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Abstract

We analyze the impact of side information about the distartheasure in problems of quantization.
We show that such “distortion side information” is not onlgeful at the encoder, but that under certain
conditions, knowing it only at the encoder is as good as kngwvii at both encoder and decoder, and
knowing it at only the decoder is useless. Thus, distortide snformation is a natural complement to
side information about the source signal, as studied by Wgnéd Ziv, which if available only at the
decoder is often as good as knowing it at both encoder andidedeurthermore, when both types of side
information are present, we characterize the penalty feratieg from the often sufficient configuration

of encoder-only distortion side information and decodelysignal side information.

Index Terms

Wyner-Ziv coding, distributed source coding, quantizatismart compression, sensor networks

. INTRODUCTION

In settings ranging from sensor networks and communicatietworks, to distributed control and
biological systems, different parts of the system typicathve limited, noisy, or incomplete information

but must somehow cooperate to achieve some overall furaditipn
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In such scenarios, it is important to understand a varietyssdies. These include: 1) the penalties
incurred by to the lack of full, globally shared informatjoR) the best way to combine available
information from different sources; and 3) where differdirids of information is most useful in the
system.

A simple example of such a scenario was introduced by Wyndr Zin [1], and is illustrated in
Fig.[I(a). An encoder observes a si to be conveyed over a digital link to a decoder who also has
some additionasignal side informatiorw™, which is correlated witlx™. An analysis of the fundamental
performance limits for this problem [1], [2] [3], [4], [5] veals both that such side information is useful
only if available at the decoder, and that in many cases agpiyppesigned system can realize essentially
the full benefit of this side information (i.e., as if it weradwn to both encoder and decoder) even if it

is available only at the decoder.

X bits X bits—————— 1 X"
»| Encoder———» Decodeir »| Encoder——| Decodei
w" qn
(a) Signal side informatiom™ at the decoder. (b) Distortion side informatiory™ at the encoder.

Fig. 1. Compressing a sourc€ with side information.

In this paper, we introduce and analyze a different scendtistrated in Fig[I(f). As before, the
encoder quantizes its observations into a collection o, hithich the decoder uses to reconstruct the
observations to some level of fidelity. But now the encodes samedistortion side informationg™
describing the relative importance of different composasftthe observed signal, which enters into our
model as a parameter of the distortion measure in a suitadje w

We develop the fundamental rate-distortion trade-off tws tproblem. Our analysis reveals, under
reasonable conditions, both that such side informatiorséful only if available at the encoder, and that
in many cases a properly designed system can realize edbetite full benefit of this side information
(i.e., as if it were known to both encoder and decoder) evénsfavailable only at the encoder. As such,
distortion side information plays a complementary role lattof signal side information as developed
by Wyner and Ziv.

* Throughout this paper, sequences are denoted using sripersand sequence elements with subscripts (e:§.,=

(z1,x2,...,2xs)), and random variables and sequences distinguished bysthefisans serif fonts (e.g' = (x1, x2, ..., Xn)).
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Finally, we show that these kinds of source coding resultdicoe to hold even when both distortion
side informationg™ and signal side informatiom™ are jointly considered, under suitable conditions.
Specifically, we demonstrate that a system where only th@dsicknowsg™ and only the decoder
knows w™ can be asymptotically as good as a system with both typesdef isformation known at
both the encoder and the decoder. We also derive the pepaltieliating from this often sufficient side
information configuration.

In terms of background, an analysis of the value and efficies# of distortion side information
available at only the encoder or decoder has receivedvelatiittle attention in the information theory
and compression communities to date. The rate-distortimction with decoder-only side information,
relative to side information dependent distortion measyes an extension of the Wyner-Ziv setting
[1]), is given in [4]. And a high resolution approximationrfthis rate-distortion function for locally
guadratic weighted distortion measures is given in [6]. Heos, we are not aware of an information-
theoretic treatment of encoder-only side information vetlth distortion measures. In fact, the mistaken
notion that encoder-only side information is never usefutommon folklore. This may be due to a
misunderstanding of Berger’s result that side informatioat does not affect the distortion measise
never useful when available only at the encoder [7], [3], &t which we will return in the paper
(Theorem¢4 anfl5 in the sequel) to develop additional insigh

Before proceeding with our development, it is worth stregshat there are a wide range of applications
where distortion side information may be available in soragpof a system but not others. As one
example, in a sensor network a node may have informationtabeureliability of the measurements,
which can fluctuate due to calibration or processing. As le@roexample, in audio, image, or video
compression systems, the encoder can apply signal anatysistermine which parts of the signal are
more or less sensitive to distortion due to context, maslkifigcts, and other perceptual phenomena
[8]. While the conventional approach to exploiting suchesidformation in practice in these kinds of
examples involves sharing it with decoders via a side chatime results of this paper suggest that this
can be an unnecessary and inefficient use of bandwith.

An outline of the paper is as follows. Sectibh Il introducke formal problem model of interest.
Sectior1ll then develops the rate distortion tradeoffssfource coding with only distortion side informa-
tion, and in particular identifies conditions under whiclelsside information is sufficient at the encoder.
Section[IV then extends the problem of interest to includéhlsignal and distortion side information
in the case of continuous-sources in the high-resolutiginre. For this scenario, several equivalence

and loss theorems are developed that quantify the degreé&ithwome side information configurations
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yield the same and different rate-distortion behaviorstie[M then develops bounds on losses incurred
at lower resolution when complete side information is nadilable. Finally, Sectiol-YI contains some

concluding remarks. Throughout the paper, most proofs @mger derivations are deferred to appendices.

Il. PROBLEM MODEL

The general rate-distortion problem with side informationorresponds to the tuple

(X, X, 2, px (), pzix (2]), d(, &; 2)). (1)
Specifically, a source sequeng@ consists of then samples drawn from the alphali&tand the side
information z likewise consists of» samples drawn from the alphali&t These random variables are
drawn according to the distribution
pn (@, 2") = [ [ pxi) - p2ix(zil2). (2)

i=1
A rate R encoderf(-) maps the source™ as well as possible encoder side information to an index

i€{1,2,...,2"%}, The corresponding decodgf-) maps the resulting index as well as possible decoder
side information to a reconstructiotf” of the source, which takes values in the alphabeDistortion
in a reconstructiort™ of a sourcer™ is measured via
1

dp (2™, 2" 2") = E;d(wi,@;zi), 3)
where we explicitly denote the dependence, in general,eflibtortion measure on the side information.
As usual, the rate-distortion function is the minimum ratels that there exists a system where the
distortion is less tharD with probability approaching 1 as — oc.

Of particular interest in this paper is the case in which titke snformationz"™ can be decomposed
into two kinds of side information, which we term “signal sithformation” w™ and “distortion side
information” ¢, i.e., z" = (w", ¢"). The former, whose elements take values in an alph@hetorre-
sponds to information that is statistically related to tberse but does not directly affect the distortion
measure, while the latter, whose elements take values inphalzetQ, corresponds to information that
does not have a direct statistical relationship to the sobut does directly affect the distortion measure.

Formally, we capture this decomposition via the followingfidition:

Definition 1 A decompositiore™ = (w", ¢") of side informationz™ into signal side informatiorw™
and distortion side informatiog™ for a rate-distortion problem with source® and distortion measure

d(x, X; z) is admissibleif the following Markov chains are satisfied:
q" = w" — x" (4a)
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and

dn(x", 27 2") > (X", 2", q") = w. (4b)

Several remarks are worthwhile before proceeding with awetbpment.

First, note that[{4a) is equivalent to the condition

pz\x(z|x) :pw\x(w|x)pq\w(Q|w)> )

and that when[{4b) holds, we can (and will), with slight abo$enotation, usei(z, #;q) in place of
d(x,; 2).

Second, Definitiori]1 allows much flexibility in decomposingr®e side information into signal and
distortion components. Indeed, such decompositions awaigt — one can always simply lgt = w™ =
z". Nevertheless, we will see thahy such decomposition effectively decomposes the side irdton
into a component whose value is obtained at the encoder, @odnaonent whose value is obtained at
the decoder.

Third, when separating phenomena that have physicallgrdifit origins, such decompositions arise
quite naturally. Moreover, in such cases, the resultingaignd distortion side informations are often
statistically independent, in which case additional rsscéin be obtained on the relative value of different
side information availability configurations. Hence, inrdteatment we will often impose this further
restriction — which corresponds to a situation in whighand x™ are independent not just conditioned
on w" as per[(4k), but unconditionally as well — on the side infdiamarequirements of Definitiofl 1.
Moreover, in this case” is independent ofx™, w™) as well. However, it should be emphasized that
admissible decompositions that satisfy this further ie®tn are not always possible, and later in the
paper we characterize the penalties incurred by the lacksofitable decomposition.

It is also worth emphasizing that a further subclass of siderination scenarios witly™ and w”
independent corresponds to the case in which signal sidenmaftion is altogether absenv{ = (), in
which caseg™ and x™ are independent. This case will also be of special interegiarts of the paper.

Finally, without any constraints on the structure of thetatigon measurei(z,z;q) and the nature
of its dependency on the side informatign very little can be inferred about the value of such side
information at the encoder and/or decoder. Hence, we wlically be interested in special forms of
the distortion measure to obtain specific results, a simpimple of which would be the modulated
quadratic distortiond(z, #;q) = q - (x — 2)? for z,& € R. Each of our key theorems will make clear

what particular restrictions on the form of the distortioeasure are required.
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In the remainder of the paper, we consider the sixteen pessienarios depicted in Figl 2, corre-
sponding to whergg™ and w™ may each be available at the encoder, decoder, both, oreneffhur
notation for the associated rate-distortion functions @sagxplit where the side-information is available.
For example,R[Q-NoNE-W-NONE (D) denotes the rate-distortion function without side infotiora and
R[Q-NoNE-w-DE]G(D) denotes the Wyner-Ziv rate-distortion function wher is available at the decoder
[1]. Similarly, when all information is available at both @der and decodeR[Q-BoTH-w-BOTH/(D) de-
scribes Csiszar and Korner’s [4] generalization of Gsaynditional rate-distortion functioR[Q-NONE-w-BOTH (D)

[9] to the case where the side information can affect theodish measure.

7

—>{ f(x",a- g b (i g d - WS
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w

Fig. 2. Scenarios for source coding with distortion sideviinfationg™ and signal side informatiom™. The labelsa, b, ¢,
andd are 0 (respectively, 1) if the corresponding switch is op@sgectively, closed) and the side information is unal&la

(respectively, available) to the encodgf:) or decoderg(-) as shown.

As pointed out by Berger [10], all the rate-distortion funos may be derived by considering as
part of x™ or w” (i.e., by considering the “super-sourc&” = (x", q") or the “super-side-information”
w™ = (w™, g")) and applying well-known results for source coding, sowaging with side information,
the conditional rate-distortion theorem, etc. The resgléxpressions are a natural starting point for our

development. We begin with the simpler case in which themoisignal side information.

IIl. SOURCECODING WITH DISTORTION SIDE INFORMATION ALONE

It is straightforward to express the rate-distortion tiafte for quantization when distortion side

information is present, but signal side information is rintparticular, we obtain the following.

Proposition 1 The rate-distortion functions when there is distortionesidformationg™ but not signal
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side informationw™ are:

R|Q-NONE(D) = inf I(x;x 6a
| D) paix(2]x):E[d(x,%;)]<D (%) (62)
R|QDE](D) = inf I(x;u) —I(u;q) = inf I(x;u 6b

| (D) Pulx(ul),v(-,): Eld(x,0(u,q);q)| <D b ) (45.9) pu\x(U\l’)vv('w)iE[d(va(th);q))]SD (6b)
R|Q-ENC(D) = inf I(x,q;%) = inf I(x;X|q) +1(X;q 6¢C

[ ]( ) p)?\X,q(i‘:E’q):E[d(Xv)?;q)}SD ( ) p?\xyq(i‘:E’q):E[d(Xv)?;q)}SD ( ‘ ) ( ) ( )
R[Q-BoTH|(D) = inf I(x;%|q). (6d)

Pl ,q(&]7,0):Eld(x,%,q)] <D
The rate-distortion functions if_{6a],_(6b), ahdl(6d) fallfrom standard results (e.g., [7], [3], [4], [9],
[1]). To obtain [GL) we can apply the classical rate-disgdartheorem to the “super sourc&™ = (x", g").

In the remainder of this section, we turn our attention toedlgying conditions under which having
the distortion side information only at the encoder is asdgas having it at both encoder and decoder.
Before developing our formal results, we first describe timopde examples of such behavior in a fairly
qualitative manner. These examples both establish thaaigheciated conditions will not be degenerate,

and provide preliminary intuition.

A. Motivating Examples

To develop an appreciation for how having distortion sid®rimation available only at the encoder
can be as effective as having it at both encoder and deco@ebegin with two motivating examples,
corresponding to a discrete and continuous source, regplgct

1) Discrete SourceConsider a source™ whosen samples are drawn uniformly and independently
from the finite alphabeX with cardinality|X| > n. Let g" correspond to the binary variables indicating
which source samples are relevant. Specifically, let theodisn measure be of the forax, z;¢) = 0
if and only if eitherqg = 0 or z = 2. Finally, let the sequencg be statistically independent of the source
with g; drawn uniformly from the(}}) subsets with exactly one

If the side information were unavailable or ignored, thesslessly communicating the source would
require exactlyn - log |X| bits. WhenHy(k/n) < (1 — k/n)log|X|, a better (though still sub-optimal)
approach when encoder side information is available woelddp the encoder to first tell the decoder
which samples are relevant and then send only those sarjdiegy Stirling’s approximation, this would

require aboutr - Hy,(k/n) bits (where Hy,(-) denotes the binary entropy function) to describe which

2If the distortion side information is a Bernoulti(n) sequence, then there will be abdutones with high probability. We

focus on the case with exactly ones for simplicity.
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Fig. 3. Source coding with erasure distortion side infoioratmodel. In this example, onlg = 5 of the n = 7 source
samples are relevant (i.e., the unshaded ones). Sourcdiegaman be implemented by exactly fitting a fourth-degreeeuo
the relevant points, which corresponds to using the Redoh®m decoding algorithm, as described in the text. Theltiagu

curve is described by elements, yielding the optimum achievable compressiap @tk /n.

samples are relevant plus- log |X| bits to describe the relevant source samples. Note thakifsitie
information were also known at the decoder, then the overliequired in telling the decoder which
samples are relevant could be avoided and the total ratéreelquould only bek -log |X|. This overhead
can in fact be avoided even without decoder side information

To see this, we view the source samples as a codeword of afn, k) Reed-Solomon code (or
more generally any Maximal Distance Separable (MDS) gp#ath g; = 0 indicating an erasure at
samplei. We use the Reed-Solomalecodingalgorithm to “correct” the erasures and determine the
corresponding information symbols, which are sent to tloeiver. To reconstruct the signal, the receiver
encodeghe k& information symbols using the encoder for the k) Reed-Solomon code to produce the
reconstruction”™. Only symbols withg; = 0 could have changed, henge= x; wheneverg; = 1 and
the relevant samples are losslessly communicated usirygkoribg | X| bits.

As illustrated in Fig[B, it is worth recalling that Reed-8wlon decoding can be viewed as curve-fitting
and Reed-Solomon encoding can be viewed as interpolatiencélthis source coding approach can be
interpreted as fitting a curve of degréeto the points ofx; whereq; = 1. The resulting curve can be
specified using jusk elements. It perfectly reproduces whereq; = 1 and interpolates the remaining
points.

Finally, an analogous approach can be used for continuouses In particular, for such sources
the Discrete Fourier Transform (DFT) plays the role of thee@R&olomon code. Specifically, to encode

the n source samples, we view therelevant samples as elements of a complex, periodic, Gayssi

%The desired MDS code always exists since we assuff@d> n. For |X| < n, near-MDS codes exist, which give

asymptotically similar performance with an overhead th@@gyto zero as — oc.
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Fig. 4. Quantizers for distortion side information avaitabt encoder and decoder. When the side informagia@mdicates the
horizontal error (respectively, vertical error) is morepontant, the encoder uses the codebook lattice and parfifiection on

the left (respectively, right) to increase horizontal aecy (respectively, vertical accuracy).

sequence with period, which is band-limited in the sense that only its fikstDFT coefficients are
non-zero. Using periodic, band-limited, interpolation w&n use only theé: samples where;;, = 1 to
find the corresponding nonzero DFT coefficients, which atesequently quantized. To reconstruct the
signal, the decoder reconstructs the temporal signal sporeding to the quantized DFT coefficients.

Rather than developing this analogy further, we instead dexelop some additional insights afforded
by a rather different approach to continuous sources.

2) Continuous SourceConsider the quantization of a single pair of samples (kec, R?) from a
continuous source. The distortion side informatigpns binary, corresponding to two possible additive
difference distortion measures. In one measure, the firdteofamples is more important than the other.
In the other measure, it is the second sample that is morertenmio As one example, each of the two
measures could be weighted quadratic measures.

If the side informationgy were available to both encoder and decoder, then one coalnbeta codebook
lattice and encoder (i.e., partition function) for each loé two values of the side information. Such a
solution is as depicted in Figl 4.

When the side information is available only at the encodwmtone requires a solution that involves
a single, common codebook lattice. However, we can still tusepartition functions chosen according
to the value of the (binary) side information. For this exdéamguch a solution is as depicted in H. 5.

Comparing Fig[b with Fig[d4, it is straightforward to seegleeting edge effects and considering

a uniformly distributed source, that having the distortide information only at the encoder incurs
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v

Fig. 5. Quantizers for distortion side information avaitabnly at the encoder. A common codebook lattice is useadpaddent
of the realized side information, but when the side infoioraindicates that the horizontal error (respectively ticat error)
is more important, the encoder uses the partition on the(lefipectively, right) to increase horizontal accuracygestively,

vertical accuracy).

Fig. 6. A fixed-codebook / variable-partition encoder. listhimple example, the codebook is a simple hexagonal dattic

two dimensions, and there are four different partitionsresponding to two bits of distortion side information.

no additional distortion. Later in the paper we will make sistatements more precise through high-
resolution analysis, but our qualitative discussion te ffoint suffices to reveal the basic intuition and the
fundamental role that fixed-codebook / variable-partittoders (see, e.g., FIJ. 6) play more generally
in the associated systems. Maoreover, this encoding syrategeralizes readily to arbitrary block lengths,
and can be implemented with only linear complexity in theckléength, as described in [12].

We know turn developing our main results of the section, ati@rizing when distortion side infor-

mation at the encoder is sufficient more generally.

B. Sufficiency of Encoder-Only Side Information

We begin by comparing the rate-distortion functions in Psafon[l. In particular, knowing™ only at

the encoder is as good as knowing it at both encoder and deabéaeveR[Q-ENc|(D) = R[Q-BoTH|(D),
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from which we obtain the following equivalent condition.

Proposition 2 Knowing g™ only at the encoder is as good as knowing it at both encoderdmwbder,

i.e., R[Q-ENC(D) = R[Q-BoTH|(D), if and only if I(X; q) = 0 for somex that optimizeged).

To prove Propositiofll2, it suffices to equdiel (6¢) dnd (6d) raote that if in this case someoptimizes
@@d), it also optimizes{6c).

Proposition 2 admits a simple interpretation. In partiqusincepy|(Z|q) represents the distribution
of the codebook, the conditioh(x; q) = 0 corresponds to the requirement that the codebook disibut
be independent of the side information. In the language ofe@ample of SectioR I-AR, this says that
encoder-only side information can only be sufficient if amdydf a common codebook can perform as
well as can be achieved by separate codebooks (tuned to easlible value of the side information).

There are two natural scenarios whdi€; g) can be zero: the case of uniform sources with group
difference distortions, and the case of erasure dist@tigve consider each separately, in turn.

1) Uniform Sources with Group Difference Distortioniset the sourcex be uniformly distributed over
a groupX with the binary relation. For convenience, we use the symbabb to denoten ©b~! (where
b—! denotes the additive inverse bfin the group). We define a group difference distortion measisr

any distortion measure where

d(x,2;q9) = p(Z © 7;q) (7)

for some functionp(-;-). As we will show, the symmetry in this scenario insures thea bptimal
codebook distribution is uniform. This allows an encoderdi&sign a fixed codebook and vary the
guantization partition based a@j to achieve the same performance as a system where both ercute
decoder knowg™. This uniformity of the codebook, made precise in the follogvtheorem, provides
a general information theoretic explanation for the betvawbserved in the Reed-Solomon example of
SectionI=A.

Theorem 1 Consider a source that is uniformly distributed over a group with a distortiomeasure of

the form([d), where the distortion side informatiog is independent ok. Then
R[Q-ENC|(D) = R[Q-BoTH|(D). (8)

For either finite or continuous groups this theorem can bequtdy deriving the conditional Shannon
Lower Bound (which holds for any source) and showing that Bound is tight for uniform sources. We

use this approach below to give some intuition. For more gafimixed groups” with both discrete and
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continuous components, entropy is not well defined and a mlataorate argument based on symmetry

and convexity is provided in Appendix] A.

Lemma 1 (Conditional Shannon Lower Bound) Let the sourcex be uniformly distributed over a dis-
crete group,X, with a difference distortion measurg(z © i; ¢). Define the conditional maximum entropy
variable v* as the random variable that maximizé&(v|q) subject to the constrainE[p(v; q)] < D.
Then, the rate-distortion function with™ known at both encoder and decoder (and hence also the

rate-distortion function withg™ known only at the encoder) is lower bounded by
RIQENd (D) > RlQeoTH(D) > log|X| — H(v*|q). 9)

For continuous groups, we can replaf¥| and H(v*|q) in (@) (as well as the following proof) with the

Lebesgue measure of the group and the differential enttdpy|q).

Proof:
I(%;x|q) = H(x|q) — H(x|q,X) (10)
= log |X| — H(x|%,q) (11)
= log |X| — H(X © x|x, q) (12)
> log [X| — H(X © x|q) (13)
> log |X| — H(v*|q), (14)

where [IB) follows since conditioning reduces entropy, @) follows from the definition of/* since
Elp(% & x;q)] < D. .
Proof of Theorenf]l1:Choosing the test-channel distributioch = v* + x with the pair (v*, q)
independent ok achieves the bound if(9) with equality and must thereforeftémal. Furthermore,
sincex is uniform, so isx and thereforek andq are statistically independent. Therefdr; q) = 0 and
thus comparing[{8c¢) td(6d) showg[q-Enc|(D) = R[Q-BoTH|(D) for finite groups. The same argument
holds for continuous groups with entropy replaced by déffeial entropy andX| replaced by Lebesgue
measure. [
Uniform source and group difference distortion measurése araturally in a variety of applications.
One example is phase quantization where applications ssidhiagnetic Resonance Imaging, Synthetic
Aperture Radar, and Ultrasonic Microscopy infer physidaipomena from the phase shifts induced in a

probe signal [13], [14], [15]. Alternatively, when magriiand phase information must both be recorded,
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there are sometimes advantages to treating these sepafb®d) [17], [18], [19]. The key special case
when only two phases are recorded corresponds to Hammitaytidia. Let us use this special case to
illustrate how distortion side information affects quaation.

For a symmetric binary sourcewith side informationg taking values in{1,2,..., N} according to
distributionpg(¢), the general side-information dependent Hamming distentheasure of interest takes
the form

d(z,2;q9) = ag+ By - du(z, &), (15)

where{ay,aq,...,ay} and{s, fa,...,On} are sets of non-negative weights.

For this case, the associated rate distortion expressiensvhenD > Efag],

R[Q-NoNg (D) = R[QDE](D) =1 — Hj, <D;[7§[]O“’]> (16a)
q
N 9—AB;
R[Q-ENC](D) = R[Q-BOTH](D) =1- qu('l) . Hb <W> s (16b)
=1
where ) is chosen to satisfy the distortion constraint
N _ 9—AB;
Z; pq(i) {ai + B - W} =D. (16c)

The derivations of[{16) are provided in Appendik B.
Two special cases of{IL5) are worth developing in more dé&taiadditional insight.
a) Noisy ObservationsOne special case of {IL5) corresponds to quantizing noisgreasons. In
particular, suppose is a noisy observation of some underlying source, where tligeris governed by
a binary symmetric channel with crossover probability colfed by the side information. Specifically,

let the crossover probability of the channel be

91
TN -1)"

which is always at most /2. Furthermore, a distortion of 1 is incurred if an error oscdue to either
the noise in the observation or the noise in the quantizatiobut not both; and there is no distortion

otherwise:
d(z,2;q9) = €q- [l —dp(z,2)] + (1 —€q) - du(x, &)
=eq+ (1 —2¢q)-dpu(x,)

q—l q—l N
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Fig. 7. Rate-Distortion tradeoffs for noisy observatiofg dinary source. The solid and dashed curves representsitiimum
possible Hamming distortion when side information spéniythe cross-over probability of the observation noisend e not
available at the encoder, respectively. For the plot onéftethe crossover probability for the observation noisegisadly likely

to be 0 or 1/2, while for the plot on the right it is uniformlystlibuted over the intervdD, 1/2].

Evidently, [IT) corresponds to a distortion measure in drenfof (I3) with

_ q-1)
YT oN 1)

so the rate-distortion formulas of_{[16) apply. Note that antimal encoding strategy when the side

qg—1
N-1’

and 3, =1-
information is available at both encoder and decoder is tm@®a the noisy observation directly although
with different amounts of quantization depending on thes sidormation [20].

The rate-distortion tradeoffs for this noisy observatiepgcial case are depicted in Hg. 7. The left
plot corresponds taV = 2, while the right plot corresponds &y — oo. In each plot, the solid curve
shows the tradeoff achievable when the side informatiorvislable at the encoder, while the dashed
curve shows the (poorer) tradeoff achievable when it is not.

From this special case it is apparent that a naive encodirthadenvhereby the encoder losslessly
communicates the side information to the decoder, then eisesding for the case of side information
at both encoder and decoder, can require arbitrarily highterthan the optimal rate-distortion trade-off.
Indeed, to losslessly encode the side information reqainesdditional rate ofog N, which is unbounded

in N.
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Distortion
Distortion

Fig. 8. Rate-Distortion tradeoffs for a binary source, vehéne Hamming distortion in quantizing each source sample is
weightedexp(5¢). The solid and dashed curves represent the minimum podd#ateming distortion when side information
specifying the weight is and is not available at the encadspectively. In the left plotg is uniformly distributed over the pair

{0, 1} while in the right plotq is uniformly distributed over the intervad, 1].

b) Weighted Distortion:n a number of applications, certain samples of a sourcenaierently more
important than others — e.g., edges other perceptually itapbfeatures in an image, or sensor readings
in high activity areas. Such a scenario corresponds to gurgtwith a weighted distortion measure,
which is a different special case @I {15). Specifically, wasider a distortion measure of the forf](15)
wherep; = exp(vi/N), oy = 0, and the side information is uniformly distributed o 1,..., N —1}.

The rate-distortion tradeoffs for this weighted distantgpecial case with = 5 are depicted in Fid.]8.
The left and right plots correspond 8§ = 2 and N — oo, respectively. In each plot, the solid curve
shows the tradeoff achievable when the side informatiorvislable at the encoder, while the dashed
curve shows the (poorer) tradeoff achievable when it is Note that when the side information is not
available, the system is limited to treating all samplesadlguwhile the system with side information
will assign more bits to the samples for which the associateights in the Hamming distortion measure
are larger.

This special case of weighted Hamming distortion can alsodezl to demonstrate that ignoring the
side information at the encoder can result in arbitrarilghr distortion than the minimum required

by optimal schemes. To see this, it suffices to restrict atterto the caseV = 2 and observe that as
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~ — 0o, the system not using side information suffers increagingbre distortion. This is most evident
for R > 1/2. In this rate region, the system with side information lessly encodes the important
samples and the distortion is bounded1y2 while the system without side information has a distortion
that scales witkexp(/2). Thus the extra distortion incurred whenis not available to the encoder can
be arbitrarily large.

2) Erasure Distortions:The other natural scenario where it is sufficient for disborside information
to be available only at the encoder is for “erasure distogiovherebyq € {0,1} and the distortion

measure is of the form
d(z,%;q) = q- p(x, ) (18)

for some functiorp(-, -) that is itself a valid distortion measure. In particular, have the following

Theorem 2 For any source distribution, if the distortion measure igted form in(@8) with ¢" € {0, 1}",
then
R[Q-EN](D) = R[Q-BOTH|(D). (19)

Before proceeding with our proof, we remark that as the exampSectio TI-A] suggests, not only
is encoder side information sufficient in the case of erasistortions, but the quantizers for optimally
exploiting side information at the encoder alone can beiqdarly simple.

Proof: Let ** be a distribution that optimizeg{l6d). Choose the new randarable x** to be the
same ax* wheng = 0 and wheng = 1, let x** be independent of with the same marginal distribution
as wheng = 0:

N pi*lx,q(ﬂwaQL g=20
p)?**|x,q($|x>Q) = (20)

Ps|q(Zlg =0), ¢=1.
Both x* and x** have the same expected distortion since they only differrwhe- 0. Furthermore, by
the data processing inequality

I(£™; x]q) < I(%%;x|q) (21)
so X** also optimizes[{8d). Finally, sincé(x**;q) = 0, Proposition[R is satisfied and we obtain the

desired result. [ ]

IV. SOURCECODING WITH DISTORTION AND SIGNAL SIDE INFORMATION

We now turn our attention to the more general scenario in lwitere is both signal and distortion

side information in the problem. In contrast to the treath@Section[dll, here we will emphasize the
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case of continuous sources, whose elements take valuR$ fior some integerc > 1. At the same
time, in examining issues of sufficiency of different typdssiwle information, we will consider a looser
asymptotic sufficiency in the high resolution limit.

When there is no signal side information, one would expedini asymptotic sufficiency of encoder-
only distortion side information rather generally. IndeaslD — D,,;,, whereD,,;, denotes the minimum
attainable valuex™ — x™. Thus whenx™ and g™ are independent we may intuitively expet — x" to
imply I(X;q) — I(x;q) = 0. This turns out to be the case under reasonable conditisnsggormally
develop in this section.

More generally, when there is both signal and distortiore dsiformation, we show the asymptotic
sufficiency of encoder-only distortion side informationdatlecoder-only signal side information in the

high resolution limit in several natural scenarios of ietdr

A. Admissibility Requirements

We begin by defining the class of continuous-source problemmterest. In addition to the side
information decomposition implied by Definitidh 1, our résurequire a “continuity of entropy” property

that essentially states
v — 0 in distribution = h(x + v|q, w) — h(x|q, w). (22)

The desired continuity follows from [21] provided the soeirdistortion measure, and side information
satisfy some technical conditions related to smoothnelesd conditions are not particularly hard to

satisfy; for example, any source, side information, andodi®n measure where

36 >0,—00 < E[||x]|° | w = w] < 00 Vw (23a)
—o00 < h(x |w=w) < oo, Yw (23b)
d(z,&;q) = a(q)+5(q) - [« — 2" (23¢)

will satisfy the desired technical conditions in [21] prded a(-), G(-), and v(-) are non-negative
functions.

For more general scenarios we introduce the following dédimito summarize the requirements from
[21].

Definition 2 The collection of a source, a side information pair 4, w), and a difference distortion
measurel(x, &:; q) = p(x—1I; q) is said to beadmissibléf, in addition to the condition@) of Definition[1,

the following conditions are satisfied:
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1) the equations
a(D.q) | expl=s(D.a)pla: )l =1 (242)

a(D.q) / p(e;q) expl—s(D, g)p(; g)]de = D (24b)

have a unique pair of solutiong(D, q), s(D, q)) for all D > D,,;, that are continuous functions
of their arguments
2) —oo < h(x|w = w) < oo, for all w

3) For each value of, there exists an auxiliary distortion measufe; q) where the equations
0s(D.a) [ expl-ss(D.a)bli )l =1 (252)

a5(D.q) / 8(a1q) exp|—s5(D, )8(x: g)]dz = D (25b)

have a unique pair of solutions(D, q), ss(D, q)) for all D > D, that are continuous functions
of their arguments
4) The conditional maximum entropy random variabfethat maximizes:i(v|q) subject to the con-

straint E[p(v; g)] < D has the property that

lim v* —0 in distributionVq (26a)
D_’Dmin
lim  E[0(x +v*,q)lq = q] = E[0(x,q)|qg = q] Vq. (26b)

D— Dmyin

B. Equivalence Theorems

Our main results for continuous sources are a set of fourréime® describing when different types
of side information knowledge are equivalent. Our resulisws that the sixteen possible information
configurations of Figd2 can be reduced to the four shown in BigOur four equivalence theorems
presented below are proved in Appenfix C.

We begin by establishing that, under suitable conditiomsjriyg the distortion side information at the
encoder and the signal side information at the decoder ficiguit to ensure there is no loss relative to

the case of complete side information everywhere:

Theorem 3 For a scenario in which Definitiofl]2 is satisfied, and a diffagze distortion measure of
the formp(x — Z;¢q) is involved,qg™ and w™ can be divided between the encoder and decoder with no

asymptotic penalty, i.e.,

b lian R[Q-ENc-w-DE](D) — R[Q-BOTH-wW-BOTH|(D) = 0. (27)
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Decoder missingv™ Decoder hasv™
ThA(N) ThE(S)
Encoder | R[Q-DEC-W-ENG <=  R[Q-DEC-W-NONE R[Q-DEC-W-BOTH <= R[Q-NONE-W-BOTH
Missing $ Th.E (S+) $ Th.A (S+) { Th.E (H+S+) { Th.@ (H+S+)
q" R[Q-NONE-W-ENG TE0 R[Q-NONE-W-NONE R[Q-DEC-W-DEG TREES R[Q-NONE-W-DEG
Encod R[Q-ENC-W-ENG LI R[Q-ENC-W-NONH R[Q-ENC-W-DE] LI R[Q-ENC-W-BOTH
ncoder
o { Th.@ (H+) { Th.@ (H+) { Th.@ (H) {$ Th.@ (H)
as qn
R[Q-BOTH-W-EN(Q gLl 1 R[Q-BOTH-W-NONH R[Q-BOTH-W-DEQ T R[Q-BOTH-W-BOTH

Fig. 9. Summary of equivalence results for continuous sEsurédrrows indicate which theorems demonstrate equalityédsn
various rate-distortion functions and list the assumgimequired (H = high-resolution, | g" andw™ independent, S = scaled

difference distortion).

Theorem[B establishes that there is a natural division af Bibrmation between the encoder and
decoder (at least asymptotically). Ultimately, this th@arcan be viewed as generalizing prior results on
the lack of rate loss for the Wyner-Ziv problem in the higlattion limit [5] [6].

In some ways, Theoreml 3 is quite remarkable. The admigyiltthnditions [#) requireg™ to be
conditionally independent of™ given w™, and require the distortion to be conditionally indeperndsn
w” given g", x™, andx™. However, since our model allows fgf* andw™ to be statistically dependent,
q" can be indirectly correlated witk™ (throughw™) andw™ can indirectly affect the distortion (through
q").

The next pair of theorems show, under appropriate condititimatw”™ known only at the encoder
is useless, and™ known only at the decoder is useless. Hence, deviating fleennatural division of
TheorenB and providing side information in the wrong placakes that side information useless (at
least in terms of the rate-distortion function). As suctest theorems generalize Berger’s result that

signal side information is useless when known only at theodac[7].

Theorem 4 For a scenario in which Definitiol]1 is satisfied? and w™ are independerﬂ, and a
difference distortion measure of the fom — z;¢) is involved,w™ provides no benefit when known
only at the encoder, i.e.,

R[Q*w-ENC](D) = R[Q-~W-NONE|(D), (28)

where the wildcard “*” may be replaced with an element frdmnc, bec, BoTH, NONE} (both *'s must be

“Independence is only required where {DEC, NONE}; if * € {ENC, BOTH}, the theorem holds without this independence

condition.
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replaced with the same element).

Theorem 5 For a scenario in which Definitiofl 1 is satisfiegl; and w™ are independerﬂ,and a scaled
distortion measure of the foraz, &; ¢) = po(q)p1(z, &) is involved,g™ provides no benefit when known
only at the decoder, i.e.,

R[Q-DEC-W-|(D) = R[Q-NONE-W-(D), (29)

where the wildcard “*” may be replaced with an element frdmnc, beEc, BOTH, NONE} (both *'s must be

replaced with the same element).

Finally, we can generalize Theordih 3 to show that regardiessere signal (respectively, distortion)
side information is constrained to be available, havingdiséortion (respectively, signal) side information
at the encoder (respectively, decoder) results in the besgilple performance attainable subject to that

constraint.

Theorem 6 For a scenario in which Definitiof]l2 is satisfied? and w" are independerﬂ,and the
difference distortion measure involved is a scaled one effthntl d(z,Z;q) = po(q) - p1(x — &), "

(respectivelyw™) is asymptotically only required at the encoder (respetfivat the decoder), i.e.,

lim R[Q-ENc-w-|(D) — R[Q-BOTH-W=|(D) = 0 (30a)
b lim R[Q+w-DEC|(D) — R[Q-w-BOTH](D) = 0, (30b)

where the wildcard “*” may be replaced with an element frdmnc, bec, BoTH, NONE} (both *'s must be

replaced with the same element).

In essence, Theorelth 6 establishes an approximation résatltunder reasonable conditions, the closer
one can get to the ideal of providing® to the encoder and” to the decoder implied by Theordmh 3,

the better the system will perform.

®Independence is only required where {ENC, NONE}; if * € {DEC, BOTH}, the theorem holds without this condition.
®Independence is only required where {ENC, NONE} in (@0a) or whenx € {DEC, NONE} in @0H). Forx € {DEC, BOTH}
in @03) orx € {ENC,BOTH} in (@00) the theorem holds without this condition.

"The scaled form of the distortion measure is only requireg@whe {DEC, NONE} in @0H). Whenx € {ENC, BOTH}, the

theorem holds without this restriction.
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C. Loss Theorems

While the results of Sectidn IVIB establish that the prowgldistortion side information to the encoder
and signal side information to the decoder is best, in thigi@e we quantify the loss incurred by
deviations from this ideal. In particular, our results take form of two theorems, which respectively
characterize the rate loss when signal side informatiomiswailable at the decoder, and when distortion
side information is not available at the encoder. Finaltyrotlaries of each of these theorems establish
how statistical dependencies between the two side infeomainfluence the associated losses.

Our two theorems are as foIIO\Hsproofs are proved in AppendIxID.

Theorem 7 For a scenario in which Definitiofill1 is satisfied? and w" are independerﬂ,and the
difference distortion measure involved is a scaled one efftymd(z, &;q9) = po(q) - p1(x — Z), the

penalty for not knowingv™ at the decoder is

b ligl R[Q-*W-{ENC-OR-NONE|(D) — R[Q-*-W-{DEC-OR-BOTH (D) = I(x; w), (31)

where the wildcard “*” may be replaced with an element fromanc, pec, BotH, NoNE} (all *'s must be

replaced with the same element).

Theorem 8 For a scenario in which Definitioll]2 is satisfieq! and w™ are independelﬁ and the
difference distortion measure involved is a scaled one efftimd(z,z;q) = ¢ - ||x — Z||" for some

r > 0, the penalty (in nats/sample) for not knowigg at the encoder is

lim R[Q-{DEC-OR-NONE-W-*](D) — R[Q-{ENC-OR-BOTH-W-*|(D) = EE [ln @} , (32)

—Dmin T
where the wildcard “*” may be replaced with an element frdmnc, bEc, BOTH, NONE} (both *'s must be

replaced with the same element).

Some remarks are worthwhile. First, TheorEm 7 makes clesrttie more valuable the signal side
information w™ is (i.e., the greater the statistical dependency on theakiga measured by mutual
information), the larger the loss incurred by not havingtitree decoder. Moreover, there is no loss if

and only if the signal side information is useless (i.e.ejpendent of the source).

8Note that a special case of TheorEin 8 appears in [6] for the «cas 2 and the lefthand and righthands in @) being
DEC and BOTH, respectively.

®Independence is only required where {DEC, NONE}; if * € {ENC, BOTH}, the theorem holds without this condition.

Independence is only required where {ENC, NONE}; if * € {DEC, BOTH}, the theorem holds without this condition.
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TABLE |
ASYMPTOTIC RATE LOSS(IN NATS) FOR NOT KNOWING DISTORTION SIDE INFORMATIONg AT THE ENCODER DISTORTION

IS MEASURED VIA d(z, #; q) = q(x — )2, AND -y DENOTESEULER’ S CONSTANT.

Distribution Name| Density for g Rate Gap in nats

Exponential T exp(—qr) —% Invy ~ 0.2748

Uniform Laefo,1] 2(1 —In2) ~ 0.1534

Lognormal q\/;ﬂ? exp [_%] e

Pareto q;‘%,qzb>0,a>1 %[lnafl—l/a}

Gamma Mea)'—_exp(=be) Ina— LIn0(z)]oma} ~ &
Pathological (1—€)d(g—e€)+ed(g—1/e) | tIn(l+e—€’)— 2= e~ iInl
Positive Cauchy | ££2,q > 0 0

For comparison, Theoref 8 makes clear that the more signiftba distortion side information (i.e.,
the greater the range of values this information can takesomeasured logarithmically), the larger the
loss incurred by not having it at the encoder. Moreover,ghgemo loss if and only if the distortion side
information is a constant with probability 1 (i.e., degeate}.

In Tablell, we evaluate the high-resolution rate penaltylodédreniB for a number of possible distortion
side-information distributions. Note that for all of thesde information distributions (except the uniform
and exponential distributions), the rate penalty can beenzatitrarily large by choosing the appropriate
shape parameter to place more probability rear0 or g = oco. In the former case (LogNormal, Gamma,
or Pathologicalg), the large rate-loss occurs because when 0, the informed encoder can transmit
almost zero rate while the uninformed encoder must tranantdrge rate to achieve high resolution. In
the latter case (Pareto or Cauchy the large rate-loss is caused by the heavy tails of theilalision
for g. Specifically, even though is big only very rarely, it is the rare samples of largehat dominate
the moments. Thus an informed encoder can describe theesenteemely accurately during the rare
occasions whem is large, while an uninformed encoder must always spendge leate to obtain a low
average distortion.

Finally, note that all but one of these distributions in Edblwould require infinite rate to losslessly

communicate the side information. Thus the gains to be ha filistortion side informatiolgannotbe
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obtained by exactly describing the side information to teeater.

Theorem§l7 anld 8 emphasize the case when the side inforndatimmposes naturally into independent
signal side information and distortion side informatiompmnents. When such a decomposition is not
possible, it is straightforward to characterize the lossesociated with not having the side information
everywhere, as we now develop.

Consider a general side informatienthat influences the distortion measure via, &; z) = po(z) -
p1(z — ) andis correlated with the source. Then we have the followingltaries of TheoremBl7 and

[, respectively.

Corollary 1 For a scenario in which Definitiofi]l2 is satisfied with = w = z, and the difference
distortion measure involved is a scaled one of the falm, ; z) = po(2) - p1(x — &), the penalty for

knowing general side information only at the encoder is

DEglmm R[z-ENc|(D) — R[z-BoTH|(D) = I(x; z). (33)

Corollary 2 For a scenario in which Definitiofi]2 is satisfied, and the défece distortion measure
involved is a scaled one of the forz, &; z) = z- ||z — z||" for somer > 0, the penalty (in nats/sample)

for not knowingz at the encoder is

lim R[z-DEC|(D) — R[z-BOTH|(D) = éE {ln %Z]] . (34)

D— Dyin

In essence, Corollary] 1 establishes that not having gesatalinformation at the decoder incurs a
loss only to the extent that side information is correlatethihe source, while Corollarlyl 2 establishes
that not having such side information at the encoder incuossionly to the extent that side information
influences the distortion measure.

To obtain both Corollarie)s 1 afid 2, it suffices to i) det= w = z in Theorem§17 and 8, respectively, for
the caseR[Q-ENc-w-ENd (D) — R[Q-ENc-w-BOTH (D) and R[Q-DEC-wW-DE]Q (D) — R[Q-BOTH-W-DE] (D), respec-
tively, taking into account the respective footnotes irsththeorems; and ii) note thB{Q-Enc-w-BoTH(D) =

R[Q-BoTH-W-DE](D) = R[Q-BOTH-W-BOTH/(D) wheng = w = z.

V. SOURCE CODING WITH SIDE INFORMATION AT LOWER RESOLUTIONS

While Section[IY¥ established the asymptotic sufficiency n€aer-only distortion side information
and decoder-only signal side information in the high-reBoh limit, they do not tell how quickly this
sufficiency is obtained as the resolution is increased. fdusires a finer grained analysis, which is the

focus of this section. To simplify our analysis, we restittr attention to scaled quadratic distortion
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measures, but briefly discuss how these results can be djeadrto other distortion measures. As we
now develop, our results take the form of two theorems, whitdracterize behavior at medium and low

resolutions, respectively.

A. A Medium Resolution Bound

The following theorem bounds the rate penalties incurrednbpmplete side information at medium

resolutions; a proof is provided in AppendiX E.

Theorem 9 For a scenario in which Definitiofl] 1 is satisfied, and the distm measure involved is of
the formd(z, #;¢) = ¢ - (x — 2)? with ¢ > g, > 0, the rate gap at distortiorD is bounded by

R[Q-Enc-w-DE](D) — R[Q-BOTH-W-BOTH|(D) < J(X2| w) - min [1,

2, (35)

Gmin
whereJ(x|w) is the Fisher Information in estimating a non-random paréne from 7 + x conditioned

on knowingw. Specifically,
2
T 2 [ ) { [ pawlato) |55 toe ol dx} . (36)

A few remarks are worthwhile. First, similar bounds can beettgped with other distortion measures
provided thatD /¢, is replaced with a quantity proportional to the variancehs guantization error;
see the remark after the proof of TheorEin 9 in the Appehdlix rEdfgails. Also, related bounds are
discussed in [22, Appendix D].

Second, Fisher information arises in our bound from a camatibn of the underlying additive test-
channel distributionk = x + v. In particular, a clever source decoder could treat eachceosample
x; as a parameter to be estimated from the quantized représanta If an efficient estimator exists,
this procedure could potentially reduce the distortion by teciprocal of the Fisher Information. But
if the distortion can be reduced in this manner without dffecthe rate, then the additive test-channel
distribution must be sub-optimal and a rate gap must exist.

Exploiting this insight, our bound in Theorelh 9 essentialigasures the rate gap by assessing how
much our additive test-channel distribution could be invaib if an efficient estimator existed for
given xX. This bound will tend to be good when an efficient estimatoesdexist and poor otherwise.
For example, ifx is Gaussian with unit-variance conditioned an then the Fisher Information term
in (33) evaluates to one and the worst-case rate-loss is at half a bit at maximum distortion. This
corresponds to the half-bit bound on the rate-loss for thre pyner-Ziv problem derived in [5]. But if

x is discontinuous (e.g., if is uniform), then no efficient estimator exists and the boum@@3) is poor.
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We should also emphasize that the proof of Thedrkm 9 doe®quire any extra regularity conditions.
Hence, if the Fisher Information of the source is finite, ind& immediately applied without the need

to check whether the source is admissible according to Diefiri2.

B. A Low Resolution Bound

While the Fisher Information bound fromd—{35) can be used wat fesolutions, it can be quite poor
if the source is not smooth. Therefore, we propose the fatigvalternative bound on the rate penalty,
which is independent of the distortion level and hence mseful at low resolution. A proof is provided

in Appendix[E.

Theorem 10 For a scenario in which Definitiof] 1 is satisfied, and the distm measure involved is of

the formd(z, #;q) = ¢ - (x — 2)?, the rate gap at any distortion is at most
2
R[Q-ENC-W-DEG(D) — R[Q-BOTH-W-BOTH (D) < D(pyw [ N(Var [x])) + % log (1 + %) 7 (37)
g

min

whereN(¢) represents a Gaussian random variable with mean zero anéwvee ¢, and where

o2, = min Var [x|w = w] (38a)
o2 = max Var [x|w = w] . (38b)

Again, we make some remarks. First, as with our medium réisollbound, similar bounds can be
developed for other distortion measures, which we discfiss the proof of Theoreri 10 in Appendi E.
Second, the boun@{B7) can be readily evaluated in variosesoaf interest. As one example, consider
the familiar Wyner-Ziv scenario where the signal side infation is a noisy observation of the source.
Specifically, letw = x + v wherev is independent ok. In this case, the conditional variance is constant
and [3T) becomes
Do |N(Var [x])) + 5 log 2 (39)

and the rate-loss is at most half a bit plus the deviation fl@aussianity of the source. As another
example, ifx is Gaussian when conditioned on = w, then the rate-loss is again seen to be at most
half a bit, as in [5].

However, in contrast to the bound of [5], which is indeperid&rthe source, both our bounds 0135)
and [3Y) depend on the source distribution. Hence, we cumgthat our bounds are loose. In particular,
for a discrete source, the worst case rate loss is at #Hostw), but this is not captured by our results

since both bounds become infinity. Techniques from [23]],[Z] may yield tighter bounds.
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C. A Finite-Rate Gaussian Example

To gain some sense for when the asymptotic results taketetecconsider a finite-rate Gaussian
scenario. Specifically, let the source consist of a sequehGaussian random variables with mean zero
and variance 1 and consider distortion side informatiorn#it[g = 1] = 0.6, Pr[g = 10] = 0.4, and
distortion measurd(z,7;q) = q - (v — ).

The case without side information is equivalent to quantjz Gaussian random variable with distortion

measuret.6(x — £)2 and thus the rate-distortion function is

0, D> 46
R[Q-NONE-W-NONE (D) = (40)

sni8  D<46.
To determineR|Q-BoTH-w-NONE (D) we must set up a constrained optimization as we did for tharipin
Hamming scenario in AppendIx]B. This optimization resuttsai “water-pouring” bit allocation, which
uses more bits to quantize the source whena 10 than wheng = 1. Specifically, the optimal test-channel
is a Gaussian distribution where both the mean and the aridapend o and thusx has a Gaussian

mixture distribution. Going through the details of the doaged optimization yields

=)

, 46 <D

- “W- = 0.4 4 *
R[Q-8oTH-W-NONE (D) % In o D* <D <46 (41)

02;41111—[())4—02;6111%, D < D*
for some appropriate threshold*. Evaluating [[3R) for this case indicates that the rate-gatvéen [4D)
and [41) goes t®.5 - (In4.6 — 0.41n 10) ~ 0.3 nats~ 0.43 bits.

ComputingR[Q-ENc-w-NONE (D) analytically seems difficult. Thus, when distortion sidémmation is
only available at the encoder we obtain a numerical uppentban the rate by using the same codebook
distribution as wherg is known at both encoder and decoder. This yields a rate fyeohl/(x; q)

We can obtain a simple analytic bound from Theofdm 9. Spatifieevaluating[(3b) yields that the rate
penalty is at most1/2) - min[1, D].

In Fig. [0 we evaluate these rate-distortion trade-offs. 8&e that at zero rate, the rate-distortion

functions for the case of no side information, encoder-agitle information, and full side information

have the same distortion since no bits are available for tipgtion. Furthermore, we see that the Fisher

Hactually, since the rate distortion function is convex, vede the lower convex envelope of the curve resulting from the

optimal test-channel distribution.
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Information bound is loose at zero rate. As the rate incimati®e system with full distortion side-
information does best because it uses the few availabletbit®present only the important source
samples withg = 10. The decoder reconstructs these source samples from thpressed data and
reconstructs the less important samples to zero (the meah bf this regime, the system with distortion
side information at the encoder also more accurately gzesitihe important source samples. But since
the decoder does not knog; it does not know which samples &f to reconstruct to zero. Thus the
system withg available at the encoder performs worse than the one gviahboth encoder and decoder
but better than the system without side information. As thk rincreases further, both systems with
distortion side information quantize source samples witkhlyzy = 1 and g = 10. Thus the codebook
distribution for x goes from a Gaussian mixture to become more and more Gaumsibthe rate-loss
for the system with only encoder side information goes t@zEmally, we note that even at the modest

distortion of —5 dB, the asymptotic effects promised by our theorems hawadyr taken effect.

VI. CONCLUDING REMARKS

Our analysis indicates that side information that affelts distortion measure can provide significant
benefits in source coding. Perhaps, our most surprisindtrissihat in a number of cases, (e.g., sources
uniformly distributed over a group, or in the high-resadatilimit) side information at the encoder is just
as good as side information known at both encoder and dededehermore, this “separation theorem”
can be composed with the previously known result that hagiggal side information at the decoder
is often as good as having it at both encoder and decoder {@.the high-resolution limit). Our main
results regarding when knowing a given type of side inforomaft one place is as good as knowing
it at another place are summarized in Hi§y. 9. Also, we comptlie rate-loss for lacking a particular
type of side information in a specific place. These penalgotems show that lacking the proper side
information can produce arbitrarily large degradationpénformance. Taken together, we believe these
results suggest that distortion side information is a uss&furce coding paradigm.

In practice, one area where distortion side information qmayide benefits is in designing perceptual
coders which use features of the human visual system (HVS)uonan auditory system (HAS) to
achieve low subjective distortion even when the objectistodtion (e.g., the mean square error) is quite
large. Recent examples of such systems have shown gainsageioding [25], [26]. Unfortunately,
current systems often communicate the distortion sidernmédion (in the form of model parameters or
guantizer step sizes) explicitly and thus are not as effiasrthey could be. Perhaps more importantly,

creating such a perceptual coder often requires the desigrize an expert both in human physiology
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Fig. 10. Rate-distortion curves for quantizing a Gaussiamree x with distortion g(x — £)? where the side informatiog is
1 with probability 0.6 or 10 with probability 0.4. From bottoto top on the right the curves correspond to the rate reduire
when both encoder and decoder kngwa numerically computed upper bound to the rate when onl\etteeder knowsy, the
rate when neither encoder nor decoder kngwand the Fisher Information upper bound from Theofdm 9 foewbnly the

encoder knowsy.

as well as quantizer design. Consequently, developmeminbes expensive and time consuming. Using
the abstraction of distortion side information to repraéssuch perceptual effects, however, may help
overcome these batrriers.

Obviously our model contains many idealizations that may by exactly accurate for real sources
(e.g., the distortion side information may not be indepemdé the source, the source itself may not be
i.i.d., channel coding may be involvedid. On a theoretical level, many of these non-idealities can b
addressed. For example, while Corollaty 1 indicates thatkmg general side information only at the
encoder may be suboptimal, the loss is essentially due todasignal side information. In particular,
even when distortion side information known only at the elerds correlated with the source, the fixed

codebook—variable partition approach outlined in Sedil@and developed in more detail in [12] can
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still provide significant benefits. Finally, we believe tliafiormation spectrum techniques can be used to
establish that the familiar source—channel separatiooréme holds and that the results developed here

for i.i.d. models can be generalized to stationary, ergsdenarios [27], [28], [29].

APPENDIX
A. Proof of Theorerflll

Assume thagza;;'X q(ﬁc\x,q) is an optimal test-channel distribution with the condiﬁbp;‘q(iyq). By

symmetry, for anyt € X, the shifted distribution

A A A
pf?|x,q($|$7 q) = p)?\)gq(x ® t|3§' Dt, q) (42)

must also be an optimal test-channel. Since mutual infoomag convex in the test-channel distribution,

we obtain an optimal test-channel distributipff by averaging over X via the uniform measuréy(¢):

k3k A A A~
Pt ol q) 2 /x Pl o1 ). 43)

To prove that the resulting distribution fargiven g is uniform for all g (and hence independent g},

we will show thatp;]kq(:ﬂq) = p;’rq(;% @ r|q) for anyr € X:

Pielel) = [ 5l x(a) (44)
- /x /x Pl o2z, q)dx(t)dc () (45)
_ /x /x D gl & thr & ¢, q)d(t)dxc(w) (46)
= /x/xp;m,(@ Sr@tlr@rdt,q)dx(r® t)dy(z) (47)
— /x/xpzw(@ Srotlr®rat,q)dx(t)dx(z@r) (48)
- /x/xpzw(@ ST @ tledt,q)dy(t)dx(z) (49)
= PXjq(L & 7lq). (50)

Equation [44) follows from Bayes’ law and the fact th& is the uniform measure oX. The next two
lines follow from the definition op** andp’ respectively. To obtairi{47), we make the change of variable
t — r @ t, and then apply the fact that the uniform measure is shifiriant to obtain[{48). Similarly,

we make the change of variable® r — z to obtain [4D). The last line follows from the definition in

@3).
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Note that this argument applies regardless of whether theisformation is available at the encoder,
decoder, both, or neither.

B. Derivation of Binary-Hamming Rate-Distortion Funct8)

Let us first consider when the side informationnist at the encoder, corresponding [0 {16a). In this
case, the side information is of no value to the decoder, lamgl the source coding problem is equivalent
to quantizing a symmetric binary source with the distortineasure averaged over the side information,
viz.,

d(z,2) = Elag+ Bq - du(z,2)] = Elag] + E[Bq) - du(z, ). (51)

Thus, the relevant rate-distortion function is obtainedshmply scaling and translating the familiar rate-
distortion function for the canonical binary-Hamming cagelding [1&4).

Next, to obtain[(18b), the rate-distortion function whea #lide informations at the encoder, we begin
by noting that this is the same as that when the side infoomasi available at both encoder and decoder.
Hence, we comput&[Q-enc|(D) and R[Q-BoTH|(D) by considering the latter case and noting that optimal
encoding corresponds to simultaneous description of iexégnt random variables [30, Section 13.3.3].

Specifically, the source samples for each valug @fan be quantized separately using the distribution

1—pg, T=2
P2ix,q(E]T,q) = (52)
Dqs z=1-—u=x.

The cross-over probabilities, correspond to the bit allocations for each value of the sidermation

and are obtained by solving a constrained optimization lprab

N
Rleso(D) =  min > B~ Hy(pq)), (53)
U= =1

where Hy,(+) is the binary entropy function.

Using Lagrange multipliers, we construct the functional
N

N
J(D) = pa(i) - [1 + pilogpi + (1 — pi)log(1 = pi)] + A > _ pq(i) - [evi + pifBil,
i=1 =1

whose minimum is easily shown to be attained at
2_)‘6'L

ST 4)

Di

whence [16b) with[{16c).
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C. Equivalence Theorem Proofs

Proof of Theorenl3To obtain R[Q-Enc-w-DE](D) we apply the Wyner-Ziv rate-distortion formula

in [1] to the “super-sourceX™ = (x™, g") yielding

Rl[geENcw-DE](D) = inf  I(X,q;x|w), (55)

Psix,a(22,9)
where the optimization is subject to the constraint thad(x, v(X, w); q)] < D for some reconstruction
functionv(-, ). To obtain R[Q-BoTH-w-BOTH/(D) we specialize the well-known conditional rate-distortion

function to our notation yielding

R[Q-BOTH-W-BOTH (D) = inf I(%; x|w, q), (56)

Pslx,qw(E]2,q,w)
where the optimization is subject to the constraint théd(x, X; g)] < D.
Let us definex* as the distribution that optimizeE—{55). Similarly, defifg as the distribution that
optimizes [(Bb). Finally, define given g = ¢ to be a random variable with a conditional distribution that

maximizesh(v|q = ¢) subject to the constraint that
Eld(x,x + v;q)lg = ¢] < E[d(x, %,; 9)|q = q. (57)

Then we have the following chain of inequalities:

AR(D) 2 Rlo-enc-wDE](D) — R[Q-BoTH-W-B0TH (D) (58)
= I(X"; g, x|w) — [h(x|g, w) — h(x|q, w, %, )] (59)
= I(%; 9, x|w) — h(x|q, w) + h(x — £,[q, w, X5,) (60)
< I(X%;q,x|w) — h(x|g, w) + h(x — %, q) (61)
< I(8"; 9, x|w) — h(x|q, w) + h(v]q) (62)
< I(x+ viq,x|w) — h(x|g,w) + h(v]q) (63)
— h(x + vIw) — hix + v|w, @, x) — h(x|q, w) + h(v|q) (64)
— h(x+ vlw) — h(x|q, w) (65)
= h(x + v|w) — h(x|w). (66)

Eqg. (62) follows from the definition of to be entropy maximizing subject to a distortion constraint
Sincev is independent ok and w, the choicex = x + v with v(&,w) = Z is an upper bound td_{55)

and yields [[6B). We obtair_{b6) by recalling that accordiagfd), g and x are independent givew.
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Finally, we obtain

pJim AR(D) =0. (67)

from (€8) using the “continuity of entropy” result from [2Theorem 1].

Note that although the in [21, Theorem 1] is an entropy maximizing distribution ‘ehbur v is
a mixture of entropy maximizing distributions, the sped@m of the density is not required for the
continuity of entropy result in [21, Theorem 1]. To illugiahis, we show how to establish the continuity
of entropy directly for any distortion measure whdpe— D,,;, = Var[v] — 0. One example of such
a distortion measure is obtained if we choe&e, i;q) = ¢ - |x — £|” with » > 0 andPr[g = 0] = 0.
DenotingVar [v|w] a30§|w andVar [x|w] asJ;W and lettingN(«) represent a Gaussian random variable

with variancea yields

limsup h(x + v|w) — h(x|w) = limsup h(x + v|w) — h(x|w) (68)
D—Din 02—0

= liH21 s%p h(x + viw) £ h(N(J§|W + 03|W)|W)
£ h(N(o2,)|w) — hi(x|w) (69)
= 1igi%p D(puwlN(%)) = DxsvwlN(Z + T0)
T h(N(0Z, + 02,) W) — h(N(2,)|w) (70)

< D(px|WHN(O->2<\W)) - D(pX‘WHN(O-?dW))

+lim s%p[h(N(Ui\w +00,)|w) — h(N(a3),,)|w)] (71)
= lim Sup/ [h(N(Uz‘W + 03|W)|W =w) — h(N(Uz‘WNW = w)] dpy, (w) (72)
02—0
= / [lin; s%p h(N(U)%'W + UE‘W)’W =w)— h(N(O'?('W)’W = w)] dpw (w) (73)
= 0. (74)

We obtain [ZD) since for any random variahble the relative entropy fronv to a Gaussian takes the
special formD(p, ||[N(Var [v])) = h(N(Var [v])) — h(v) [30, Theorem 9.6.5]. To ge[(V¥1) we use the
fact that relative-entropy (and also conditional relatrgropy) is lower semi-continuous [31]. This could
also be shown by applying Fatou’s Lemma [32, p.78] to get ithtite sequencep;(x), p2(x),... and
q1(z), q2(x), ... converge top(z) andg(z) then

lim inf / i) loglpi () /a1 ()] > / p(z) loglp(x)/a(x)].
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Switching thelim sup and integral in[{ZB) is justified by Lebesgue’s Dominated v&ngence Theorem
[32, p.78] since the integrand is bounded for all valuesvofin general, this bound is obtained from
combining the technical condition requirinigx|w = w) to be finite with the entropy maximizing
distribution in [25) and the expected distortion constr&in(@8) to boundh(x + v|q = ¢). For scaled
quadratic distortionsh(x + v|g = ¢) can be bounded above by the entropy of a Gaussian with the
appropriate variance. To obtain{74) we first note tkiat [v] — 0 implies Var [v|w = w] — 0 except
possibly for a set ofv having measure zero. This set of measure zero can be ignecadise the integrand
is finite for all w. Finally, for the set ofw whereVar [v|w = w] — 0, the technical requirement that the
entropy maximizing distribution if{25) is continuous shwothiat the entropy differencE{74) goes to zero
in the limit. [ |
Proof of Theoreni]l4When x € {enc,BotH} in (Z8), the encoder can simulate” by generating
it from (x™, ¢"). Whenx € {DpeEc,NoNE}, the encoder can still simulate™ correctly provided thaw™
andq™ are independent. Thus being provided witfi provides no advantage given the conditions of the
theorem. [ |

Proof of Theorenil5We begin by showing
R[Q-DEC-W-DE](D) = R[Q-NONE-W-DEG(D). (75)

When side information g™, w™) is available only at the decoder, the optimal strategy is &A#iv
encoding [1]. Let us compute the optimal reconstructioncfiom v(-,-,-), which maps an auxiliary

random variablas and the side informatiog and w to a reconstruction of the source:

v(u,q,w) = argmjinE[d(a%,x; 9lg=q,w=w,u=1] (76)
= argmin po(q) Bl (2,3)lq = q.w = w,u = 1] (77)
= argmin Blp1 (2, x)|g = ¢, w = w, u = u] (78)
= argmgnE[pl(i,x)\w = w,u = ul. (79)

We obtain [ZF) from the assumption that we have a separa$ilertibn measure. To gdi{[79) recall that
by assumptiory is statistically independent of given w and alsoq is statistically independent af
sinceu is generated at the encoder fromThus neither the optimal reconstruction functief, -, -) nor
the auxiliary random variable depend org. This established(F5).

To show that

R[Q-DEC-W-NONE (D) = R[Q-NONE-W-NONE (D) (80)
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we needw™ and g” to be independent. When this is true? does not affect anything and the problem
is equivalent to whemw™ = 0 and is available at the decoder. Frdml(75) we see that prayiei* = 0
at the decoder does not help and thus we estalfligh (80). Nateahis argument fails whea™ and g™
are not independent since in that case Wyner-Ziv baseg™ocould be performed and there would be
no w™ at the decoder to enable the argumen{dd (T&}-(79).
To show that
R[Q-DEC-W-BOTH (D) = R[Q-NONE-W-BOTH(D) (81)

we note that in this scenario the encoder and decoder cagndadilifferent source coding system for
each value ofw. The subsystem for a fixed value® corresponds to source coding with distortion side
information at the decoder. Specifically, the source wiléndistributionp,,, (z|w*), and the distortion
side information will have distributiop,, (¢|w*). Thus the performance of each subsystem is given by
R[Q-pEC-W-NONE (D), which we already showed is the same [&®-NoNE-w-NONE (D). This establishes
@1).

Finally, to show that

R[Q-DEC-W-ENG(D) = R[Q-NONE-W-ENG (D) (82)

we require the assumption that and w™ are independent. This assumption implies
R[Q-DEC-W-ENG (D) = R[Q-DEC-W-NONE (D) (83)

since an encoder without™ could always generated a simulated with the correct distribution relative

to the other variables. The same argument implies
R[Q-NONE-W-ENG (D) = R[Q-NONE-W-NONH(D). (84)

Combining [8B), [[84), and(80) yieldE{(82). [ |
Proof of Theorenl6First we establish the four rate-distortion function ediesd implied by [30R).
Using Theorenid3 we have

DEIE - R[Q-Enc-w-DE]G(D) — R[Q-BOTH-W-DE](D) < (85)
lim R[Q-ENnc-w-DE](D) — R[Q-BOTH-W-BOTH|(D) (86)

> L/ min

—0. (87)
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Similarly,

Em - R[Q-Enc-w-BOTH (D) — R[Q-BOTH-W-BOTH (D) < (88)
Em - Rlg-enc-w-DEG(D) — R[Q-BOTH-W-BOTH (D) (89)
= 0. (90)
To show that
lim R[Q-ENC-W-NONE(D) — R[Q-BOTH-W-NONE (D) = 0 (91)

we needq” and w” to be independent. When this is true? does not affect anything and the problem
is equivalent to wherw™ = 0 and is available at the decoder andl(85)}-(87) establiffiBs {@ithout
independence this argument fails because we can no longeeimheoren]3 since there will be mg*

to makex™ and g” conditionally independent i {66).

To finish establishing{30a) we again requiré and w” to be independent to obtain

DEI[’I)l - R[Q-ENc-w-ENG(D) — R[Q-BOTH-W-ENJ(D) < (92)
lim  R[Q-ENC-W-NONE (D) — R[QBOTH-W-ENJ(D) = (93)
lim R[Q-ENC-W-NONH (D) — R[Q-BOTH-W-NONE (D) (94)

> Lmin

=0, (95)

where [9%) follows since the encoder can always simuldtdrom (x", ¢") and [@5) follows from[{31).

Next, we establish the four rate-distortion function edies implied by [30b). Using Theoreld 3 we

have

Em - RlQ-Enc-w-DE]G(D) — R[Q-ENC-W-BOTH(D) < (96)
DEIll)lminR[Q-ENC-W-DEC}(D) — R[Q-BOTH-W-BOTH/ (D) 97)
—0. (98)

Similarly,
Em - R[q-BotHW-DEG(D) — R[Q-BOTH-W-BOTH (D) < (99)
DEIglminR[Q-ENC-W-DEd(D) — R[Q-BOTH-w-BOTH (D) (100)
= 0. (101)
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To show that

b lian R[Q-NONE-W-DEG(D) — R[Q-NONE-W-BOTH(D) = 0 (102)

we needq” andw™ to be independent and we need the distortion measure to e dbtmd(z, z; q) =
p0(q)-p1(x—2). When this is true the two rate-distortion functionslin [L8& equivalent to the Wyner-Ziv
rate-distortion function and the conditional rate-distor function for the difference distortion measure
E[po(q)]- p1(x—z). Thus we can either apply the result from [5] showing these-distortion functions
are equal in the high-resolution limit or simply specialideeoren{B to the case wheg& is a constant.
To complete the proof, we again require the assumptionsgthaind w™ are independent and that the

distortion measure is of the fora(z, z;q) = po(q) - po(q) - p1(x — ). We have

DEI[I)lmmR[Q-DEC-W-DECj(D) — R[Q-DEC-W-BOTH (D) < (103)
DEmmmR[Q-NONE-W-DEd(D) — R[Q-DEC-W-BOTH(D) = (104)

Em - R[Q-NoNE-W-DE](D) — R[Q-NONE-W-BOTH (D) (105)

=0, (106)

where [10b) follows from Theorefd 5 and{106) follows frdmZ).0 [ |

D. Loss Theorem Proofs

Proof of Theorenil]7We note that according to Theordih 4 and Theofém 6 we can fately ©n
the case

R[Q*W-NONE|(D) — R[Q-*-W-BOTH|(D). (107)

When * = NONE, the rate difference il({107) is the difference between thssical rate-distortion
function and the conditional rate-distortion function lrethigh-resolution limit. Thus the Shannon Lower

Bound [21] (and its conditional version) imply that

lim R[Q-NONE-W-NONE(D) — R[Q-NONE-W-BOTH(D) = h(x) — h(x|w). (108)

Similarly, when * =DEC an identical argument can be combined with Theofém 5.
When * = BOTH, the encoder and decoder can design a separate compresbisgstem for each
value of q. The rate-loss for each sub-system is tliér; w|qg = ¢) according to high-resolution Wyner-

Ziv theory [5]. Averaging over all values af yields a total rate-loss of (x; w|q).
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Next we consider the case when *erc and the rate-loss penalty is

lim R[Q-ENC-w-NONE(D) — R[Q-ENC-w-BOTH (D)

> L/min

= 11%1 R[Q-ENC-W-NONE (D) — R[Q-BOTH-W-BOTH (D), (109)

where the equality follows from Theorelh 6.
Using arguments similar to [21] and the proof of Theoldm 3,cae obtain a Shannon Lower Bound

for R[Q-ENc-w-NONE (D), which is of the form
R[Q-ENC-W-NONE (D) > h(x) — h(vp), (110)

wherevp is an entropy maximizing random variable subject to the taimg thatE[po(q) - p1(vp)] < D.

Again using argument similar to the proof of TheorEm 3, weehthat

lim R[Q-BOTH-w-BOTH|(D) < h(x|w) — h(vp). (111)

> L/ min

Combining [IID) and{I11) shows that the asymptotic diffeecin [109) is at leask(x; w).

Next, we obtain the Shannon Lower Bound
R[Q-BoTH-W-BOTH|(D) > h(x|w) — h(vp) (112)

by duplicating the arguments in the proof of Theordm 3 simie fower bound does not requigeand

w to be independent. Finally, we can obtain the upper bound

DEI[r)lmmR[Q-ENC-W-NONIﬂ(D) < h(x) — h(vp) (113)

using an additive noise test channel combined with argusrfetiowing those in the proof of Theorelmh 3.
Combining [IIR) and{I13) shows that the asymptotic diffeecin [109) is at mosi(x; w). [ |

Proof of Theorenl8To simplify the exposition, we first prove the theorem for théatively simple
case of a one-dimensional sourde=£ 1) with a quadratic distortionr(= 2). Then at the end of the
proof, we describe how to extend it to genekahndr.

We begin with the case where * ¥ONE. Since Theoreml 5 arid 6 imply

R[Q-NONE-W-NONE (D) = R[Q-DEC-W-NONE(D) (114a)
and
R[Q-ENC-W-NONE (D) — R[Q-BOTH-W-NONE (D) , (114b)
we focus on showing
: 1 Elq]
11%1 R[Q-BOTH-W-NONH (D) — R[Q-NONE-W-NONH (D) = §E In | (115)

January 15, 2007 DRAFT



38

Computing R[Q-BoTH-w-NONE (D) is equivalent to finding the rate-distortion function fortiopally
encoding independent random variables and yields the itanfivater-pouring” rate and distortion allo-
cation [30, Section 13.3.3]. For eagh we quantize the corresponding source samples with dtort
D, = E[(x — %)?] (or E[||x" — £™||"] in the more general case) and rdtg(D,). The overall rate and
distortion then becom&[R,(D,)] and E[q - D).

Thus to find the rate and distortion allocation we set up a ttaimed optimization problem using

Lagrange multipliers to obtain the functional
J(D) = E[Rq(Dq)] + MD — Elq - D)), (116)

differentiate with respect td,, set equal to zero and solve for eafh). In the high-resolution limit,
various researchers have shown

Ry(Dq) — h(x) — %log D,. (117)

(e.g., see [21] and references therein). Therefore, itragttforward to show this process yields the

condition D, = 1/(2Aq) with 2A = 1/D implying
Ll)imOR[Q-BOTH-W-NONQ(D) — h(x) — %bgD + %E[log ql. (118)

To computeRR[Q-NONE-w-NONE (D), we note that since neither encoder nor decoder knpthe optimal

strategy is to simply quantize the source according to te®diond(q, x; £) = E[q] - (x — X)? to obtain
1 1
Ll)imOR[Q-NONE-W-NONﬂ(D) — h(x) — 3 log D + 3 log Eq]. (119)

Comparing [11B) with[[119) establishésl115).

By applying Theorenill4 we see that the case whereeNeis the same as * ®oNE.

Next we consider the case where *BOTH in Z2). In this case, the encoder and decoder can design
a separate compression sub-system for each value ahd the performance for each sub-system is

obtained from the case with no signal side information. 8jpedly, the rate-loss for each sub-system is

%E [ln 7E[q]v;: v ‘W = w} (120)

according to the previously derived results. Averagingdjl@ver w then yields the rate-loss ifiL{|32).
Finally, we consider the case where *DEC in [32). Since Theorerl 5 implieB[Q-DEC-W-DE](D) =
R[Q-NoNE-w-DEJ(D) and Theorenf]3 impliegR[Q-ENc-w-DE](D) — R[Q-BOTH-W-BOTH/(D), it suffices to
show that
: 1 Elq]
b 11%1 R[Q-DEC-W-DE](D) — R[Q-BOTH-W-BOTH|(D) = §E log | (121)

min
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We can computeR[Q-BoTH-w-BoTH (D) by considering a separate coding system for each value.of
Specifically, conditioned orw = w, computing the rate-distortion trade-off is equivalentfitading
R[Q-oTH-w-NONg (D) for a modified source’ with distribution p, (z') = py, (¢'|w). Thus we obtain
5 111[1)1 R[Q-BOTH-W-BOTH (D) — h(x|w) — %logD + %log Elq]. (122)
Applying the standard techniques used throughout the pajgecan compute the Shannon Lower Bound
1
R[Q-DEC-W-DE](D) > h(x|w) — 3 log(D - E[q]) (123)

and show it is tight in the high-resolution limit. Compari@2) and [I213) establishes the desired result.
This establishes the theorem fbr= 1 andr = 2. For generak andr, the only change is that each

component rate-distortion functioR,(D,) (II7) becomes [21, page 2028]

W (é)k/] . (124)

and a similar change occurs for all the following rate-distm expressions. Since we are mainly interested

k k
Rq(Dq) — h(X) — ;10g Dq — ; + log

in the difference of rate-distortion functions, most ofgheextra terms cancel out and the only change

is that factors ofl /2 are replaced with factors df/r. [

E. Proofs for Rate Penalties at Lower Resolutions

Before proceeding, we require the following lemma to upped sower bound the entropy of an

arbitrary random variable plus a Gaussian mixture.

Lemma 2 Let x be an arbitrary random variable with finite varianeg < co. Let v be a zero-mean,
unit-variance Gaussian independentsofand letv be a random variable independent ofand v with

0 < Vmin < vV < Upax. Then
1 1
h(x) + 5 log(1 + vmin) < h(x + vy/v) < h(x) + 3 log(1 + vmax - J(x)) (125)

with equality if and only ifv is a constant anck is Gaussian.

Proof: The concavity of differential entropy yields

h(x + vy/Vmin) < h(x + vv/v) < h(x + Vy/Vmax). (126)
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For the lower bound we have

h(x 4+ vy/Umin) / h(x 4+ vy/T)dT + h(x) (127)
/ J(x + v/T)dT + h(x) (128)
> / T2+ 7)dr + h(x) (129)
1 Y= dr
:5/0 o +h() (130)
log (1 n mm) + h(x), (131)

where [IZB) follows from de Bruijn’s identity [30, Theorent.6.2], [33, Theorem 14][{129) follows
from the fact that a Gaussian distribution minimizes Fidinéormation subject to a variance constraint,
and [I3D) follows since the Fisher Information for a Gausssathe reciprocal of its variance.

Similarly, for the upper bound we have

h(x + vy/Oman) = /Om %h(x FvT)dT + h(x) (132)
= /Ovmax %J(X + v/T)dT + h(x) (133)
1 [P J(x)J(vy/7)
< 5/0 S i+ iy (134)
1 [Pme J(x)dr
5 /0 W + h(X) (135)
5108 (14t () + h(x), (136)

where [I3B) again follows from de Bruijn’s identity, (134)llbws from the convolution inequality for
Fisher Information [34], [30, p.497], an@{135) follows sinthe Fisher Information for a Gaussian is
the reciprocal of its variance.

Combining these upper and lower bounds yields the desiredltrd=inally, the inequalities used in
(I29) and[[134) are both tight if and only xfis Gaussian. [ |

As an aside we note that Lemrfih 2 can be used to bound the sabetidn function of an arbitrary
unit-variance source relative to quadratic distortion. Specifically using an iide Gaussian noise test-
channelf = v + x and combining LemmEl 2 to upper bouhdx + v) with the Shannon Lower Bound
[21] yields

h(x) — %log 2meD < R(D) < h(x) — %log 2meD + %log[l + DJ(x)]. (137)
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Evidently, the error in the Shannon Lower Bound is at mbgig[l + D.J(x)]. Thus, sinceJ(x) > 1
with equality only for a Gaussian, the sub-optimality of afdidive Gaussian noise test-channel is at
least; log[1 + D.

Proof of Theorenil9Starting with the bound for the rate gap froml](66), we have

R[Q-ENc-w-DEQ(D) — R[Q-80THW-B0TH (D) < h(x + v|w) — h(x|w) (138)
= [ hx-+ viw = w) = hclw = w)] pu(w)i (139)
(s i A
_J <X2‘W> - min [1, qf] . (142)

To obtain [I4D) we note thatis a Gaussian mixture and apply Lemfla 2. This follows sinceditioned
on g = ¢, v is a Gaussian with variandg[d(x, X% ; ¢)], wherex}, was defined in the proof of Theordrh 3
to be the optimal distribution when both encoder and deckdew the side information. By considering
the optimal “water-pouring” distortion allocation for thaptimal test-channel distributiog,, it can be
demonstrated that if the distortion I3, then E[d(x, X};; ¢)] is at mostmin|[1, D/q| for eachgq. [ |

To develop a similar bound for other distortion measuregrm@ssly all we need is an upper bound
for the derivative ofh(x + /7v) with respect tor. Since entropy is concave, if we can compute this
derivative forr = 0 then it will be an upper bound for the derivative at all

To obtain the desired derivative at= 0, we can write

h(x +/Tv) = I(x +/Tv; V/TV) — h(x). (143)
The results of Prelov and van der Meulen [35] imply that unzktain regularity conditions
9 linol+ Ix+Tvi/Tv) =J(x)/2, (144)
T T—

which provides the desired derivative. Similarly if we réathe mutual information iH{143) as a relative
entropy, then a Taylor series expansion of the relativeopgt{36, 2.6] can be used to establi§h{144)
provided certain derivatives of the probability distriloumis exist.

Next, we move to proving Theorelm]10. An essential part of gopbpis an alternative version of the

Shannon Lower Bound, which we develop in the following lemma
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Lemma 3 (Alternative Shannon Lower Bound) Consider a scaled quadratic distortion measure of the
formd(z,%;¢) = ¢- (x — %)% and letsy ,, denote an optimal test-channel distribution whghand w”
are known at both encoder and decoder. If we defirte have the same distribution as— x7 , when

conditioned ong and furthermore requires to satisfy the Markov conditiom < g < w, x, then

R[Q-BOoTH-W-BOTH|(D) > h(x|w) — h(v|q). (145)
Proof:
R[Q-BOTH-W-BOTH/ (D) = I()?;,W; x|q, w) (146)
= h(x|q,w) = hix|q, w, %3 ) (147)
= h(x|q,w) = hix = X5 wlq, w, %5 ) (148)
= h(x|q,w) — h(v|q, W,)?;W) (149)
> hix|q, w) — h(vlq, w). (150)
|

The key difference between Lemiida 3 and the traditional Strabwwwer Bound (SLB) is in the choice
of the distribution forv. The traditional SLB uses an entropy maximizing distribotfor v, which has
the advantage of being computable without knowkjg,. The trouble with the entropy maximizing
distribution is that it can have an unbounded variance fiyelaistortions. As we show in the following

lemma, however, the alternative SLB keeps the variance lnbunded.

Lemma 4 There exists a choice far in LemmaB such that for all values af,

Var[v|w = w] < Var[x|w = w]. (151)

Proof: Imagine that we choose some optimal test-channel disibibi; , such that the resulting
v does not satisf[{I%1) for some valuewf We will show that it is possible to construct an alternative
optimal test-channel distributiog;’,,, where the resulting’ does satisfy[{131) fow = w.

Specifically, if [I51) is not satisfied, then it must be thatréhexists a setl with
Var[v|qg = ¢,w = w] = Var[x — £ ,|qg = ¢,w = w] > Var[x|w = w],V(q,w) € A. (152)

Define a new random variabl&’, such thatsy’, = x5, for all (¢, w) ¢ A, but with x’,, = 0 for all
(¢,w) € A. The distortion is lower fok;’, by construction. Furthermore, the date processing inégual
implies that

I(Rg i XIw, q) < I(%5  x|w, q) (153)

q,w’ q,w>
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and so the rate is lower too. Thus if we define= — x analogously to how we defined, then
condition [I51) is satisfied witlr replaced byv’. [ |
Proof of Theorenil0Using the alternative SLB from Lemnid 3 and the test-chanistfilution

£ = x + v with v chosen according to Lemnih 3 we obtain

R[Q-ENc-w-DE](D) — R[Q-BOTH-W-BOTH|(D) < I(x + v; q,x|w) — [h(x|w, q) — h(v|w, q)] (154)

= h(x + v|w) = h(x + v|q,x,w) — h(x|w, q) + h(v|w, q) (155)
= h(x + vlw) — h(vlg,x,w) — h(x|w, q) + h(v|w,q) (156)
= h(x + v|w) — h(v|q) — h(x|w, q) + h(v|q) (157)
= h(x 4 v|w) — h(x|w) (158)

= D(px\wHN(O-?( w)) - D(px-i-v\WHN(U?(\w + Ja\w))

+h(N(03),, + 03, Iw) — h(N(%),,)|w) (159)
< D(pwlN(©02,)) + h(N(0F), + 02),)|w) = h(N(a%),,)[w) (160)
= D(px\w”:N(U?dw))
+ / [h(N( 02, + 02 lw = w) — h(N(?, )|w = w)] P (w)dw (161)
. o
D(puwlIN(o%),,)) +/ 5 log (1 + 0: )] pw(w)dw (162)
I 2
DipulNio3) + [ % log (1 ¥ Jf“)] puw)du (163)
r 2
DN ) + [ 5108 (14 22 ) | ot (164)
2
= DlpauN(03, ) + g log (14 2822, (165)

To obtain [I5B)£182) we use the same arguments dsIn [EB)plds the additional observation that
relative entropy is positive and can be dropped in obtairfi)). Next, we apply LemmBil 4 to keep
the variance of the test-channel noise to be at nadst, to get [I6B). Finally, the assumption that
02w = Oy Yields [I63). |
To develop a similar bound for other distortion measures,weelld use an entropy maximizing

distribution for the appropriate distortion measurelip,,,||-) and D(px+.||-) above.
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