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Abstract— The “water-filling” solution for the quadratic rate-
distortion function of a stationary Gaussian source is given in
terms of its power spectrum. This formula naturally lends itself to
a frequency domain “test-channel” realization. We provide an al-
ternative time-domain realization for the rate-distortion function,
based on linear prediction. This solution has some interesting
implications, including the optimality at all distortion levels of
vector-quantized differential pulse code modulation (DPCM), and
a duality relationship with decision-feedback equalization (DFE)
for inter-symbol interference (ISI) channels.

I. INTRODUCTION: RATE-DISTORTION AND PREDICTION

The rate-distortion function (RDF) of a stationary source
with memory is given by a time domain formula, that is,
as a limit of normalized mutual informations associated
with vectors of source samples. For a real valued source
. . . , X−2, X−1, X0, X1, X2, . . ., and mean-squared distortion
level D, the RDF can be written as, [1],

R(D) = lim
n→∞

1

n
inf I(X1, . . . , Xn;Y1, . . . , Yn)

where the infimum is over all channels X → Y such that
1
n‖Y −X‖2 ≤ D. A channel which realizes this infimum is
called an optimum test-channel.

When the source is Gaussian, the RDF takes an explicit form
in the frequency domain. Assuming auto-correlation function
R[k] = E{XnXn+k}, and power-spectrum

S(ej2πf ) =
∑

k

R[k]e−jk2πf , −π < f < π

the RDF is given by the “water filling” formula

R(D) =

∫ 1/2

−1/2

1

2
log

(

S(ej2πf )

D(ej2πf )

)

df

=

∫

f :S(ej2πf )>θ

1

2
log

(

S(ej2πf )

θ

)

df (1)

where D(ej2πf ) is the distortion spectrum

D(ej2πf ) =

{

θ, if S(ej2πf ) > θ
S(ej2πf ), otherwise, (2)

and θ = θ(D) is the “water level” chosen such that
∫ 1/2

−1/2
D(ej2πf )df = D. For the special case of a memoryless

(white) Gaussian source ∼ N(0, σ2), the power-spectrum is
flat S(ej2πf ) = σ2, and the RDF is simplified to

1

2
log

(

σ2

D

)

. (3)

Our main result is a predictive “time-domain” realization
for the quadratic-Gaussian RDF (1). The notion of entropy-
power and the Shannon lower bound provide a simple relation
between (1) and prediction, which motivates our result. Recall
that that the entropy-power is the variance of a white Gaussian
process having the same entropy-rate as the source; for a
Gaussian source the entropy-power is given by

Pe(X) = exp

(

∫ 1/2

−1/2

log
(

S(ej2πf )
)

df

)

. (4)

The Shannon lower bound states that for any D

R(D) ≥
1

2
log

(

Pe(X)

D

)

(5)

with equality for distortion levels smaller than or equal to the
lowest value of the power spectrum: D ≤ minf S(e

j2πf ) (in
which case D(ej2πf ) = θ = D). See [1]. In the context of
Wiener’s spectral-factorization theory, (4) quantifies the mean-
squared error of the one-step linear predictor of the source
from its infinite past [1]; that is, we also have

Pe(X) = inf
{ai}

E

(

Xn −
∞
∑

i=1

aiXn−i

)2

. (6)

Now, by the orthogonality principle (see [4]), the error process
of the optimum infinite-order predictor (sometimes called the
“innovation process”)

En = Xn −

∞
∑

i=1

aiXn−i

has zero mean and is white. Hence, in view of (3) and (5),
for small distortion levels the RDF of a Gaussian source with
memory is equal to the RDF of its memoryless prediction error
process at the same distortion level.

We shall see later in Section II how the observation above
translates into a predictive test-channel which can realize the
RDF not only for small but for all distortion levels. Before that,
we’d like to consider another feature of the frequency-domain
solution (1) which motivates the predictive time-domain result
of Section II. Note that the optimum test-channel that realizes
the memoryless RDF (3) takes the form of a memoryless
linear-additive noise channel:

Y = β(αX +N)

with α = β =
√

1−D/σ2 and N ∼ N(0, D). (In the general
case α and β take the form of pre- and post-filters.) In view
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Fig. 1. Predictive Test Channel

of that, one way to understand the form of the general RDF
in (1) is to look on its discrete approximation

∑

i

1

2
log

(

S(ej2πfi)

D(ej2πfi)

)

(7)

as encoding of parallel (independent) Gaussian sources,
where source i is a memoryless Gaussian source Xfi ∼
N(0, S(ej2πfi)) encoded at distortion D(ej2πfi); see [3].
Furthermore, the RDF (1) can be realized by a vector of
parallel channels of the form Yfi = βi(αiXfi + Ni). This
interpretation motivates practical, frequency domain source
coding schemes such as Transform Coding and Sub-band
Coding [5], which get close to the RDF of a Gaussian source
with memory using scalar quantization.

Section II proposes an alternative formulation for the RDF
(1) that is motivated by the time-domain quantization scheme
of Differential Pulse Code Modulation (DPCM). The goal
of the new formulation is, like in the frequency domain
interpretation of (7), to translate the encoding of dependent
source samples into a series of encodings of independent
sources. The task of removing the dependence in the time
domain approach is achieved by prediction.

Kim and Berger [8] showed that we cannot achieve the
RDF of an auto-regressive (AR) Gaussian process by encoding
its innovation process. Their scheme amounts to open-loop
prediction of the source. In this paper we show that RDF can
be achieved by embedding the encoder inside the prediction
loop, i.e., by closed-loop prediction.

After presenting and proving our main result in Sections II
and III, respectively, we provide reflections on the result and
its operational implications. Section IV discusses the spectral
features of the solution, Section V relates it to compression
of parallel sources, and Section VI discusses implementation
by Entropy Coded Dithered Quantization (ECDQ). Finally, in
Section VII we relate prediction in source coding to prediction
in the area of channel equalization and to recent observations
by Forney [4]. Like in [4], our analysis is done mainly using
the properties of information measures; from Wiener estima-
tion theory we need only two basic results: the orthogonality
principle and the one-step prediction error formula (6).

II. MAIN RESULT: A PREDICTIVE TEST CHANNEL

Consider the system in Figure 1, which consists of three
basic blocks: pre-filter H1(e

j2πf ), a noisy channel embedded
in a close loop, and a post-filter H2(e

j2πf ). The system
parameters are derived from the water-filling solution (1)-(2).
The source samples {Xn} are passed through a pre-filter,
whose phase is arbitrary and its absolute squared frequency
response is given by

|H1(e
j2πf )|2 = 1−

D(ej2πf )

S(ej2πf )
. (8)

The pre-filter output, denoted Un, is being fed to the central
block which generates a process Vn according to the the
following recursion equations:

Ûn = f(Vn−1, Vn−2, . . . , Vn−L) (9)
Zn = Un − Ûn (10)
Zqn = Zn +Nn (11)
Vn = Ûn + Zqn (12)

where Nn ∼ N(0, θ) is zero-mean additive white Gaussian
noise (AWGN) independent of the input process {Un} whose
variance is equal to the “water level” θ, and f(·) is some
“prediction function” for the input Un given the L “past” sam-
ples of the output process (Vn−1, Vn−2, . . . , Vn−L). Finally,
the post-filter frequency response is the complex conjugate of
that of the pre-filter,

H2(e
j2πf ) = H∗

1 (e
j2πf ). (13)

The block from Un to Vn is equivalent to the configuration
of differential pulse code modulation (DPCM), [7], [5], with
the DPCM (scalar) quantizer replaced by the AWGN channel
Zqn = Zn + Nn. In particular, by combining the recursion
equations (9)-(12) it follows that this block satisfies the well
known “DPCM error identity”, [7],

Vn = Un + (Zqn − Zn) = Un +Nn. (14)

That is, the output Vn is a noisy version of the input Un via
the AWGN channel Vn = Un +Nn. In DPCM the prediction
function f is linear:

f(Vn−1, . . . , Vn−L) =

L
∑

i=1

aiVn−i (15)
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where a1, . . . , aL minimize the mean-squared “noise” predic-
tion error

E

(

Un −

L
∑

i=1

aiVn−i

)2

. (16)

If {Un} and {Vn} are jointly Gaussian, then the best predictor
of any order is linear, so the minimum of (16) is also the the
minimum mean squared error (MMSE) in estimating Un from
the vector (Vn−1, . . . , Vn−L). We shall further elaborate on
the relationship with DPCM later.

Note that while the central block is sequential and hence
causal, the pre- and post-filters are non-causal and therefore
their realization in practice requires large delay. Our main
result is the following.

Theorem 1: For any stationary source with power spectrum
S(ej2πf ), the system of Figure 1 satisfies

E(Yn −Xn)
2 = D. (17)

Furthermore, if the source Xn is Gaussian, and if the function
f(·) is the optimum linear predictor of Un given the infinite
past (Vn−1, Vn−2, . . .), i.e., L =∞ in (9)-(12), then for all n

I(Zn;Zn +Nn) = R(D). (18)

The proof is given in Section III. The main feature of
Theorem 1 is the fact that the left-hand side of (18) is a
single letter mutual information. Thus, in a sense the core of
the encoding process amounts to a memoryless AWGN test-
channel.

Another interesting feature of the system is the relationship
between the prediction error process Zn and the original
process Xn. If Xn is an auto-regressive (AR) process, then
in the limit of small distortion (D → 0), Zn is roughly its
innovation process. Hence, unlike in open-loop prediction [8],
encoding the innovations in a closed-loop system is optimal in
the limit of high-resolution encoding. We shall return to that,
as well as discuss the case of general resolution, in Section
IV.

III. PROOF OF MAIN RESULT

Note first that the error identity (14) implies that the entire
system of Figure 1 is equivalent to the system depicted in
Figure 2, consisting of a pre-filter (8), an AWGN channel with
noise variance θ, and a post-filter (13). This is, in fact, one
of the equivalent forms of the forward channel realization of
the quadratic-Gaussian RDF [1, Section 4.5], [9]. In particular,
simple spectral analysis shows that the power spectrum of the
overall error process Yn − Xn is equal to the water filling
distortion spectrum D(ej2πf ) in (2); hence the total distortion
in (17) is D as desired.

For the second part, since the system of Figure 2 coincides
with the forward channel realization of the quadratic-Gaussian
RDF, for a Gaussian source we have

I({Xn}; {Yn}) = I({Un}; {Vn}) = R(D)

where I denotes mutual information-rate between jointly sta-
tionary sources:

I({Xn}; {Yn}) = lim
n→∞

1

n
I(X1, . . . , Xn;Y1, . . . , Yn). (19)

Hence, the proof will be completed by showing that

I({Un}; {Vn}) = I(Zn;Zn +Nn). (20)

To that end, consider the conditional mutual informa-
tion between U1, . . . , Un and V1, . . . , Vn given V 0

−L =
V0, V−1, . . . , V−L. Using the chain rule we have

I(U1, . . . , Un;V1, . . . , Vn|V
0
−L)

=

n
∑

i=1

I(U1, . . . , Un;Vi|V
i−1
−L ).

By the recursion equations (9)-(12), the i-th term in the sum
can be written as

I(U1, . . . , Un;Vi|V
i−1
−L )

= I(U1, . . . , Ui−1, Ui − Ûi, Ui+1, . . . , Un;Vi − Ûi|V
i−1
−L )

= I(U1, . . . , Ui−1, Zi, Ui+1, . . . , Un;Zi +Ni|V
i−1
−L ).

Since the AWGN Nn is independent of the source U1, . . . , Un
and of the past values of Vn, we have the Markov chain
relation

Zi +Ni ⇔ (Zi, V
i−1
−L )⇔ (U1, . . . , Ui−1, Ui+1, . . . , Un).

(Note that future values of the output process Vi+1, Vi+2, ..
depend on Ni, but this does not affect the Markov chain
above.) This relation implies that the i-th term above simplifies
to

I(Zi;Zi +Ni|V
i−1
−L ).

Until now we didn’t need to use the source Gaussianity
nor the optimality of the prediction function f(·). Taking
these into account, and letting the predictor order L → ∞,
the orthogonality principle of MMSE estimation implies that
the estimation error Zi is statistically independent of the
measurements (Vi−1, Vi−2, . . .). Since Ni is independent of
both Zi and the past Vi’s, the i-th term above further simplifies
to I(Zi;Zi +Ni). We obtain

I(U1, . . . , Un;V1, . . . , Vn|V0, V−1, . . .)

=

n
∑

i=1

I(Zi;Zi +Ni) = nI(Zn;Zn +Nn)

where the second equality follows since the system is time-
invariant and all the processes are stationary. Using the defini-
tion of mutual information rate (19), and noting that it remains
unchanged if we condition on the infinite past, we arrive at
(20) and the proof is completed.



IV. PROPERTIES OF THE PREDICTIVE TEST-CHANNEL

The following observations shed light on the behavior of
the test channel of Figure 1.

Prediction in the high resolution regime. If the power-
spectrum S(ej2πf ) is everywhere positive (e.g., if {Xn} can
be represented as an AR process), then in the limit of small
distortion D → 0, predicting Un from its “noisy past” {Vi =
Ui+Ni : i = n−1, n−2, . . .}, is equivalent to predicting Un
from its “clean past” {Un−1, Un−2, . . .}. Hence, in this limit
the prediction error Zn is equal to the “innovation process”
associated with Un. Since for small distortion the pre- and
post-filters (8), 13) are roughly all-pass filters, Un has roughly
the same power spectrum as Xn; hence Zn is in fact equivalent
to the innovation process of Xn. In particular, Zn is an i.i.d.
process whose variance is Pe(X) = the entropy-power of the
source (4).

Prediction in the general case. Interestingly, for general
distortion D > 0, the prediction error Zn is not white, as the
noisiness of the past does not allow the predictor f to remove
all the source memory. Nevertheless, the noisy version of the
prediction error Zqn = Zn + Nn is white for every D > 0,
because it amounts to predicting Vn from its own infinite past:
since Nn is white and has zero-mean, Ûn, which is the optimal
predictor for Un, is also the optimal predictor for Vn = Un +
Nn. This whiteness might seem at first a contradiction, because
Zqn is the sum of a non-white process Zn and a white process
Nn. However, {Zn} and {Nn} are not independent processes,
because Zn depends on past values of Nn (through the past
of Vn). Hence the channel Zqn = Zn + Nn is not quite an
additive-noise channel; rather, it is sequentially-additive: the
noise is independent of past and present channel inputs, but
is not independent of future inputs. These observations imply
that the channel Zqn = Zn +Nn satisfies:

I(Zn;Zn+Nn|Z1+N1, ..., Zn−1+Nn−1) = I(Zn;Zn+Nn) ,

while in general

Ī({Zn}; {Zn +Nn}) > I(Zn;Zn +Nn) .

The channel when the Shannon lower bound holds. As
long as D is smaller than the lowest point of the source
spectrum (i.e., D(ej2πf ) = θ = D in (1)), the quadratic-
Gaussian RDF coincides with the Shannon Lower Bound (5).
In this case, the following properties hold for the predictive
test channel:

• The power spectra of Un and Yn are the same and are
equal to S(ej2πf )−D.

• The power spectrum of Vn is equal to the power spectrum
of the source S(ej2πf ).

• Since the (white) process Zn+Nn is the optimal predic-
tion error of the process Vn from its own infinite past, its
variance is Pe(V ) = Pe(X) of (4).

• As a consequence we have

I(Zn;Zn +Nn) = h(N(0, Pe(X)))− h(N(0, D)))

= 1/2 log(Pe(X)/D)

X
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Fig. 3. Parallel sources.

which is indeed the Shannon lower bound (5).

V. VECTOR-QUANTIZED DPCM AND D∗PCM
As mentioned, the structure of the loop in the channel of

Figure 1 is of a DPCM quantizer, with the scalar quantizer
replaced by the additive noise. However, if we wish to im-
plement the additive noise by a quantizer realizing the full
single letter mutual information I(Zn;Zn+Nn), we must use
vector quantization (VQ). It is not possible to do that along
the time domain, due to the sequential nature of the system
above. Nevertheless, we can achieve the VQ gain by adding
a “spatial” dimension, if we jointly encode a large number of
parallel sources, as happens, e.g., in video coding. See Figure
3.

If we have only one source with decaying memory, we can
still achieve the rate distortion function at the cost of large
delay, by using interleaving.

If we do not use any of the above, but restrict ourselves to
scalar quantization, we have a pre/post filtered DPCM scheme.
It follows from Theorem 1 that in principle, a pre/post filtered
DPCM scheme is optimal (up to the loss of the VQ gain)
at all distortion levels, and not only at high resolution. It is
interesting to mention that In the quantization literature, the
“open loop” prediction approach investigated in [8] is referred
to as D∗PCM [7].

VI. A DUAL RELATIONSHIP WITH DECISION-FEEDBACK
EQUALIZATION

Consider the (real-valued) discrete-time time-invariant lin-
ear Gaussian channel arising at the output of a sampled
matched filter,

Yn =

∞
∑

k=−∞

hkXn−k + Zn. (21)

Here hn is the equivalent discrete-time impulse response
resulting from the cascade of the spectral shaping filter, the
modulation pulse, the continuous-time channel as well as the
matched filter. It follows that H(ej2πf ) is non-negative and
the autocorrelation function of Zn is

RZZ(k) = E{Zn+kZn} =
N0

2
hk. (22)

Let Xn be an iid Gaussian random process with power σ2
x.

Then the mutual information (normalized per symbol) between
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the input and output of the channel is

I({Xn}, {Yn}) =

∫ 1/2

−1/2

1

2
log

(

1 +
σ2
xH(ej2πf )

N0/2

)

df. (23)

Capacity is achieved by using a spectral shaping filter satis-
fying the “water-filling” power allocation. As reflected in the
expression (23), capacity may be achieved by parallel AWGN
coding over narrow frequency bands as done in practice in
DMT/OFDM systems. A well known alternative capacity-
achieving scheme which is based on prediction rather than
the Fourier transform is offered by the canonical MMSE-
DFE equalization structure used in single-carrier transmission.
These observations parallel those made in Section I with
respect to the RDF.

It is well known that the capacity of linear Gaussian chan-
nels can be achieved using MMSE-DFE coupled with AWGN
coding. This has been shown using different approaches.
One such approach which is particularly illuminating in our
context is based on linear prediction of the error sequence. We
now recount this result which was developed and refined by
numerous authors, see [6], [2], [4] and references therein. Our
exposition closely follows that of Forney [4].

As a first step, let X̂n be the optimal MMSE estimator
of Xn from the channel output sequence {Yn}. Since {Xn}
and {Yn} are jointly Gaussian and stationary this estimator is
linear and time invariant. Denote the estimation error, which
is composed of residual ISI and Gaussian noise, by Dn. Then

Xn = X̂n +Dn (24)

where {Dn} is independent of {X̂n} due to the orthogonality
principle and Gaussianity.

Assuming correct decoding of past symbols1, the decoder
knows the past samples Dn−1, Dn−2, . . . and may form an
optimal predictor, D̂n, of the estimation error Dn. The pre-
diction error En = Dn− D̂n has variance Pe(D), the entropy
power of Dn. This prediction may then be added to X̂n to
form X̃n. It follows that

Xn = X̂n +Dn

= X̃n − D̂n +Dn

= X̃n + En, (25)
1Here we must actually break with assumption that Xn is a Gaussian

process. and We implicitly assume that Xn are symbols of a capacity-
achieving AWGN code. The slicer should be viewed as a mnemonic aid where
in practice an optimal decoder should be used. Furthermore, the use of an
interleaver and long delay is necessary. See [4]

where {X̃n} and {En} are statistically independent. It follows
that the residual estimation error satisfies

E{Xn − X̃n}
2 = E{Dn − D̂n}

2 = Pe(D), (26)
The channel (25) is often referred to as the backward channel.
Furthermore, since Xn and En are i.i.d Gaussian, it is an
AWGN channel. We have therefore derived the following.

Theorem 2: The mutual information of the channel (21) is
equal to the scalar mutual information

I(X̃n; X̃n + En)

of the memoryless channel (25).
Proof: Let X−

n = {Xn−1, Xn−2, . . .} and D−
n =

{Dn−1, Dn−2, . . .}. Using the chain rule of mutual informa-
tion we have
I({Xn}, {Yn}) = h({Xn})− h(Xn|{Yn}, X

−
n )

= h({Xn})− h(Xn − X̂n|{Yn}, X
−
n )

= h({Xn})− h(Dn|{Yn}, X
−
n )

= h({Xn})− h(Dn|{Yn}, D
−
n , X

−
n )

= h({Xn})− h(Dn − D̂n|{Yn}, D
−
n )

= h({Xn})− h(En|{Yn}, D
−
n )

= h({Xn})− h(En) (27)
= I(X̃n; X̃n + En),

where (27) follows from successive application of the orthog-
onality principle [4].
It follows that
∫ 1/2

−1/2

1

2
log

(

1 +
σ2
xH(ej2πf )

N0/2

)

df =
1

2
log

(

σ2
x

Pe(D)

)

. (28)

As a corollary, from (23), Theorem 2 and (28), we obtain the
following well known result from Wiener theory,

Pe(D) = exp

(

∫ 1/2

−1/2

log

(

σ2
x
N0

2

σ2
xH(ej2πf ) + N0

2

)

df

)

.
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