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Abstract— The “water-filling” solution for the quadratic rate-
distortion function of a stationary Gaussian source is given in
terms of its power spectrum. This formula naturally lends itself
to a frequency domain “test-channel” realization. We provide
an alternative time-domain realization for the rate-distortion
function, based on linear prediction. This solution has some
interesting implications, including the optimality at all distortion
levels of pre/post filtered vector-quantized differential pulse code
modulation (DPCM), and a duality relationship with decision-
feedback equalization (DFE) for inter-symbol interference (ISI)
channels.

I. INTRODUCTION

The water-filling solution for the quadratic rate-distortion
function R(D) of a stationary Gaussian source is given in
terms of the spectrum of the source. Similarly, the capacity
C of a power-constrained ISI channel with Gaussian noise is
given by a water-filling solution relative to the effective noise
spectrum. Both these formulas amount to mutual-information
between vectors in the frequency domain. In contrast, linear
prediction along the time domain can translate these vector
mutual-information quantities into scalar ones. Indeed, for
capacity, Cioffi et al [3] showed that C is equal to the scalar
mutual-information over a slicer embedded in a decision-
feedback noise-prediction loop. We show that a parallel result
holds for the rate-distortion function: R(D) is equal to the
scalar mutual-information over an additive white Gaussian
noise (AWGN) channel embedded in a source prediction loop.
This result implies that R(D) can be realized in a sequential
manner, and it joins other observations regarding the role of
minimum mean-square error (MMSE) estimation in successive
encoding and decoding of Gaussian channels and sources [6],
[5], [2].

The Quadratic-Gaussian Rate-Distortion Function

The rate-distortion function (RDF) of a stationary source
with memory is given as a limit of normalized mutual in-
formation associated with vectors of source samples. For a
real valued source . . . , X−2, X−1, X0, X1, X2, . . ., and mean-
squared distortion level D, the RDF can be written as, [1],

R(D) = lim
n→∞

1

n
inf I(X1, . . . , Xn;Y1, . . . , Yn)

where the infimum is over all channels X → Y such that
1
n‖Y − X‖2 ≤ D. A channel which realizes this infimum is
called an optimum test-channel. When the source is Gaussian,
the RDF takes an explicit form in the frequency domain in

S(ej2πf )

D(ej2πf )

θ

f
1

2

Fig. 1. The water filling solution.

terms of the power-spectrum

S(ej2πf ) =
∑

k

R[k]e−jk2πf , −1/2 < f < 1/2,

where R[k] = E{XnXn+k} is the auto-correlation function.
The water filling solution, illustrated in Figure 1, gives a
parametric formula for the Gaussian RDF in terms of a
parameter θ:

R(D) =

∫ 1/2

−1/2

1

2
log

(

S(ej2πf )

D(ej2πf )

)

df

=

∫

f :S(ej2πf )>θ

1

2
log

(

S(ej2πf )

θ

)

df (1)

where the distortion spectrum is given by

D(ej2πf ) =

{

θ, if S(ej2πf ) > θ
S(ej2πf ), otherwise, (2)

and where we choose the water level θ so that the total
distortion is D:

D =

∫ 1/2

−1/2

D(ej2πf )df. (3)

In the special case of a memoryless (white) Gaussian source
∼ N(0, σ2), the power-spectrum is flat S(ej2πf ) = σ2, so
θ = D and the RDF is simplified to

1

2
log

(

σ2

D

)

. (4)

The optimum test-channel can be written in this case in a
backward additive-noise form X = Y + N , with N ∼
N(0, D), or in a forward linear additive-noise form:

Y = β(αX + N)

with α = β =
√

1 − D/σ2 and N ∼ N(0, D). In the general
source case, the forward channel realization of the RDF has
several equivalent forms [7, Sec. 9.7], [1, Sec. 4.5]. The one
which is more useful for our purpose replaces α and β above



by linear time-invariant filters, while keeping the noise N as
AWGN [17]:

Yn = h2,n ∗ (h1,n ∗ Xn + Nn) (5)

where Nn ∼ N(0, θ) is AWGN, ∗ denotes convolution, and
h1,n and h2,n are the impulse responses of the pre- and post-
filters, respectively, whose frequency response are given in
(12) and (17) in the next section.

If we take a discrete approximation of (1),
∑

i

1

2
log

(

S(ej2πfi)

D(ej2πfi)

)

, (6)

then each component has the memoryless form of (4). Hence,
we can think of the frequency domain formula (1) as encoding
of parallel (independent) Gaussian sources, where source i
is a memoryless Gaussian source Xi ∼ N(0, S(ej2πfi))
encoded at distortion level D(ej2πfi); see [4]. Indeed, practical
frequency domain source coding schemes such as Transform
Coding and Sub-band Coding [9] get close to the RDF of a
stationary Gaussian source using an “array” of parallel scalar
quantizers.

Rate-Distortion and Prediction

Our main result is a predictive channel realization for the
quadratic-Gaussian RDF (1), which can be viewed as the
time-domain counterpart of the frequency domain formulation
above. The notions of entropy-power and Shannon lower
bound (SLB) provide a simple relation between the Gaussian
RDF and prediction, and motivate our result. Recall that the
entropy-power is the variance of a white Gaussian process
having the same entropy-rate as the source [4]; for a Gaussian
source the entropy-power is given by

Pe(X) = exp

(

∫ 1/2

−1/2

log
(

S(ej2πf )
)

df

)

. (7)

In the context of Wiener’s spectral-factorization theory, the
entropy-power quantifies the MMSE in one-step linear pre-
diction of a Gaussian source from its infinite past [1]:

Pe(X) = inf
{ai}

E

(

Xn −
∞
∑

i=1

aiXn−i

)2

. (8)

The error process associated with the infinite-order optimum
predictor,

Zn = Xn −
∞
∑

i=1

aiXn−i, (9)

is called the innovation process. The orthogonality principle
of MMSE estimation implies that the innovation process has
zero mean and is white; in the Gaussian case this implies that

Zn ∼ N (0, Pe(X))

is a memoryless process. See, e.g., [6]. From information
theoretic perspective, the entropy-power plays a role in the
SLB:

R(D) ≥
1

2
log

(

Pe(X)

D

)

. (10)

Equality in the SLB holds if the distortion level is smaller
than or equal to the lowest value of the power spectrum: D ≤

Smin
∆
= minf S(ej2πf ) (in which case D(ej2πf ) = θ = D)

[1]. It follows that for distortion levels below Smin the RDF
of a Gaussian source with memory is equal to the RDF of its
memoryless innovation process:

R(D) = RZ(D) =
1

2
log

(

σ2
Z

D

)

, D ≤ Smin. (11)

We shall see later in Section II how the observation above
translates into a predictive test-channel, which can realize the
RDF not only for small but for all distortion levels. This test
channel is motivated by the sequential structure of Differential
Pulse Code Modulation (DPCM) [12], [9]. The goal of DPCM
is to translate the encoding of dependent source samples into
a series of independent encodings. The task of removing the
time dependence is achieved by linear prediction.

A negative result along this direction was recently given
by Kim and Berger [13]. They showed that the RDF of an
auto-regressive (AR) Gaussian process cannot be achieved by
directly encoding its innovation process. This can be viewed
as open-loop prediction, because the innovation process is
extracted from the clean source rather than from the quantized
source [12], [8]. Here we give a positive result, showing that
the RDF can be achieved if we embed the quantizer inside the
prediction loop, i.e., by closed-loop prediction. Specifically,
we construct a system consisting of pre- and post-filters, and
an AWGN channel embedded in a source prediction loop, such
that the scalar (un-conditional) mutual information over this
channel is equal to the RDF.

After presenting and proving our main result in Sections II
and III, respectively, we discuss its characteristics and opera-
tional implications. Section IV discusses the spectral features
of the solution. Section V relates the solution to vector-
quantized DPCM of parallel sources. Section VI discusses
implementation by Entropy Coded Dithered Quantization
(ECDQ). Finally, in Section VII we relate prediction in source
coding to prediction for channel equalization and to recent
observations by Forney [6]. Like in [6], our analysis is based
on the properties of information measures; the only necessary
result from Wiener estimation theory is the orthogonality
principle.

II. MAIN RESULT

Consider the system in Figure 2, which consists of three
basic blocks: pre-filter H1(e

j2πf ), a noisy channel embedded
in a closed loop, and a post-filter H2(e

j2πf ). The system
parameters are derived from the water-filling solution (1)-(2).
The source samples {Xn} are passed through a pre-filter,
whose phase is arbitrary and its absolute squared frequency
response is given by

|H1(e
j2πf )|2 = 1 −

D(ej2πf )

S(ej2πf )
(12)

where 0
0 is taken as 1. The pre-filter output, denoted Un, is

being fed to the central block which generates a process Vn
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Fig. 2. Predictive Test Channel

according to the following recursion equations:

Ûn = f(Vn−1, Vn−2, . . . , Vn−L) (13)
Zn = Un − Ûn (14)

Zqn = Zn + Nn (15)
Vn = Ûn + Zqn (16)

where Nn ∼ N (0, θ) is a zero-mean AWGN, independent
of the input process {Un}, whose variance is equal to the
water level θ; and f(·) is some prediction function for the
input Un given the L past samples of the output process
(Vn−1, Vn−2, . . . , Vn−L). Finally, the post-filter frequency re-
sponse is the complex conjugate of the frequency response of
the pre-filter,

H2(e
j2πf ) = H∗

1 (ej2πf ). (17)

The block from Un to Vn is equivalent to the configuration
of DPCM, [12], [9], with the DPCM quantizer replaced by the
AWGN channel Zqn = Zn + Nn. In particular, the recursion
equations (13)-(16) imply that this block satisfies the well
known “DPCM error identity”, [12],

Vn = Un + (Zqn − Zn) = Un + Nn. (18)

That is, the output Vn is a noisy version of the input Un via
the AWGN channel Vn = Un + Nn. In DPCM the prediction
function f is linear:

f(Vn−1, . . . , Vn−L) =
L
∑

i=1

aiVn−i (19)

where a1, . . . , aL minimize the mean-squared error

E

(

Un −
L
∑

i=1

aiVn−i

)2

. (20)

Because Vn is the result of passing Un through an AWGN
channel, we call that “noisy prediction”.

If {Un} and {Vn} are jointly Gaussian, then the best predic-
tor of any order is linear, so the minimum of (20) is also the
MMSE in estimating Un from the vector (Vn−1, . . . , Vn−L). In
the limit as L → ∞, this becomes the infinite order prediction
error in Un, given the infinite past

V −
n

∆
= {Vn−1, Vn−2, . . .}. (21)

We shall further elaborate on the relationship with DPCM later.
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Fig. 3. Equivalent Channel

Note that while the central block is sequential and hence
causal, the pre- and post-filters are non-causal and therefore
their realization in practice requires large delay. Our main
result is the following.

Theorem 1: For any stationary source with power spectrum
S(ej2πf ), the system of Figure 2 satisfies

E(Yn − Xn)2 = D. (22)

Furthermore, if the source Xn is Gaussian and f(V −
n ) is the

optimum infinite order predictor, then

I(Zn;Zn + Nn) = R(D), (23)

i.e., the scalar mutual information over the channel (15) is
equal to the RDF.

The proof is given in Section III. The result above is in
sharp contrast to the classical realization of the RDF (5),
which involves mutual information rate over a test-channel
with memory. In a sense, the core of the encoding process in
the system of Figure 2 amounts to a memoryless AWGN test-
channel, although, as we discuss in the sequel, the channel
(15) is not quite memoryless nor additive. From a practical
perspective, this system provides a bridge between DPCM and
rate-distortion theory for a general distortion level D > 0.

Another interesting feature of the system is the relationship
between the prediction error process Zn and the original
process Xn. If Xn is an auto-regressive (AR) process, then
in the limit of small distortion (D → 0), Zn is roughly its
innovation process. Hence, unlike in open-loop prediction [13],
encoding the innovations in a closed-loop system is optimal in
the limit of high-resolution encoding. We shall return to that,
as well as discuss the case of general resolution, in Section
IV.



III. PROOF OF MAIN RESULT

By the DPCM error identity (18), the entire system of Figure
2 is equivalent to the system depicted in Figure 3, consisting
of a pre-filter (12), an AWGN channel with noise variance
θ, and a post-filter (17). This is also the forward channel
realization (5) of the RDF [1], [17]. In particular, as simple
spectral analysis shows, the power spectrum of the overall
error process Yn − Xn is equal to the water filling distortion
spectrum D(ej2πf ) in (2). Hence, by (3) the total distortion
is D, and (22) follows.

For the second part, since the system of Figure 3 coincides
with the forward channel realization (5), for a Gaussian source
we have

I({Xn}; {Yn}) = I({Un}; {Vn}) = R(D) (24)

where I denotes mutual information-rate between jointly sta-
tionary sources:

I({Xn}; {Yn}) = lim
n→∞

1

n
I(X1, . . . , Xn;Y1, . . . , Yn). (25)

Note that stationarity implies that I({Un};Vi|V
−
i ) is inde-

pendent of i, where V −
i = {Vi−1, Vi−2, . . .} is the infinite

past of the ith sample. Hence, by the chain rule for mutual
information,

I({Un}; {Vn}) = I({Un};Vi|V
−
i ) (26)

for any i, so the second part of the theorem is equivalent to

I({Un};Vi|V
−
i ) = I(Zn;Zn + Nn). (27)

To show that, we write

I({Un};Vi|V
−
i ) = I({Un}, Ui − f(V −

i );Vi − f(V −
i )|V −

i )

= I({Un}, Zi;Zi + Ni|V
−
i )

= I(Zi;Zi + Ni|V
−
i ) (28)

= I(Zi;Zi + Ni) (29)

where (28) follows since Ni is independent of ({Un}, V
−
i )

and therefore Zi + Ni ⇔ (Zi, V
−
i ) ⇔ {Un} form a Markov

chain; and (29) follows since by the orthogonality principle,
the prediction error Zi is orthogonal to the measurements V −

i ,
so by Gaussianity they are also independent. In view of (24)
and (26) the proof is completed.

An alternative proof of Theorem 1, based only on spectral
considerations, is given in the end of the next section.

IV. PROPERTIES OF THE PREDICTIVE TEST-CHANNEL

The following observations shed light on the behavior of
the test channel of Figure 2.

Prediction in the high resolution regime. If the power-
spectrum S(ej2πf ) is everywhere positive (e.g., if {Xn} can
be represented as an AR process), then in the limit of small
distortion D → 0, the pre- and post-filters (12), (17) converge
to all-pass filters, and the power spectrum of Un becomes
the power spectrum of the source Xn. Furthermore, noisy
prediction of Un (from the “noisy past” V −

n , where Vn =
Un +Nn) becomes equivalent to clean prediction of Un (from

its own past U−
n ). Hence, in this limit the prediction error Zn is

equivalent to the innovation process of Xn. In particular, Zn is
an i.i.d. process whose variance is Pe(X) = the entropy-power
of the source (7).

Prediction in the general case. Interestingly, for general
distortion D > 0, the prediction error Zn is not white, as the
noisiness of the past does not allow the predictor f to remove
all the source memory. Nevertheless, the noisy version of the
prediction error Zqn = Zn + Nn is white for every D > 0,
because it amounts to predicting Vn from its own infinite
past: since Nn has zero-mean and is white (and therefore
independent of the past), Ûn is also the optimal predictor for
Vn = Un + Nn.

The whiteness of Zqn might seem at first a contradiction,
because Zqn is the sum of a non-white process Zn and a white
process Nn; nevertheless, {Zn} and {Nn} are not indepen-
dent, because Zn depends on past values of Nn through the
past of Vn. Thus, the channel Zqn = Zn + Nn is not quite
additive, but “sequentially additive”: each new noise sample
is independent of the past but not necessarily of the future. In
particular, this channel satisfies:

I(Zn;Zn+Nn|Z1+N1, ..., Zn−1+Nn−1) = I(Zn;Zn+Nn) ,
(30)

so by the chain rule for mutual information

Ī({Zn}; {Zn + Nn}) > I(Zn;Zn + Nn) .

Later in Section VI we rewrite (30) in terms of directed mutual
information.

The channel when the SLB is tight. As long as D is
smaller than the lowest point of the source power spectrum,
we have D(ej2πf ) = θ = D in (1), and the quadratic-Gaussian
RDF coincides with the SLB (10). In this case, the following
properties hold for the predictive test channel:

• The power spectra of Un and Yn are the same and are
equal to S(ej2πf ) − D.

• The power spectrum of Vn is equal to the power spectrum
of the source S(ej2πf ).

• Since as discussed above the (white) process Zqn = Zn+
Nn is the optimal prediction error of the process Vn from
its own infinite past, the variance of Zqn is equal to the
entropy-power (7) of Vn, which is equal to Pe(X).

• As a consequence we have

I(Zn;Zn + Nn) = h
(

N (0, Pe(X))
)

− h
(

N (0, D)
)

=
1

2
log
(Pe(X)

D

)

which is indeed the SLB (10).
As discussed in the Introduction, the SLB is also the RDF of
the innovation process (11), i.e., the conditional RDF of the
source Xn given its infinite clean past X−

n .
An alternative derivation of Theorem 1 in the spec-

tral domain. For a general D, we can use the observation
above and the equivalent channel of Figure 3 to re-derive
the scalar mutual information - RDF idnetity (23). Note that
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for any D the power spectrum of Un and Yn is equal to
max{0, S(ej2πf ) − θ}. Thus the power spectrum of Vn =
Un + Nn is given by max{θ, S(ej2πf )}. Since as discussed
above the variance of Zqn = Zn +Nn is given by the entropy
power of the process Vn, we have

I(Zn;Zn + Nn) =
1

2
log
(Pe(max{θ, S(ej2πf )})

θ

)

= R(D)

where Pe(·) as a function of the spectrum is given in (7), and
the second equality follows from (1).

V. VECTOR-QUANTIZED DPCM AND D∗PCM
As mentioned earlier, the structure of the central block

of the channel of Figure 2 is of a DPCM quantizer1, with
the scalar quantizer replaced by the AWGN channel Zqn =
Zn + Nn. However, if we wish to implement the additive
noise by a quantizer whose rate is the mutual information
I(Zn;Zn + Nn), we must use vector quantization (VQ).
For example, good high dimensional lattices generate near
Gaussian quantization noise [18]. Yet how can we combine
VQ and DPCM without violating the sequential nature of
the system? In particular, the quantized sample Zqn must be
available before the system can predict Un+1 and generate
Zn+1.

One way we can achieve the VQ gain is by adding a
“spatial” dimension, i.e., by jointly encoding a large number
of parallel sources, as happens, e.g., in video coding. Figure
4 shows DPCM encoding of K parallel sources. The spectral
shaping and prediction are done in the time domain for each
source separately. Then, the resulting vector of K prediction
errors is quantized jointly at each time instant by a vector
quantizer. The desired properties of additive quantization error,
and rate which is equal to K times the mutual information
I(Zn;Zn + Nn), can be approached in the limit of large K
by a suitable choice of the quantizer. In the next section we
discuss one way to do that using lattice ECDQ.

If we have only one source with decaying memory, we can
still approximate the parallel source coding approach above,
at the cost of large delay, by using interleaving. The source
is divided into K long blocks which are jointly encoded, as
if they were parallel sources as above. This is analogous to

1According to R.M. Gray, [10], DPCM was first introduced in a U.S. patent
by C.C. Cutler in 1952.
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Fig. 5. ECDQ Structure

the method used in [11] for combining coding-decoding and
decision-feedback equalization (DFE).

If we do not use any of the above, but restrict ourselves to
scalar quantization (K = 1), then we have a pre/post filtered
DPCM scheme. By known bounds on the performance of
entropy-constrained scalar quantizers (e.g., [17]), we have

H(Qopt(Zn)) ≤ R(D) +
1

2
log
(2πe

12

)

where 1/2 log(2πe/12) ≈ 0.254 bit. Hence, Theorem 1
implies that in principle, a pre/post filtered DPCM scheme
is optimal, up to the loss of the VQ gain, at all distortion
levels and not only at the high resolution regime.

It is interesting to mention that “open loop” prediction
for quantization, which we mentioned earlier regarding the
model of [13], is known in the quantization literature as
D∗PCM [12]. The best pre-filter for D∗PCM under a high
resolution assumption turns out to be the “half-whitening
filter”: |H1(e

j2πf )|2 = 1/
√

S(ej2πf ). But even with this filter,
D∗PCM is still inferior to DPCM.

VI. ECDQ IN A CLOSED LOOP SYSTEM

An ECDQ (entropy-coded dithered quantizer) operating on
the source Zn is depicted in Figure 5. A dither sequence
Dn, independent of the input sequence Zn, is added before
the quantization and subtracted after. If the quantizer has a
lattice structure of dimension K ≥ 1, then we assume that the
sequence length is

L = MK

for some integer M , so the quantizer is activated M times.
At each quantizer operation instant m, a dither vector Dm is
independently and uniformly distributed over the basic lattice
cell. The lattice points at the quantizer output Qm, m =
1, . . . ,M are fed into an entropy coder which is allowed to do
joint coding of the sequence, and has knowledge of the dither
as well, thus for an input sequence of length L it achieves a
rate of:

RECDQ
∆
=

1

L
H(QM

1 |DM
1 ) (31)

bit per source sample. The entropy coder produces a sequence
s of LRECDQ bits, from which the decoder can recover
Q1, . . .QM , and then subtract the dither to obtain the re-
construction sequence Zqn = Qn − Dn, n = 1, . . . L. The
reconstruction error sequence

Nn = Zqn − Zn



has K-blocks which are uniformly distributed over the mirror
image of the basic lattice cell and mutually i.i.d. [16]. It is
further stated in [16, Thm.1] that the sequences Z and N are
statistically independent, and that the ECDQ rate is equal to
the mutual information over an additive noise channel with
the input Z and the noise N:

RECDQ =
1

L
I(ZL

1 ;ZqL
1 )

=
1

L
I(ZL

1 ;ZL
1 + NL

1 ) . (32)

However, the derivation of [16, Thm. 1] depends on the im-
plicit assumption that the quantizer is used without feedback,
that is, the current input is conditionally independent of past
outputs given the past inputs. When there is feedback, this
condition does not hold, which implies that even with dither
the sequences Z and N become dependent. Specifically, for
the realistic setting of causal feedback, the input can depend on
past values of the ECDQ noise, therefore the joint distribution
of the ECDQ input and noise may take any joint distribution
of the form:

fZ,N(zL
1 , nL

1 ) =
M−1
∏

m=0

fN(n
(m+1)K
mK+1 )fZ|N(z

(m+1)K−1
mK |nmK−1

1 ) . (33)

In this case, the mutual information rate of (32) over-estimates
the true rate of the ECDQ. Massey shows in [15] that for
DMCs with feedback, traditional mutual information is not a
suitable measure, and should be replaced by directed informa-
tion. The directed information between the sequences Z and
Zq is defined as

I(Z → Zq)
∆
=

L
∑

n=1

I(Zn;Zqn|Zqn−1
1 ) . (34)

For our purposes, we will define the K-block directed infor-
mation:

IK(Z → Zq)
∆
=

M
∑

m=1

I(Zm;Zqm|Zqm−1
1 ) (35)

where Zm = ZmK
(m−1)K+1 denotes the mth K-block, and

similarly for Zqm. The following result, proven in Appendix
A, extends Massey’s observation to ECDQ with feedback, and
generalizes the result of [16, Thm. 1]:

Theorem 2: The ECDQ system with causal feedback de-
fined by (33) satisfies:

RECDQ =
1

L
IK(Z → Zq) . (36)

Remarks:
1. When there is no feedback, the past and future input

blocks (Zm−1
1 ,ZM

m+1) are conditionally independent of the

current output block Zqm given the current input block Zm,
implying by the chain rule that

IK(Z → Zq) = I(ZM
1 ;ZqM

1 )

and Theorem 2 reduces to [16, Thm. 1].
2. Even for scalar quantization (K = 1), the ECDQ rate (31)

refers to joint entropy coding of the whole input vector. This
does not contradict the sequential nature of the system, since
the entropy coder is not a part of the feedback. Furthermore,
it follows from the chain rule for entropy that it is enough to
encode the instantaneous quantizer output Qm conditioned on
past quantizer outputs Qm−1

1 and on past and present dither
samples Dm

1 .
3. We can embed a K-dimensional lattice ECDQ for K >

1 in the predictive test channel of Figure 2, instead of the
additive noise channel, using the Vector-DPCM configuration
discussed in the previous section. For good lattices, when the
quantizer dimension K → ∞, the noise process N in fact
becomes white Gaussian and the scheme achieves the rate-
distortion function. Combining Theorems 1 and 2, we see that:

R(D) = RECDQ = I(Zn;Zn + Nn) ,

thus the entropy coder does not need to be conditioned on the
past at all, as the predictor handles all the memory. However,
when the quantization noise is not Gaussian, or the predictor
is not optimal, the entropy coder uses the residual time-
dependence after prediction. The resulting rate of the ECDQ
would be the average directed information between the source
and its reconstruction as stated in the Theorem.

VII. A DUAL RELATIONSHIP WITH DECISION-FEEDBACK
EQUALIZATION

We consider the (real-valued) discrete-time time-invariant
linear Gaussian channel,

Rn = cn ∗ Sn + Zn, (37)

where the transmitted signal Sn is subject to a power constraint
E[S2

n] ≤ P , and where Zn is (possibly colored) Gaussian
noise.

Let Xn represent the data stream which we model as an
i.i.d. zero-mean Gaussian random process with variance σ2

x.
Further, let hn be a spectral shaping filter, satisfying

σ2
x

∫ 1/2

−1/2

|H(ej2πf )|2df ≤ P

so the channel input Sn = hn ∗Xn indeed satisfies the power
constraint. For the moment, we make no further assumption
on hn.

The channel (38) has inter-symbol interference (ISI) due to
the channel filter cn, as well as colored Gaussian noise. Let
us assume that the channel frequency response is non-zero
everywhere, and pass the received signal Rn through a zero-
forcing (ZF) linear equalizer 1

C(z)H(z) , resulting in Yn. We
thus arrive at an equivalent ISI-free channel,

Yn = Xn + Nn, (38)
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where the power spectrum of Nn is

SNN (ej2πf ) =
SZZ(ej2πf )

|C(ej2πf )H(ej2πf )|2
.

The mutual information (normalized per symbol) between
the input and output of the channel (38) is

I({Xn}, {Yn}) =

∫ 1/2

−1/2

1

2
log

(

1 +
σ2

x

SNN (ej2πf )

)

df. (39)

We note that if the spectral shaping filter hn satisfies the water-
filling condition, then (39) will equal the channel capacity [4].

Similarly to the observations made in Section I with respect
to the RDF, we note (as reflected in (39)) that capacity
may be achieved by parallel AWGN coding over narrow
frequency bands (as done in practice in Discrete Multitone
(DMT)/Orthogonal Frequency-Division Multiplexing (OFDM)
systems). An alternative approach, based on time-domain
prediction rather than the Fourier transform, is offered by
the canonical MMSE - feed forward equalizer - decision
feedback equalizer (FFE-DFE) structure used in single-carrier
transmission. It is well known that this scheme, coupled with
AWGN coding, can achieve the capacity of linear Gaussian
channels. This has been shown using different approaches
by numerous authors; see [11], [3], [14], [6] and references
therein. Our exposition closely follows that of Forney [6]. We
now recount this result, based on linear prediction of the error
sequence; see Figure 6. In the communication literature, this
structure is referred to as “noise prediction”. It can be recast
into the more familiar FFE-DFE form by absorbing a part of
the predictor into the estimator filter, forming the usual FFE.

As a first step, let X̂n be the optimal MMSE estimator
of Xn from the equivalent channel output sequence {Yn} of
(38). Since {Xn} and {Yn} are jointly Gaussian and stationary
this estimator is linear and time invariant. (Note that the
combination of the ZF equalizer 1

C(z)H(z) at the receiver front-
end and the estimator above is equivalent to direct MMSE
estimation of Xn from the original channel output Rn.)

Denote the estimation error, which is composed in general
of ISI and Gaussian noise, by Dn. Then

Xn = X̂n + Dn (40)

where {Dn} is independent of {X̂n} due to the orthogonality
principle and Gaussianity.

Assuming correct decoding of past symbols2, the decoder
knows the past samples Dn−1, Dn−2, . . . and may form an
optimal predictor, D̂n, of the current estimation error Dn,
which may then be added to X̂n to form X̃n. The prediction
error En = Dn − D̂n has variance Pe(D), the entropy power
of Dn. It follows that

Xn = X̂n + Dn

= X̃n − D̂n + Dn

= X̃n + En, (41)

where {X̃n} and {En} are statistically independent. Hence
the residual estimation error satisfies

E{Xn − X̃n}
2 = E{Dn − D̂n}

2 = Pe(D). (42)

The channel (41), which describes the input/output relation
of the slicer in Figure 6, is often referred to as the backward
channel. Furthermore, since Xn and En are i.i.d Gaussian
and since En is independent of present and past values of
X̃n (but dependent of future values), it is a “sequentially
additive” AWGN channel. Notice the strong resemblance with
the channel (15), Zqn = Zn + Nn, in the predictive test-
channel of the RDF: in both channels the output and the noise
are i.i.d. and Gaussian, but the input has memory due to the
feedback loop.

We have therefore derived the following.

Theorem 3: The mutual information of the channel (38) is
equal to the scalar mutual information

I(X̃n; X̃n + En)

of the channel (41).

Proof: Let X−
n = {Xn−1, Xn−2, . . .} and D−

n =
{Dn−1, Dn−2, . . .}. Using the chain rule of mutual informa-
tion we have

I({Xn}, {Yn}) = h({Xn}) − h({Xn}|{Yn})

= h({Xn}) − h(Xn|{Yn}, X
−
n )

= h({Xn}) − h(Xn − X̂n|{Yn}, X
−
n )

= h({Xn}) − h(Dn|{Yn}, X
−
n )

= h({Xn}) − h(Dn|{Yn}, D
−
n )

= h({Xn}) − h(Dn − D̂n|{Yn}, D
−
n )

= h({Xn}) − h(En|{Yn}, D
−
n )

= h({Xn}) − h(En) (43)
= I(X̃n; X̃n + En),

where (43) follows from successive application of the orthog-
onality principle [6].

2Here we must actually break with assumption that Xn is a Gaussian
process. We implicitly assume that Xn are symbols of a capacity-achieving
AWGN code. The slicer should be viewed as a mnemonic aid where in practice
an optimal decoder should be used. Furthermore, the use of an interleaver and
long delay is necessary. See [6] and [11].



It follows that
∫ 1/2

−1/2

1

2
log

(

1 +
σ2

x

SNN (ej2πf )

)

df =
1

2
log

(

σ2
x

Pe(D)

)

. (44)

As a corollary from (39), Theorem 3 and (44), we obtain the
following well known result from Wiener theory,

Pe(D) = exp

(

∫ 1/2

−1/2

log

(

σ2
xSNN (ej2πf )

σ2
x + SNN (ej2πf )

)

df

)

.

Remarks:
Capacity achieving shaping filter. Let us define the equiv-

alent noise Zeq,n as the noise Zn passed through the filter
1

C(Z) , so that

SZeqZeq
(ej2πf ) =

SZZ(ej2πf )

|C(ej2πf )|2
.

Thus for a given spectral shaping filter hn, the corresponding
mutual information is,

I({Xn}, {Yn}) =

∫ 1/2

−1/2

1

2
log

(

1 +
σ2

x

SNN (ej2πf )

)

df

=

∫ 1/2

−1/2

1

2
log

(

σ2
x|H(ej2πf )|2 + SZeqZeq

(ej2πf )

SZeqZeq
(ej2πf )

)

df (45)

The shaping filter hn which maximizes the mutual information
(and yields capacity) is given by the parametric water-filling
formula:

σ2
xH(ej2πf ) = dθ − SZeqZeq

(ej2πf )e+, (46)

where the ”water level” θ is chosen so that the power constraint
is met with equality,

σ2
s =

∫ 1/2

−1/2

σ2
xH(ej2πf )df (47)

=

∫ 1/2

−1/2

dθ − SZeqZeq
(ej2πf )e+df (48)

= P. (49)
The linear estimator is unnecessary at high SNR. At high

signal-to-noise ratio(SNR), the FFE estimation filter becomes
all-pass and (up to phase variation) we have X̂n ≈ Yn.
Specifically, the optimal estimation (Wiener) filter of Xn from
{Yn} is

σ2
x

σ2
x + SNN (ej2πf )

. (50)

Thus, if σ2
x � SNN (ej2πf ) for all f (high SNR), then the

magnitude of the estimation filter becomes identity.
The prediction process when the Shannon upper bound

is tight. The Shannon upper bound (SUB) on capacity states
that

C ≤
1

2
log(2πeσ2

y) − h(Zeq) (51)

≤
1

2
log

(

P + σ2
Zeq

Pe(Zeq)

)

(52)

∆
= CSUB, (53)

where
σ2

Zeq
=

∫ 1/2

−1/2

SZeqZeq
(ej2πf )df

is the variance of the equivalent noise, and where equality
holds if and only if the output Yn is white. This in turn is
satisfied if and only if

θ ≥ max
f

SZeqZeq
(ej2πf ).

The estimation error Dn corresponding to the optimal Wiener
estimation filter satisfies,

SDD(ej2πf ) =
σ2

xSNN (ej2πf )

σ2
x + SNN (ej2πf )

(54)

=
σ2

xSZeqZeq
(ej2πf )

σ2
s + SZeqZeq

(ej2πf )
.

When the SUB is tight σ2
s + SZeqZeq

(ej2πf ) is equal to θ for
all frequencies f . Hence, the power spectrum of the estimation
error Dn is proportional to the equivalent noise spectrum
SZeqZeq

(ej2πf ). We further have that σ2
s = P , and

SDD(ej2πf ) =
σ2

x

P + σ2
Zeq

· SZeqZeq
(ej2πf ), (55)

and therefore

Pe(D) =
σ2

x

P + σZ2
eq

· Pe(Zeq). (56)

It follows that the mutual information of the channel (41), i.e.,
the mutual information at the slicer, satisfies

I(X̃n; X̃n + En) =
1

2
log

σ2
x

Var(En)
(57)

=
1

2
log

(

σ2
x

Pe(D)

)

(58)

=
1

2
log

(

P + σZ2
eq

Pe(Zeq)

)

(59)

= CSUB. (60)

VIII. SUMMARY

We demonstrated the dual role of prediction in rate-
distortion theory of Gaussian sources and capacity of ISI
channels. These observations shed light on the configurations
of DPCM (for source compression) and FFE-DFE (for channel
demodulation), and show that in principle they are “informa-
tion lossless” for any distortion / SNR level. The theoretic
bounds, RDF and capacity, can be approached in practice by
appropriate use of feedback and linear estimation in the time
domain combined with coding across the “spatial” domain.

It is tempting to ask whether the predictive form of the
RDF can be extended to more general sources and distortion
measures (and similarly for capacity of more general ISI
channels). Yet, examination of the arguments in our derivation
reveals that it is strongly tied to the quadratic-Gaussian case:

• The orthogonality principle, implied by the MMSE cri-
terion, guarantees whiteness of the noisy prediction error
Zqn and un-correlation with the past.



• Gaussianity implies that un-correlation is equivalent to
statistical independence.

For other error criteria and/or non-Gaussian sources, prediction
(either linear or non-linear) is in general unable to remove the
dependence on the past. Hence the scalar mutual information
over the prediction error channel would in general be greater
than the mutual information rate of the source before predic-
tion.

APPENDIX

A. PROOF OF THEOREM 2
It will be convenient to look at K-blocks, which we denote

by bold letters as in Section VI. Substituting the ECDQ rate
definition (31), the required result (36) becomes:

H(QM−1
0 |DM−1

0 ) =

M−1
∑

m=0

I(Zm;Zqm|Zqm−1
0 ) .

Using the chain rule for entropies, it is enough to show that:

H(Qm|Qm−1
0 ,DM−1

0 ) = I(Zm;Zqm|Zqm−1
0 ) . (61)

To that end, we have the following sequence of equalities:

H(Qm|Qm−1
0 ,DM−1

0 )
(a)
= H(Qm|Qm−1

0 ,Dm
0 )

(b)
= H(Qm|Qm−1

0 ,Dm
0 ) − H(Qm|Qm−1

0 ,Zm
0 ,Dm

0 )

= I(Qm;Zm
0 |Qm−1

0 ,Dm
0 )

(c)
= I(Qm − Dm;Zm

0 |Qm−1
0 ,Dm

0 )

= I(Zqm;Zm
0 |Qm−1

0 ,Dm
0 )

= I(Zqm;Zm
0 |Qm−1

0 − Dm−1
0 ,Dm

0 )

= I(Zqm;Zm
0 |Zqm−1

0 ,Dm
0 )

(d)
= I(Zqm;Zm

0 |Zqm−1
0 ,Dm)

(e)
= I(Zqm, Dm;Zm

0 |Zqm−1
0 ,Dm)

−I(Dm;Zm
0 |Zqm−1

0 ,Dm)
(f)
= I(Zqm, Dm;Zm

0 |Zqm−1
0 ,Dm)

(g)
= I(Zqm;Zm

0 |Zqm−1
0 ,Dm)

+I(Dm;Zm
0 |Zqm

0 ,Dm)
(h)
= I(Zqm;Zm

0 |Zqm−1
0 ) .

In this sequence, equality (a) comes from the independent
dither generation and causality of feedback. (b) is justified
because Qm is a deterministic function of the elements on
which the subtracted entropy is conditioned, thus entropy is
0. In (c) we subtract from the left hand side argument of the
mutual information one of the variables upon which mutual
information is conditioned. (d) holds because the independent
generation of D and the feedback structure dictate a Markov
relation Dm−1

0 ↔ Zqm−1
0 ↔ Zm−1

0 . For (e) and (g) we ap-
plied the chain rule for mutual information. (f) and (h) follow
because dither values are independent of any past behavior of
the system, and of present input and reconstruction.
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