(x +
√

τv) = I(x +
√

τv ;
√

τv) − h(x). (143)

The results of Prelov and van der Meulen [35] imply that undercertain regularity conditions

∂

∂τ
lim

τ→0+
I(x +

√
τv ;

√
τv) = J(x)/2 , (144)

which provides the desired derivative. Similarly if we rewrite the mutual information in (143) as a relative

entropy, then a Taylor series expansion of the relative entropy [36, 2.6] can be used to establish (144)

provided certain derivatives of the probability distributions exist.

Next, we move to proving Theorem 10. An essential part of our proof is an alternative version of the

Shannon Lower Bound, which we develop in the following lemma.
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Lemma 3 (Alternative Shannon Lower Bound) Consider a scaled quadratic distortion measure of the

form d(x, x̂; q) = q · (x − x̂)2 and let x̂∗
q,w denote an optimal test-channel distribution whenqn and wn

are known at both encoder and decoder. If we definev to have the same distribution asx − x̂∗
q,w when

conditioned onq and furthermore requirev to satisfy the Markov conditionv ↔ q ↔ w , x , then

R[Q-BOTH-W-BOTH](D) ≥ h(x |w) − h(v |q). (145)

Proof:

R[Q-BOTH-W-BOTH](D) = I(x̂∗
q,w ; x |q,w) (146)

= h(x |q,w) − h(x |q,w , x̂∗
q,w ) (147)

= h(x |q,w) − h(x − x̂∗
q,w |q,w , x̂∗

q,w ) (148)

= h(x |q,w) − h(v |q,w , x̂∗
q,w ) (149)

≥ h(x |q,w) − h(v |q,w). (150)

The key difference between Lemma 3 and the traditional Shannon Lower Bound (SLB) is in the choice

of the distribution forv . The traditional SLB uses an entropy maximizing distribution for v , which has

the advantage of being computable without knowingx̂∗
q,w . The trouble with the entropy maximizing

distribution is that it can have an unbounded variance for large distortions. As we show in the following

lemma, however, the alternative SLB keeps the variance ofv bounded.

Lemma 4 There exists a choice forv in Lemma 3 such that for all values ofw,

Var[v |w = w] ≤ Var[x |w = w]. (151)

Proof: Imagine that we choose some optimal test-channel distribution x̂∗
q,w such that the resulting

v does not satisfy (151) for some value ofw. We will show that it is possible to construct an alternative

optimal test-channel distribution̂x∗′
q,w , where the resultingv ′ does satisfy (151) forw = w.

Specifically, if (151) is not satisfied, then it must be that there exists a setA with

Var[v |q = q,w = w] = Var[x − x̂∗
q,w |q = q,w = w] > Var[x |w = w],∀(q, w) ∈ A. (152)

Define a new random variablêx∗′
q,w such that̂x∗′

q,w = x̂∗
q,w for all (q, w) 6∈ A, but with x̂∗′

q,w = 0 for all

(q, w) ∈ A. The distortion is lower for̂x∗′
q,w by construction. Furthermore, the date processing inequality

implies that

I(x̂∗′
q,w ; x |w , q) ≤ I(x̂∗

q,w ; x |w , q) (153)
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and so the rate is lower too. Thus if we definev ′ = x̂∗′
q,w − x analogously to how we definedv , then

condition (151) is satisfied withv replaced byv ′.

Proof of Theorem 10:Using the alternative SLB from Lemma 3 and the test-channel distribution

x̂ = x + v with v chosen according to Lemma 3 we obtain

R[Q-ENC-W-DEC](D) − R[Q-BOTH-W-BOTH](D) ≤ I(x + v ; q, x |w) − [h(x |w , q) − h(v |w , q)] (154)

= h(x + v |w) − h(x + v |q, x ,w) − h(x |w , q) + h(v |w , q) (155)

= h(x + v |w) − h(v |q, x ,w) − h(x |w , q) + h(v |w , q) (156)

= h(x + v |w) − h(v |q) − h(x |w , q) + h(v |q) (157)

= h(x + v |w) − h(x |w) (158)

= D(px |w‖N(σ2
x |w )) − D(px+v |w‖N(σ2

x |w + σ2
v |w))

+ h(N(σ2
x |w + σ2

v |w )|w) − h(N(σ2
x |w )|w) (159)

≤ D(px |w‖N(σ2
x |w )) + h(N(σ2

x |w + σ2
v |w)|w) − h(N(σ2

x |w )|w) (160)

= D(px |w‖N(σ2
x |w ))

+

∫

[

h(N(σ2
x |w + σ2

v |w )|w = w) − h(N(σ2
x |w )|w = w)

]

pw (w)dw (161)

≤ D(px |w‖N(σ2
x |w )) +

∫

[

1

2
log

(

1 +
σ2

v |w

σ2
x |w

)]

pw (w)dw (162)

≤ D(px |w‖N(σ2
x |w )) +

∫

[

1

2
log

(

1 +
σ2

max

σ2
x |w

)]

pw (w)dw (163)

≤ D(px |w‖N(σ2
x |w )) +

∫
[

1

2
log

(

1 +
σ2

max

σ2
min

)]

pw (w)dw (164)

= D(px |w‖N(σ2
x |w )) +

1

2
log

(

1 +
σ2

max

σ2
min

)

. (165)

To obtain (158)–(162) we use the same arguments as in (68)–(74) plus the additional observation that

relative entropy is positive and can be dropped in obtaining(160). Next, we apply Lemma 4 to keep

the variance of the test-channel noise to be at mostσ2
max to get (163). Finally, the assumption that

σ2
x |w ≥ σ2

min yields (164).

To develop a similar bound for other distortion measures, wewould use an entropy maximizing

distribution for the appropriate distortion measure inD(px |w‖·) andD(px+v‖·) above.
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