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Abstract

We address an open question, regarding whether a lattice code with lat-
tice decoding (as opposed to maximum likelihood decoding) can achieve the
AWGN channel capacity. We first demonstrate how MMSE scaling along with
dithering (lattice randomization) techniques can transform the power con-
strained AWGN channel into a modulo-lattice additive noise channel, whose

effective noise is reduced by a factor of 4/ 1J§1§I§R. For the resulting channel,

a uniform input maximizes mutual-information, which in the limit of large
lattice dimension becomes %log(l + SNR), i.e., the full capacity of the origi-
nal power constrained AWGN channel. We then show that capacity may also
be achieved using nested lattice codes, the coarse lattice serving for shaping
via the modulo-lattice transformation, the fine lattice for channel coding. We

show that such pairs exist for any desired nesting ratio, i.e., for any SNR.
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Furthermore, for the modulo lattice additive noise channel lattice decoding is
optimal. Finally, we show that the error exponent of the proposed scheme is

lower bounded by the Poltyrev exponent.

Keywords: AWGN channel, Poltyrev exponent, MMSE estimation, random
lattice ensemble, lattice decoding, Euclidean distance, nested codes, dither, shaping,

dirty paper channel.

1 Introduction

The search for low complexity, structured encoding and decoding for the Additive
White Gaussian Noise (AWGN) channel

Y =X+N, N~N(0,Py) (1)

inspired the minds of researchers and continues to challenge the communication

community today [20, 4]. The goal is to find codes with rates approaching capacity
1
C= 3 log (1 +SNR), (2)

which allow for decoding with low probability of error at affordable complexity. It
is desired to accomplish that for any signal-to-noise ratio SNR = Px /Py, i.e., under

any power constraint Px > 0 on the transmitted signal X, ..., X,:
RN
- D X7 < Py (3)
i=1

There are two aspects to signal space codebook design for the power constrained
AWGN channel. The granular structure of the codebook corresponds to the inter-
codeword Euclidean distances, hence it determines the decoding error probability.
The structure of the shaping region of the codebook determines the power-volume
tradeoff, hence the gap from capacity [16].

Several different approaches for using structured codes for the AWGN channel

correspond to different ways of taking into account the power constraint. Shannon’s



theory suggests that the codewords of a good code should look like realizations of
a zero mean i.i.d. Gaussian source with power Px. For large codebook dimen-
sion n, this is equivalent to a uniform distribution over a sphere of radius v/nPx.
Slepian considered the use of group codes for the AWGN channel in [28], where the
codewords lie on the surface of this sphere of radius v/nPx.

The central line of development in the application of lattices for the AWGN
channel, and the most directly related to the problem we study, originated however
in the work of de Buda. De Buda’s theorem [9] states that a spherical lattice code,
i.e., a code with second moment Py, which is the intersection of a lattice with a
sphere, can approach arbitrarily closely (in the limit of high dimension) the AWGN
channel capacity. To achieve the best error exponent of the AWGN channel (or at
least the lower bounds to the error exponent [21, Sec. 7.3], which are tight above
the critical rate), a “thin” spherical region is taken instead of a full sphere. This
result has been corrected and refined by several authors [23, 29, 26, 24].

However, when a lattice code is defined in this manner, much of the structure and
symmetry of the underlying lattice is lost. In addition, the optimality of this scheme
relies on mazimum likelihood decoding, i.e., requires finding the lattice point inside
the sphere which is closest to the received signal. The resulting decision regions
are not fundamental regions of the lattice and are unbounded. In contrast, lattice
decoding amounts to finding the closest lattice point, ignoring the boundary of the
code. Such an unconstrained search preserves the lattice symmetry in the decoding
process and saves complexity, and thus it attracted special attention [1, 26].

When restricted to lattice decoding, however, existing lattice coding schemes can
transmit reliably only at rates up to log (SNR) [10, 26]. This loss of “one” in the
rate formula means significant degradation in performance at low SNR and zero rate
for SNR< 1. In fact, it was conjectured [10, 26, 24] that with lattice decoding the
rate 3 log (SNR) cannot be surpassed. See also the discussion in [19, 29].

We show that with a slightly different definition of lattice transmission and lat-

tice decoding, the full capacity %log(l + SNR) of the channel may be achieved.



Our approach is based on transforming the power-constrained channel into an un-
constrained modulo lattice additive noise channel, and enhancing the SNR by one
using linear minimum mean square error (MMSE) estimation principles. This im-
proves upon previous lattice-based representations of the AWGN channel in that,
for a “good” lattice A, the transformation is (asymptotically in the dimension n)
information preserving at any SNR. The modulo-A channel allows to incorporate
a coding lattice A, in a configuration called “nested lattice codes”, A C A;. The
latter is a slight generalization of the concept of Voronoi constellations [7, 15].

Conway and Sloane were the first to propose Voronoi constellations, where the
Voronoi region of a “self-similar” sublattice replaces the sphere as the shaping region
of the lattice code [7, 15]. As was shown later, there indeed exist lattices with a
quasi-spherical Voronoi region having good shaping properties [30, 11]. More general
lattice constructions based on multilevel coset codes were proposed in [19]. In our
framework, the shaping sublattice A is not necessarily self-similar to the coding
lattice A;. See also [33, 17] and the references within for further discussion, links
and applications of this configuration.

A key ingredient in our lattice transmission scheme is common randomness in
the form of a dither variable U, where U is uniformly distributed over the shaping
region V, i.e., over the basic Voronoi region of A. We subtract the dither from the

channel input and add it to the MMSE-estimated channel output X = oY, where

addition and subtraction are modulo-A, and o = PX’:fPN is the “Wiener coefficient”
which achieves
. ~ Px Py
MMSE = E(X-X)?=—"—"—.
min B ) Py + Py

Dithering is a common randomization technique in lattice quantization for source
coding, used to assure that the mean squared quantization error exactly meets the
distortion constraint for any source input, and to decorrelate the quantization error
from the source [31]. Similarly, in our scheme the dither assures that the input

power exactly meets the power constraint Px for every codeword, and decorrelates



the estimation error from the channel input !. Due to that, the effective noise in
the dithered modulo-A channel is statistically independent of the input (although it
is slightly non-Gaussian). As a result, maximum likelihood decoding of the nested
lattice code is equivalent to lattice decoding. This further implies that for large
dimensions, the rate R of the scheme with lattice decoding can approach the mu-
tual information rate of the modulo-A channel, which for good shaping lattices

approaches

1 Py |
E — Liog(1+ SNR).
210g(MMSE> 3 log(1+ SNR)

We derive our results in several steps. Section 2 establishes the necessary back-
ground on lattice codes. Section 3 analyzes the Shannon capacity of the modulo-A
channel which incorporates dithering and linear scaling. Theorem 1 shows that for
a good shaping lattice A, the capacity of this channel approaches the capacity of the
original power constrained AWGN channel (2). Then, Section 4 describes the pro-
posed nested lattice encoding/decoding scheme. Theorems 2 and 3 state our main
results, that this scheme can approach capacity for two types of lattice decoders: a
noise-matched lattice decoder and a Fuclidean lattice decoder, respectively. The dif-
ference between the two follows from the fact that the effective noise in the modulo-A
channel is not exactly Gaussian, though it approaches Gaussianity for good shaping
lattices.

Before turning to the more technical sections which establish this result, we
illustrate in Section 5 the role of linear (biased) estimation in decoding, by a simple
example of scalar (uncoded) transmission.

Section 6 extends the discussion to random coding error exponents. Theorem 4
shows that the error exponent of the modulo-A channel at rate R is at least as good
as the Poltyrev exponent for un-constrained channels, [26], calculated at a volume-
to-noise ratio of ¢~ Note that the latter is inferior to the optimal exponent of
the power constrained AWGN channel for rates below capacity. Section 7 provides a

construction for a “good” random ensemble of nested lattice pairs (A, A;). Finally,

"Note that the orthogonality principle implies X — X 1 X butnot X - X 1 X.



Theorem 5 in Section 8 makes the last step and proves that the Poltyrev exponent
can be achieved by Euclidean lattice decoding of a good nested lattice code, from
which Theorems 2 and 3 follow as corollaries. Most of the technical detail is relegated
to the appendices.

Throughout the paper we use the notation o,(1) to specify any function of n
such that 0,(1) — 0 as n — oco. In a similar manner we denote ox(1), o0,(1), etc.

All logarithms in this paper are natural logarithms and rates are in nats.

2 Preliminaries: Lattices, Quantization, Lattice
Decoding

A lattice A is a discrete subgroup of the Euclidean space R” with the ordinary vector
addition operation. Thus, if A\; Ay are in A, it follows that their sum and difference
are also in A. A lattice A may be specified in terms of a generating matrix. Thus,

an n X n real-valued matrix G defines a lattice A by
A={A=Gx:xe€Z"}. (4)

That is, the lattice is generated by taking all integer linear combinations of the basis
vectors.

A coset of A in R" is any translated version of it, i.e., the set x + A is a coset
of A for any x € R”. The fundamental Voronoi region of A C R", denoted by V,
is a set of minimum Euclidean norm coset representatives of the cosets of A. Every

x € R” can be uniquely written as
X=A+r (5)

with A € A, r € V, where A\ = @Qy(x) is a nearest neighbor of x in A, and r =

x mod A is the apparent error x — Qy(x). We may thus write

R'=A+V=JOA+V)=JA+x) (6)

AEA x€Y



and V = R” mod A. For a comprehensive introduction to lattices we refer the
reader to [18].

It will prove useful in the sequel to consider more general fundamental regions
and quantizers. Let €2 be any fundamental region of A, i.e., every x € R" can
be uniquely written as x = A +e where A € A, e € Q. and R* = A + Q. We

correspondingly define the quantizer associated with €2 by
Qax) =X ifxe A+ Q. (7)

This is a nearest neighbor quantizer (as above) if we choose €2 to be a fundamental
Voronoi region V. But in general there are many other choices for Q (e.g. the
basic parallelepiped [6]), all have the same volume, denoted V(A), which is given
by the inverse density of the lattice points in space. Define the modulo-A operation

corresponding to €2 as follows:
x modg A = x — Qq(x). (8)

Note that this implies that [x modg A] € Q for all x € R*. For a nearest neighbor
quantizer, we omit the subscript V, i.e., x mod A = x — Qy(x).

The second moment per dimension associated with €2 is defined as
1 1 [, IIx|?dx
2(Q) = ~E|U|)P = ——F— 9
o*(0) = L B|U| = S Q
where U is a random vector uniformly distributed over  and V £ V(A) = |Q|. For
a fixed lattice, 02(f2) is minimized if we choose Q) as the fundamental Voronoi region
V. The normalized second moment of A is defined as (see, e.g., [6])

a o?(V) _ 1 [, [x|Pdx
Toy2/n T o VH2/n

G(A) (10)

The normalized second moment G(A) is always greater than ﬁ, the normalized

second moment of an infinite dimensional sphere. It is known that for sufficiently

large dimension there exist lattices whose Voronoi region V approaches a sphere in

the sense that G(A) is as close to 5 as desired [30]. This is equivalent to saying
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that a random vector U uniform over V is closer to white Gaussian noise in the
sense of normalized entropy, that is %h(U) is close to %log 2mec?(V). We say that
such lattices are “good for quantization” [33].

A lattice decoder is simply a Euclidean quantizer, or more generally a quantizer
with respect to a fundamental region ). That is, the decoder quantizes the received
vector to obtain the hypothesized codeword. Since most practical decoding algo-
rithms for lattice codes indeed attempt lattice decoding rather than ML decoding,
it would be desirable if such lattice decoding were near optimal.

When considering the performance of lattice decoding, it is insightful to consider
the similarity to linear coding for the Binary Symmetric Channel (BSC). The prob-
lems of coding for the BSC and coding for the AWGN channel are widely regarded

as analogous to some extent. Both are additive noise channels
Y=X+N, (11)

addition understood to be modulo two for the BSC channel, ordinary addition over
the reals for the AWGN channel. The BSC coding problem leads to a code in
Hamming space, the AWGN coding problem to a code in Euclidean space.

Linear codes are the counterpart of lattices for the case of a BSC, and a minimum
Hamming distance decoder is the counterpart of lattice decoding. It is well known
that linear codes can achieve not only the capacity of the BSC channel but also the
best known exponential bounds on error probability, see e.g., [2]. Furthermore, for
the BSC channel, maximum likelihood decoding amounts to minimum Hamming
distance decoding. Thus, minimum Hamming distance decoding is optimal in the
case of a BSC channel.

When trying to take the analogy farther, one is however confronted with a basic
problem. In a typical communication scenario over the AWGN channel, the trans-
mitter is usually subject to some constraint, the most common being an average
power constraint as in (3). This feature is not present in the BSC/linear case. In
the next section we describe a method for transforming the AWGN into a modulo

additive noise channel. This enables to retain the parallel between the two channel
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models and to eventually show that the capacity of the AWGN channel may be

achieved using lattice codes and Euclidean lattice decoding.

3 Modulo Lattice Additive Noise Channel

We describe a technique derived in [12] to transform the power constrained AWGN
channel into a Modulo Lattice Additive Noise (MLAN) channel. The transformation
is not strictly information lossless in the sense that it does not preserve the mutual
information. However, for a “good” lattice the (information) loss goes to zero as the
dimension of the lattice, n, goes to infinity. This suffices for achieving the channel’s
capacity, albeit results in a suboptimal error exponent, as shown in Section 6. For
related background, see the treatment of modulo lattice additive noise channels in
[19].

Let U be a random variable uniformly distributed over €2 as defined above. We
employ U as a dither signal. It is assumed that U is known to both transmitter and
receiver (common randomness) and is independent of the channel. The following

property is extensively used in the sequel.

Lemma 1 For any random variable X € €2, statistically independent of U, we have
that the sum Y = X+U modq A is uniformly distributed over €0, and is statistically
independent of X.

A proof in the context of dithered quantization can be found in [31]. The fol-
lowing is a simpler proof by group theoretic considerations, that was pointed out to
the authors by G. D. Forney, Jr.

Proof: ~ Since y — x modgn A runs through  as y runs through €2, and the
density fu(u) is constant over u € 2, the density fyx(y,x) = fu(y —x modq A)

is constant over y € () for any x € 2. [



3.1 The MLAN channel transformation

We transform a block of n uses of the AWGN channel Y = X + N into an n-
dimensional modulo lattice additive noise channel. The input alphabet of this chan-
nel is a fundamental region €2 of the lattice A which we call the shaping lattice. We
later restrict attention to the fundamental Voronoi region V.

Given t € 2 and the dither U, the output of the transmitter is given by a modulo

lattice operation:
X; = [t— U] modg A. (12)

Upon reception, Y = X+ N is multiplied by some “attenuating factor”, 0 < a < 1,
to be specified later, and the dither U is then added. The result is reduced modulo
A, giving

Y' = [aY + U] modg A (13)
= [a(X¢+ N) + U] modg A. (14)

The resulting channel from t to Y’ is a modulo-A additive noise channel described

by the following lemma:

Lemma 2 (“Inflated lattice lemma” [12]) The channel from t to Y', defined
by (1),(12) and (13), is equivalent in distribution to the channel

Y' = [t + N'] modg A (15)
where N is independent of t and is distributed as
N = |aN — (1 - a)U] modg A (16)

where U is a random variable uniformly distributed over 0 and is statistically inde-

pendent of N.

We refer to the resulting channel as a A-MLAN channel. The component —(1 —

a)U will be termed “self-noise” in the sequel. We see that the equivalent noise is the
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weighted sum of a Gaussian vector and a uniform random vector, folded (aliased)
into the fundamental region 2. When a < 1, the MLAN transformation amounts
to effectively “inflating” the lattice and scaling the noise by different factors as
explained in Section 5.

Proof:

Y' = [a(X;+ N)+ U] modg A
= [X¢+ U+ (a—1)X¢ + aN] modg A
= [(t—U) modg A+ U - (1 —a)X;+ aN] modg A
= [t— (1 - a)X;+aN] modg A

where (20) follows since the modulo operation is distributive so the dither cancels
out. The lemma follows, since the distribution of Xy is independent of t by Lemma 1,
and it has the same distribution as U, i.e., it is uniform over . [

For an input power constraint the best choice for a shaping region 2 is a funda-
mental Voronoi region of the lattice relative to the Euclidean norm. We denote this
choice by 2 = V. Note that ¥V = —V (up to a boundary set of measure zero) and
therefore in this case

N'=[(1 — @)U + aN] mod A. (21)

where mod A means mody A.

The lattice is scaled so that the second moment of V is Py, i.e.,
i/ Ix|[2dx = o*(V) = Py. (22)
nV Vv
By Lemma 1, due to the dither, for any t, the average transmitted power is

1 1
~E||X¢||* = ~E|[U|* = Px. (23)
n n

3.2 Capacity of the MLAN channel

Since the equivalent channel (15) is additive modulo-A, taking the input to be

uniform over the Voronoi region of A, i.e., T ~ Unif(V), achieves its capacity.
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With this choice, the output Y’ is also uniformly distributed over V. The resulting

information rate is

% [(T;Y') = %h(Y’) _ %h(Y’\T) (24)
= %logV — %h(N') (25)
- %log % - %h(N’) (26)

where (26) follows from the definition of the normalized second moment (10) and
from (22).

We are still left with the freedom of choosing . Choosing o = 1 results in an
effective noise N’ = N mod A in (21), i.e., N’ does not have a self-noise component.
When n is large and Px > Py, and if A is a “good” lattice for quantization,
ie, G(A) ~ ﬁ, it can be shown that the effect of the modulo operation on the
noise entropy becomes negligible. We would therefore have Lh(N’) ~ Lh(N) and a
resulting information rate 2 of %log %. As mentioned in the Introduction, this rate
was previously conjectured to be the greatest achievable with lattice decoding.

Nevertheless, we can do better by taking the MMSE coefficient o@ = 52X

Px+Py
SNR_ With this choice, we have

1+SNR "
1 1
CE|NP < CE||(1- a)U+oN|P (27)
= (1-a)?’Px +o’Py (28)
PxP
- XN (29)
Px + Py

where the inequality follows since for a Voronoi region ||x mod A|| < ||x|| for any x.

Therefore, the effective noise power is reduced by a factor of PX?‘PN (as if the noise
was attenuated by a factor of /1S5R) so the effective SNR of the MLAN channel
is at least
Px
N " T1SNR

2It is interesting to note that the information rate of ;log(2mePx) — h(N) is achievable with

a =1 even when N =Y — X is not independent of X.
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so that it is increased by one.

Consider now a sequence of lattices A which are good for quantization as

defined above, that is lim,,_,,, G(A(™) = ;L.

2me

Theorem 1 (Capacity of MLAN channel) Forthe MLAN channel, if we choose

T ~ Unif(V), a = lig§R7 and if the sequence of lattices A satisfies G(A™) — 2%6,
then

1 1
lim —I(T;Y') = 3 log(1 + SNR).

n—oo N

Proof: Since the capacity of the original AWGN channel is C = % log(14+SNR),
it follows from the data processing inequality that
1 1
—I(T;Y'") < 3 log(1 4+ SNR). (30)
n
Since the entropy of N’ is upper bounded by the the entropy of a white Gaussian

vector with the same second moment [21], we have from (27) that

1 1 Px Py
—“h(N") < =1 2me——— 1
nh( )_20g<7rePX+PN) (31)
which implies from (26)
1 1 1 Px + Py
~I(T;Y") > =1 .
RL(TY) = glog (27reG(A(”)) Py )
1 1
=5 log(1+ SNR) — 3 log (2meG(A™)) . (32)

By assumption log (2reG(A™)) — 0. Thus combining (30) and (32), the theorem
follows. [

Therefore, with o = a5 and a proper choice of shaping lattice A, the ca-
pacity of the MLLAN channel indeed approaches the capacity of the original power
constrained AWGN channel 3. This entails drawing a random code according to
the distribution T ~ Unif()), and applying ML decoding relative to the effective
modulo-noise N’ [21]. In the next section we show how to replace the uniform

random code by a lattice code.

3Inspired by a preprint of our work, Forney suggested to view this as a canonical model which

connects between Wiener theory and Shannon theory [17].
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4 Nested Lattices for Shaping and Coding

As in the case of a BSC channel, we shall see that it is possible to achieve capacity
using linear codes instead of a code drawn at random. For the MLLAN channel, this
means using a nested lattice code, where the coarse lattice A is used for shaping
so it is a good quantizer, and the fine lattice A; defines the codewords so it is a
good channel code. Furthermore, for the MLAN channel lattice decoding is optimal,
so that we will obtain a lattice encoding/decoding scheme to replace the random-
code/ML-decoding scheme of Section 3, having the same capacity. The scheme
is described in Section 4.1 below, and its optimality is stated in Theorem 2 in
Section 4.2.

A delicate point is, however, that the effective noise in the MLAN channel is
not precisely Gaussian for any finite dimension; hence, lattice decoding no longer
means Euclidean decoding but rather decoding with a noise-matched “metric™.
Nevertheless, for a more restricted class of nested lattices (see Sections 7 and 8),
Euclidean lattice decoding becomes asymptotically optimal as the dimension goes
to infinity, hence it achieves capacity as well. This result is formally stated in
Theorem 3 in Section 4.3.

A nested lattice code is a lattice code whose boundary region is the Voronoi
region of a sublattice. This may be visualized as in Figure 1. The use of nested
lattices goes back to the works of Conway and Sloane [7] and Forney [15] (where
they were called “Voronoi codes” or “Voronoi constellations”)°. More recently such
codes found application in Wyner-Ziv and dirty paper encoding [33].

The shaping sublattice (i.e., the coarse lattice) is A, the lattice defining the
MLAN channel. We will choose A so that its average power per dimension is Px

and its normalized second moment approaches that of a sphere, namely ﬁ The

4We use here the (popular) term “decoding metric” although the distance measure induced by

ML decoding is not necessarily a metric.
5Conway and Sloane’s original definition [7] was limited to self-similar lattices. Forney’s Voronoi

codes, allow, by construction, any nesting relation. Here we prefer to use the name “nested codes”,

which links to the more general context of algebraic binning [33].
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Figure 1: Nested lattices of ratio three.

fine lattice should be good for channel coding, i.e., it should achieve the Poltyrev
exponent, as explained in Section 7 below.

Formally we say that a lattice A (the coarse lattice) is nested in A; (the fine
lattice) if A C A4, i.e., if A is a sublattice of A;.5 The fundamental Voronoi regions
of A; and A are denoted by V; and V, respectively; their corresgonding volumes by
Vi and V', where V; divides V' by construction. We call (
The points of the set

%) " the nesting ratio.
C = {A; mod A} £ {A; NV} (33)

are called the coset leaders of A relative to A;; for each ¢ € C the shifted lattice
Ac = c+Ais called a coset of A relative to A;. The set of all cosets, i.e., the quotient

group of A1 by A, is denoted by A;/A. It follows that there are V/V; different cosets,

6In some publications the coarse lattice is denoted A; (for shaping) or A, (for quantization),

while the fine lattice is denoted A, (for coding).
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Figure 2: Encoding/Decoding scheme.

whose union gives the fine lattice

UJAc=As (34)

ceC

The coding rate of the nested lattice code is defined as R = log|C| = +log|A1/Al.
It follows that
1

R= - log%1 = log(nesting-ratio). (35)

4.1 Encoding/Decoding scheme

We now incorporate a lattice code into the modulo transformation scheme of Sec-
tion 3, with nested lattice codes replacing the random codebook, as shown in Fig-
ure 2. Let (A1, A) be arate-R nested lattice code as defined in (35), with 0%(V) = Px.
Let mod A denote modulo lattice operation with respect to the Vorono: region V
of the coarse lattice. Let {2; denote some fundamental region of the fine lattice Ay

to be specified later, and let QQq, denote the corresponding lattice quantizer.

o Message selection: Associate a message with each member of the set of coset

leaders C = {c} as defined in (33). 7

e Encoding: Let the dither U be defined by U ~ Unif()). Given the message

c € C, the encoder sends

X = [c — U] mod A. (36)

"In fact, ¢ may be replaced by any member of the coset Ac.
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Figure 3: Equivalent modulo-additive noise channel. Addition is modulo A.

Consequently, by Lemma 1 and (23), X is uniform over V (independent of c)

and the average transmitted power is Pyx.

e Decoding: Let o = PXP‘fPN as in Section 3. The decoder computes

¢ =Qqu (@Y +U) mod A. (37)

This transmission scheme is depicted in Figure 2, where 'Y + U is denoted by

Y"”. By the “distributive” property of the modulo operation, we can rewrite (37) as

¢ = Qo ([@Y + U] mod A) mod A (38)
= Qqo,(Y') mod A (39)
= Qq, ([c+N'] mod A) mod A (40)

where (39) follows since Y’ = Y” mod A from (13) (with © = V), and (40) follows
by the inflated lattice lemma (Lemma 2) where N’ = (1 — @)U + aN mod A. The
equivalent channel from c to ¢ is illustrated in Figure 3.

Since the channel is modulo additive and A is nested in Ay, the decoding error

probability for any codeword c is given by

P, =Pr(N' ¢ Q). (41)
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4.2 Noise-matched lattice decoding

Since we use A; (or more precisely C) as a channel code for the MLAN channel with
noise N’ which is not Gaussian (or spherically symmetric), the optimal decoding
region €2 is not the Voronoi region of A; with respect to Euclidean metric. Rather,
we define €2}, a fundamental region of Ay, to be an ML decoding region with respect

to N’ of the zero codeword. Thus, 2} is a fundamental region satisfying®
0p = {x: fw(x) > fw(x—cmod A) VeecC}. (42)

A decoder using the quantizer Qq:(-) will be called an ML lattice decoder or a
noise-matched lattice decoder. Note that the decoder is a lattice decoder in the sense
that the decoding regions are congruent but is not a (Euclidean) nearest neighbor

decoder since N’ is not quite spherically symmetric.

Theorem 2 (Capacity-achieving nested lattices with ML lattice decoding)
For any € > 0, there exists a sequence of n-dimensional nested lattice pairs (A&"), A(”))
whose rate R as defined in (85) is greater than C — € for sufficiently large n, and

whose decoding error probability (41) satisfies as n — oo
P, = Pr(N' ¢ Q{"*) - 0. (43)

Theorem 2 can be deduced by a suitable modification (to nested lattices) of
the analysis in [24]. Here we obtain it as a corollary to Theorem 5, which deals
with the error probability of a Fuclidean decoder. The latter is strictly inferior to
the noise-matched decoder assumed here and thus Theorem 2 indeed follows from

Theorem 5.

4.3 Euclidean lattice decoding

As we observed, a somewhat disagreeable aspect of the noise-matched lattice decoder

is that the decoding “metric” is now coupled to the choice of shaping lattice A (via

8Note that 2} is not uniquely defined by (42) as ties may be broken in different ways. One
possibility is to take Q} to be the union of all points either satisfying (42) with strict inequality,

or in case of a tie, belonging to the Voronoi region V.
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the probability density of the self noise U). Moreover, the decoding metric has
memory. This is in contrast to the single-letter form of the Euclidean decoding
metric, corresponding to white Gaussian noise.

Looking at the definition of N’ (21), we see that there are two elements to
this non-Euclidean nature of the decoder which we may separate. Define N” =
(1 — @)U + alN so that N’ = N” mod A. The first element is that the self noise is
distributed uniformly over V rather than being Gaussian. The second is that the
sum N” = (1—a)U+ (1 — a)N is then reduced modulo A. We may correspondingly
depict the operation of a noise matched decoder as follows. Upon receiving a vector
y" = ay + u, for every codeword c € C first compute the densities fn(y" —c+ A)
for all A € A, then sum them. That is, the metric associated with codeword c is the
sum over all metrics of its coset {c + A}, so that:

r(cly”) < Y far(y" —c+A) = py" —c) (44)
AEA

where
23 fer(x+ ). (45)
AEA
Accordingly, there are two natural simplified (suboptimal) decoders to be con-

sidered. First, we may approximate N” with a white Gaussian vector Z having the

Px Py
Px+Py’

and thus use the “folded Euclidean metric”

—llx — All®
logZexp{ 5. PPy (- (46)

AEA Px+Py

same second moment

The decoder may further be simplified by dropping the sum, keeping only the largest

term, resulting in the metric,

£ (x) £ min ||lx — A|> = ||x mod A% (47)

AEA
The metric p*(-) gives rise to a Euclidean quantization cell £; = V), so the decod-
ing operation in (37) becomes ¢ = Qy, (Y + U) mod A, and the decoding error
probability (41) becomes

P, =Pr{N' ¢ V,}. (48)
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Since decoding according to p* is suboptimal (i.e., mismatched decoding), P, in (48)
is in general larger than the decoding error probability in (43). Nevertheless, the
following theorem shows that capacity can still be approached using appropriate

nested lattice pairs.

Theorem 3 (Capacity-achieving nested lattices with Euclidean decoding)
For any e > 0, there exists a sequence of n-dimensional nested lattice pairs (Ag"), A("))
whose rate R as defined in (85) is greater than C — € for sufficiently large n, and

whose decoding error probability (48) satisfies as n — oo
P, =Pr(N' ¢ V) = 0. (49)

Theorem 3 follows as a corollary to Theorem 5 in Section 8, which goes further and
bounds the error exponent of a nested lattice code with Euclidean lattice decoding.
As a final remark, we note that in practice the folded Euclidean metric (46) may
allow to approach capacity with a less demanding nested lattice construction and

may be advantageous in practice, see [13].

5 Linear Estimation, Bias and Inflated Lattice
Decoding

In this section we illustrate the effect of using an inflated lattice decoder® by consid-
ering a one dimensional example, without the use of a dither. We consider uncoded
PAM transmission and compare the average error probability of an inflated (or
scaled) lattice decoder with that of a non-inflated lattice decoder. The inflated lat-
tice decoding approach relates to the issue of biased versus unbiased estimation in
the context of detection. We attempt to shed some light on the merits of these two
approaches.

Assume an element of a 4-PAM constellation is sent over an additive noise chan-

nel with AWG noise as illustrated in Figure 4. That is, let X € {-3,-1,1,3}

9The term “inflated” will be explained later in this section.
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points of imaginary inflated lattice

Figure 4: Regular slicer (ML), lattice quantizer decoder and inflated lattice quantizer

decoder.

fo
A

and assume that the four symbols are equiprobable, i.e., Pr{X = i} =

i € {—3,—1,1,3}. The receiver observes Y = X + N where N ~ N(0, Py

—

)

minimum distance (ML) decoder would decode as follows

4

-3 Y<-=2
. -1 -2<Y <0
X =4
1 0<Y <2
3 Y > 2.

\
These decision regions correspond to a standard slicer. The resulting average prob-

ability of error is

P, = % Y Pr{X #ilX =1} (50)

i=—3,—1,1,3

= 3/2-q(1/\/Px) (51)

where
* 1 52

q(t) = t \/%6_7(15 (52)

denotes the standard () function to avoid confusion with the quantizer function

Qa(+) to be used next.

Suppose now that we replace the slicer with a one dimensional midrise lattice

quantizer Qa(-) of step size A = 2, so that X =Qna (Y) where
Qa(Y) =iA/2 iff Y €[i—A/2,i+A/2), foriec2Z+1.
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Hence, the two outer decision boundaries in Figure 4 come into play. The average
probability of error of this system is P, = 2 - q(1/y/Py). We obviously lose with
respect to the ML decoder by bounding the decision regions of the two outer symbols
—3 and 3.

Consider now a third decoder that uses a one dimensional lattice quantizer but
this time with step size A/« where 0 < a < 1, so that X = aQa /a(Y), as illustrated
in Figure 4. We call such a decoder an inflated lattice decoder or simply an inflated
quantizer. We may optimize the scaling coefficient « so as to minimize the averaged
error probability

Po=p Y Pr(oQuu() #ilX =) (53)
1€{-3,-1,1,3}
We may alternatively view the inflated lattice decoder as using linear estimation

prior to quantization. That is, we may keep the step size A = 2 and decode as
X =Qa(X)

where X 2 oY is a linear estimator of X given Y. Note that the estimator is biased
and the estimation error D = X — X is statistically dependent on the transmitted
symbol X (as no dither is used). The optimizing scaling factor a,p;(SNR) may be
found numerically.

A suboptimal choice, at least for this one dimensional example, is to use MMSE
scaling. The MMSE criterion chooses o so as to minimize the expected estimation

error E{D?}. The resulting (Wiener) coefficient is aypsg(SNR) = ligﬁfR. Figure 5

compares the average error probability as a function of the SNR of the a regular
slicer, a lattice quantizer and a scaled (inflated) lattice quantizer. The performance
of the inflated lattice quantizer is depicted for various values of « as well as for the
MMSE value ayyse(SNR). The lower envelope of the dashed lines corresponds to
Qopt (SNR). Tt is seen that the inflated lattice quantizer has a substantial gain over
the standard (un-scaled) lattice quantizer at low SNR.

We conclude that when using a lattice quantizer at the decoder, we may gain by

using a biased linear estimator prior to quantization. In contrast, when a regular
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i “regular quantizer
regular slicer
inflated quantizer
with MMSE scaling
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average error probability
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Figure 5: Comparison of performance of regular slicer, standard (un-scaled) lattice
quantizer and inflated lattice quantizer. The dashed lines correspond to inflated

lattice quantizers with fixed values of a = 0.1,0.2,..., 1.
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transmitted lattice point
\ /
\ / imaginary transmitted point
(belonging to inflated lattice)

"codebook" boundary

Figure 6: Inflated lattice decoder. bold lines=Voronoi regions of original lattice code;
thin lines=decoding regions of the inflated lattice; small circles= actual transmitted

codewords; bold circles=inflated (imaginary) codebook.

slicer (with half open boundary decision regions) is used the unbiased estimator is
clearly superior as it performs ML detection.

In this one dimensional example, the distinction between a minimum distance de-
coder and a strict lattice quantizer decoder may seem of minor significance, affecting
only the boundary points. However, in high dimensions the boundary codewords are
typical and the distinction becomes of central importance. This may be visualized
by the multi-dimensional lattice transmission scheme with inflated lattice decoder
depicted in Figure 6. The noise is Gaussian and is depicted as a sphere. In high

dimensions almost all transmitted lattice points lie near the surface of a sphere of
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radius v/nPx. One such point is considered in the figure. With a non-scaled lattice
decoder, correct decoding occurs when the noise falls within the Voronoi region.
When the noise is large, this original Voronoi region is completely contained in and
is strictly smaller than the noise sphere. Thus, the probability of correct decoding is
proportional to the relative portion of the noise sphere contained inside the original
Voronoi region, which is strictly smaller than one. With an inflated lattice decoder,
the probability of correct decoding is proportional to the relative portion of the
noise sphere (centered at the transmitted codeword) contained inside the inflated
Voronoi region. The latter region is centered around the associated point of the
inflated lattice, which we call “the imaginary transmitted point”. We can see in
the figure that the intersection of the noise sphere with the inflated Voronoi region
has a larger volume than the volume of the original Voronoi region. Thus, the in-
flated lattice decoder has a smaller probability of error. Note also that if we were
to increase the scaling ratio, at some point the noise sphere would cease to intersect
the inflated Voronoi region. Thus, the optimal scaling ratio is finite. Furthermore,

Qopt (SNR) — avmse (SNR) as the dimension goes to infinity.

6 Random Coding Error Exponents of the MLAN
Channel and the Poltyrev Exponent

We now show that the random coding error exponents of the MLAN channel are
related to the Poltyrev exponent [26, 19]. We first give a heuristic explanation of
the relation, arriving at an expression for the MLAN error exponent. A rigorous
derivation is then given in Section 6.1.

Poltyrev studied the problem of coding for the unconstrained AWGN channel
with the input alphabet being the whole space R™. In this setting, the notion of
capacity becomes meaningless as infinite rates of transmission are possible. Instead,
the error probability (of an ML decoder) is measured against the normalized density

of the codewords. We now formalize these notions.
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Let C C R" be an infinite constellation of points (codewords) and let L-CUBE =
[—L/2,L/2]" be an n-dimensional cube of side length L centered at the origin.
Denote by

5 — lim su |C N (L-CUBE)|
~ Y |L-CUBE]
the density of the constellation. Note that V, 21 /0 is the average volume of a
Voronoi region of a codeword. Given an AWGN of variance Py the (normalized per

dimension) volume to noise ratio ' (VNR) p is defined as

‘/—02/n /
= Py. 54
H e N (54)
2/n . . . . .
Note that Y= - n is the asymptotic (in dimension n) squared radius of a sphere

of volume V,.. Thus, p has the significance of the ratio of the squared “radius of a
spherical Voronoi region” to the variance of the noise. When p = 1, a “spherical”
Voronoi region has the same radius as the standard deviation of the noise; for smaller
1 an error is highly likely and reliable communication is not to be expected. Thus,
i = 1 has the significance of capacity. See the discussion in [19, Section II.C] where
this is referred to as the “sphere bound”.

Define P,(C) to be the limit supremum (over L) of the average probability of error
of the codewords within L-CUBE, the size of the cube going to infinity. Denote the

best possible average probability of error for a given u by
P.() = inf P,(C)
where the infimum is over all codebooks with VNR u. Poltyrev showed in [26] that

P.(p) < e PP (55)
0The term VNR was coined in [19] where it is denoted by o?. In [26] 2mep is called the

generalized signal to noise ratio and is denoted by pu, i.e, Poltyrev’s p differs from ours by a factor

of 2me.
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where Ep(u), the “Poltyrev exponent”, is given by

Ep(u)=5[(u—1) —logy], 1<p<2
Ep(p) = Ep(u) = 3log %, 2<pu<4 (56)
Ba(u) = &, p>a

and corresponds, as for finite capacity channels, to the random coding and expur-
gated bounds on the error exponent [21].

The problem of coding for the MLAN channel is rather similar to Poltyrev’s
problem of coding for the unconstrained AWGN channel. Whereas in the first
problem the alphabet is compact, i.e., it is the Voronoi region V of a lattice, in
the latter it is unbounded, i.e., the entire Euclidean space R". Thus, we might
suspect that the decoding error probability in the two problems may be related
if we measure it in both cases against codeword density. A minor difference is
that the noise in the MLAN channel is not strictly Gaussian but rather approaches
a Gaussian distribution asymptotically as the dimension n — oo (with a proper
choice of a sequence of shaping lattices).

Consider a code of rate R for the MLAN channel with a fundamental Voronoi

Px
Px+Pn

is e"® and thus the volume per codeword is V, = V/e"® giving a codeword density

region of volume V' = |V| and with o = ayymse = . The number of codewords

enR
As the effective noise has variance aPy = % we may associate with the code
and channel a corresponding effective VNR
v 1+SNR o p
Mot = o P = —am = € (C=R) (58)

Px+Py
using the fact that for a (high dimensional) almost spherical Voronoi region V, we
have V =~ (27rePX)"/2. Note that pes > 1 when R < C'. We now show that for a
lattice with G(A) close to 2—71”3 (i.e., with an approximately spherical shaping region
in a second moment sense) the error probability in ML decoding of an optimal code

is indeed bounded by (55) with p replaced by pes-
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6.1 Detailed analysis

Denote by E}(R) and Ef(R) the random coding and expurgated error exponents,
respectively, of the A-MLAN channel Y/ =t + N’ mod A, t €V, as characterized
in Lemma 2, relative to an input distribution uniform over the alphabet 2 = V.
Note that for a modulo additive noise channel, a uniform input indeed maximizes

the random coding and expurgated bounds [21]. Let
EA(R) = max [E} (R), EX(R)] (59)

so that F(R) is a lower bound to the true error exponent of the A-MLAN channel.

As we have seen, choosing a shaping lattice A with normalized second moment

1 . Px c 1. . . .
G(A) close enough to 5, and o = 55—, ensures a vanishing loss in capacity in

the MLAN transformation. We now analyze the resulting error exponent.

The random coding error exponent of a modulo additive noise channel can be
expressed conveniently in terms of Rényi entropies, see e.g., [14]. For the A-MLAN

channel, this gives

. 1 1
EA(R) = max p[-logV — —hy(N') — R] (60)
T T
= goax P[E log — 7 — Ehﬁ(N )]
1
= max —p[hs(IN')]

where p = ﬁ and ¢ is the density of the codewords as defined in (57), and where

the Rényi entropy of order g is defined by

p
1-p
where fn(-) denotes the probability density of N'. Taking into account that Px =
G(A) - V™ we have

hg(N') =

log( / v (x)Pdx)? (61)

}%x 1 no_
()~ o) = B (62)

1 1
> maxp|g log2mePx — —h;(N') — R| — log 2meG(A). (63)
n

0<p<1

. 1
Ej(R) = max p|;log -

28



Let Z ~ N(0, PZX+PIJDVN ). In Lemma 5 in Appendix A, we show that for C' — 1052 <R<C

Jmax p| g log 2mePx — h;(Z) — R| = Ep(n) (64)

with pp = €€ B and C = 1 5 log(1 —|— ) Thus, Lemma 5 expresses Poltyrev’s ran-
dom coding exponent in terms of Gallager s random coding exponent of a mod-A

channel. Recall from (27) that for o =

Px Py
Px+Pn

ﬁ, the variance per dimension of N’

is . Thus, comparing (63) with (64) we see that if N’ were white and Gaus-
sian, then the random coding exponent of the MLAN channel would approach the
Poltyrev random coding exponent as G(A) — 7. Theorem 4 below specifies under
what conditions this holds, and also extends this to the expurgated exponent'!.
We first introduce the following definitions. Let R, denote the covering radius of
A, i.e., R, is the radius of the smallest ball containing the Voronoi region V. Also,
let R, denote the effective radius of the Voronoi region, i.e., the radius of a sphere
having the same volume as V. Finally, substituting the effective VNR p = ¢X¢—F)

from (58) in the Poltyrev exponent Ep(u) given in (56), we have

TP _(C~R), max(0,C -2 <R<C
Ep(eX€~0) = C—R—-3log?, max(0,C — log2) < R < max(0,C — “%2) (65)
1e2(C-R) 0 < R <max(0,C — log?2)

The following theorem is proved in Appendix A.

Theorem 4 (Random-coding error exponent for a fixed shaping lattice) For

any n-dimensional lattice A, the error exponent of the A-MLAN channel satisfies
Ex(R) > Ep (X9 R e®)) _¢(A) (66)

where Ep(-) is the Poltyrev exponent,

3 1 1
ei(A) £ log (%) + 5 log 2meG, + (67)

HUnfortunately, unlike for the case of capacity (corresponding to regular entropy, i.e., Rényi

entropy of order p = 1), there seems to be no direct way to bound the difference between Lh;(N')
and hz(Z) in terms of log(2reG(A)).
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and
R,

€2(A) 2 log (E) + %log 2reG(A), (68)

with R,, Ry and G(A) denoting the covering radius, effective radius and normalized
second moment of A, respectively, and G, denoting the normalized second moment

of an n-sphere.

To achieve the Poltyrev exponent Ep(u) at i = 2“5 we would thus like €, (A)
and €(A) to be small. To that end, we confine ourselves to a more stringent class
of shaping lattices A. Following a result of Rogers [27, 6], there exist lattices whose

n
covering density, i.e., (%) , satisfies,

1< (%)n <c-n-(logn)* 2 R(n) (69)

for some positive constants ¢ and a. We shall refer to such a sequence of lattices as
“Rogers-good”. By the proof of Lemma 1 of [30], this implies in particular that for
such a sequence of lattices G(A™) — ;L as n — oco. Also, from (69) it follows that

1 Ru)"
ﬁlog(F) — 0 asn — oo.
Corollary 1 For a sequence of Rogers-good lattices A™,

liminf By (R) > Ep (e 1) (70)

n—

where Ep (e®X¢=) is given in (65).
Remarks:

e Note that Ep(u) vanishes at =1, i.e., at R = C = $log(1 + Px/Py) which
is the well known capacity of the original AWGN channel.

e As noted, the exponent in (56) was derived by Poltyrev [26] in the context of
coding for the unconstrained AWGN channel. In fact, the proof of Theorem 4
may be considered as an alternative simplified approach to proving Poltyrev’s

result. A similar simplification has been done previously in [19, Section VIII].
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Figure 7: Comparison of the (lower bounds to) error exponents of the power con-
strained AWGN channel (dashed line) and the Poltyrev exponent (solid line). The
circles in the figure separate the expurgated, straight line, and random coding part

of the curves respectively.

e We conjecture that (70) is in fact an equality, so that the (bounded) MLAN
channel is asymptotically equivalent to the Poltyrev (unconstrained) channel
with the same VNR p. As shown in section 6.2 below, this means that the
MLAN channel transformation looses in the error exponent as the rate de-

creases below capacity.

6.2 Comparison with the error exponents of the power con-

strained AWGN channel.

Denote the random coding error exponent of the original power constrained channel

(1),(3) by E%Lox(p; SNR) (where R and yu are related via p = 2(€~%). This exponent
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Figure 8: Comparison of random coding exponent of the power constrained AWGN
channel (solid line) and the Poltyrev random coding exponent (dashed line).The

curves depicted are all above the critical rates of the respective channels.
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is given by [21, p. 340]

EEON(:U'; SNR) (71)

1 SNR + 1 4
= - — — 1 2
4{(SNR+1+N) (SNR +1 u)\/ + —SNR SNR+1+N} (72)

1 SNR+1 SNR [ SNR + 1 4
-1 — NR +1— 1 -1
*3 Og{ p o ONRA1—p) \/+ SNR SNR+ 1+ 1 ”

1 1 SNR 1 / SNR? 1
— — 4 4= <R< - )
2log [2+ 1 +2 1+ 1 <R< 2log(1+SNR) (73)

The expurgated exponent is given by [21][p. 342]

SNR 7
ez NR)="""(1—,/1— —C 4
for
1 1 1 SNR?
< Z 4z
R_210g 2—!—2 1+ 1 (75)

Figure 7 compares the exponents Econ(R) and Ep(R) for several SNR values. We
note that at high SNR, the random coding and straight line sections of Econ(R)
tend to the Poltyrev exponent. This can be seen more clearly in Figure 8, where the
random coding exponents are plotted as a function of the SNR and u. Note that
Ep(pt) does not depend on the SNR. We also note that at high SNR E&% (R = 0)

is twice as large as E;*(R = 0).

7 An Ensemble of Good Nested Lattice Codes

The scheme presented in Section 4.1 assumes a nested pair of lattices such that the
coarse lattice is good for quantization while the fine one is good for AWGN coding
under ML decoding. Later in Section 4.3, we further assumed the existence of nested
lattice pairs which allow Euclidean lattice decoding to be (asymptotically) optimal.

We now define, for any coding rate (35), a random ensemble of nested lattice

pairs Ay C A. We show that most members of the ensemble satisfy that the coarse
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lattice A is simultaneously Rogers-good (a good quantizer) and Poltyrev good (a
good channel code), while the fine lattice A; is Poltyrev-good. This will allow us
to prove Theorem 5 which shows that the probability of error in the transmission
scheme of Section 4.1 satisfies P, = Pr(N’ ¢ V) < e~ ™(Fa(R)=on(1)),

Clearly, by integer scaling a lattice we may obtain “self-similar” nested lattices
for any integer nesting ratio. For example, Figure 1 depicts a self-similar nested
lattice pair of dimension two. The nine codewords are depicted as full circles. Note
that the open circles are identical mod A to full circles. Here, the nesting ratio is
three. A lattice may also have a sublattice that is a scaled and rotated version of
it. See [5]. In general, the pair of nested lattices discussed in this paper need not
be similar and the nesting ratio does not have to be an integer. We note that in
[25] a related construction of nested trellis codes is given that is better suited for
applications.

We begin with a description of Loeliger’s type A construction of a random mod-p
lattice ensemble [24]. See [6] for a general definition of Construction A. The con-

struction of a good n-dimensional lattice consists of the following steps [11]:

1) Draw a generating vector g = (¢i,...,gn) according to g; ~ Unif(0,...,p—1)

iid.,i=1,...,n.
2) Define the discrete codebook,
C={xeZ, : x=(g-qgmodp ¢=0,...,p—1} (76)
Note that C is a subset of the discrete cubic grid {0,...,p — 1}".
3) Apply Construction A to lift C to R” and form the lattice:
AN =plC+7Z" (77)
The goodness of this lattice ensemble for AWGN channel coding and for quan-

tization is shown in [11]. We extend the discussion to the generation of a pair of

nested lattices which is good for the MLAN channel. We use a transformed version
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of A} above as the fine lattice. As for a coarse (shaping) lattice, we use a lattice
A that is simultaneously Rogers-good and Poltyrev-good. This is necessary for Eu-
clidean decoding to be adequate, since a Euclidean decoder “ignores” the folding of
the noise and hence we would like the probability of folding to be (exponentially)
small. In [11], it is shown that a lattice may indeed simultaneously be Rogers-good
for covering and Poltyrev-good for channel coding. That is, we may take A (more

precisely, the sequence of such lattices) such that the following two properties hold:
1. (%) < c¢-n- (logn)® for some constants ¢ and a.
2. For any o% < o%(V),

Pr{N(0,0?) ¢ V} < e Er()=on(l)] (78)

”20(;} ) is the VNR of the coarse lattice (viewed as a channel code)

where p =

relative to a noise N (0, 0?).

Note that the first property implies that log(%) — 0 as n — oo. Let G denote the
generating matrix of this lattice.

From the construction of the fine lattice A} above, we have that the n-dimensional
cubic lattice Z™ may be viewed as nested in the resulting lattice, i.e., Z" C A. The
nesting ratio is given by

v=/1Vi=p (79)

so the coding rate (35) is R = log(y) = %log(p). We now apply the linear trans-
formation G to A to obtain the modified lattice A; such that (A, Ay) is the desired
nested lattice pair. Note that the transformation does not affect the nesting ratio.
Since the unit cubic lattice Z™ is a sublattice of Al, it follows that A = GZ" is a
sublattice of Ay = GA].

We may view the construction as starting with a self similar pair of nested lattices
A € p7'A as depicted in Figure 1. The nesting ratio at this point is {/p* = p. We
then dilute the lattice p~'A by picking one of its points, along with all its multiples

modulo A. This results in a new lattice A; and a nesting ratio of {/p. Since the
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total number of codewords is p, for a given rate R we must choose p = [e"E], where
[] denotes rounding to the nearest prime, and apply the above construction.

For large p, the resulting ensemble is “matched” to the A-MLAN channel, in the
sense that the codewords of the fine lattice A; become uniform over the Voronoi
region of A. Hence, a typical member of the ensemble approaches the optimum
random-coding error exponent of this channel. These facts are proved in the next

section.

8 Error Analysis in Euclidean Lattice Decoding

In this section, we prove that capacity as well as the Poltyrev exponent may be
approached arbitrarily closely using nested lattices from the ensemble described in
Section 7 and a Euclidean decoding metric as defined in Section 4.3. Specifically,

we prove the following theorem.

Theorem 5 (Error exponent in Euclidean lattice decoding) For any rate R <
C = %log(l + SNR), there exists a sequence of n-dimensional nested lattice pairs
(Ag”),A(”)) whose coding rate as defined in (35) approaches R, and whose decoding

error probability (48) under Euclidean lattice decoding satisfies
P, = Pr{N' ¢ Y} < ¢=n(Ep(e9)-0n () (80)
where 0,(1) = 0 as n — 00, and E,(u) is the Poltyrev exponent given in (56).

Since Ep(p) > 0 for all g > 1, Theorem 5 implies that for every rate R smaller
than capacity P, goes to zero as n — oo, which is Theorem 3. Furthermore, since
Euclidean decoding is suboptimal relative to ML decoding, Theorem 2 follows as
well.

Proof: Assume the ensemble of nested lattices defined in the previous section
with 6%(V) = Px and coding rate R. We wish to evaluate the error probability P,
in lattice decoding of a random member of this ensemble using the standard random-

coding error exponent method [21] (as done, e.g., by Poltyrev [26] and Loeliger [24]).
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But this method assumes ML decoding, while as explained in Section 4.3 Euclidean
decoding may not be ML. To overcome this difficulty, we first bound P, by the
probability of error in the presence of “truncated Gaussian” noise, Zy,, for which
Euclidean decoding 4s optimal. To establish this bound, we need to define a few
auxiliary random vectors.

Recall that N” = (1 — a)U + aN so that N’ = N” mod A. That is, N” is the
effective noise prior to the modulo operation. In Lemmas 6 and 11 in Appendix A

we show that there exists a Gaussian vector Z* ~ N (0, Pz« - I) with

PxP R,\> PxP PxP
i < P () i < RO e (61
n—+ 2 Px+PN R@ P)(+PN Px+PN
such that
fN”(X) < ea(A)'an* (X) (82)

where €;(A) is defined in (67). That is, the density of N” is not “much” greater
than that of the density of a Gaussian distribution with a “slightly” greater variance.
Note that the bound is uniform in x, i.e., ¢ (A) does not depend on x. Thus, we

may bound the probability of error by
P, =Pr{N' ¢V} < Pr{N" ¢ V} < WM Pr{Z* ¢ V}. (83)

Unfortunately, we cannot apply the random-coding error exponent of Theorem 4 to
bound Pr{Z* ¢ V), }, since Z* is not a modulo-A noise. We can neither apply it to
bound Pr{Z* mod A ¢ V,}, because for this noise V; is not an ML region. Instead,
we shall bound this probability in terms of Pr{Z,, ¢ V,}, where Zy, is a truncated

version of Z* limited to the Voronoi region of A. That is, Z, has the following

distribution
1 " , cy
fa = | =l (81
0, otherwise,
where
e:(n) 2 Pr{Z" ¢ V} (85)
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is the probability of truncation. Since V; C V, we have Pr(Z, € V,) = Pr(Z* ¢
V,)/Pr(Z* € V). Thus

PI“(Z* ¢ Vl) = 1- PI“(ZV € Vl) (86)
= 1- PI‘(ZV S Vl) PI"(Z* S V) (87)

Note that from (81), the equivalent VNR of the coarse lattice (viewed as a channel
code) relative to Z* is u = 1}:;; > 14 % — 0,(1) = €%¢ — 0,(1), so from (78) the

second term in (88) is upper bounded by
Pr(Z* ¢ V) < e n(Er(<7)—on), (89)

We now turn to evaluate the first term in (88), Pr(Zy ¢ V;). Consider a (A, Zy)-
MLAN channel
Y =X + Zy mod A. (90)

The next lemma shows that when A is simultaneously good in the above senses,
the exponent of this channel is arbitrarily close to the Poltyrev exponent for large

enough dimension n.

Lemma 3 If A is Rogers-good and Poltyrev-good, then the random coding exponents
of the (A, Zy)-MLAN channel satisfy

EA(R; ZV) Z EP(EZ(C_R) - On(l)) - On(l)' (91)

The lemma is proved in Appendix B.

We next show that we may replace the random code with a lattice from the
ensemble defined in the previous section without affecting the error exponent. Con-
sider first the random code (nonlattice) ensemble obtained by applying a uniform
distribution over the fine grid (p~' - A) N V. Denote the union of the random coding

and expurgated error exponent corresponding to this ensemble by
En(R; Zy, p) = max (E} (R; Zy, p), EY*(R; Zy, p)) - (92)
where as above, p = [¢"f]. The next lemma is proved in Appendix C.
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Lemma 4 If A is Rogers-good, then
E\(R; Zy,p) > EL(R; Zy) — 0a(1). (93)

The claim for the expurgated exponent may be proved similarly.

Consider now the ensemble of nested codes defined in Section 7. It can be
seen that each codeword in the ensemble is uniformly distributed over the basic
grid (p™'-A) N V. Furthermore, the distribution of the difference between any
two codewords is also uniform. The pairwise distribution is thus identical to that
obtained by drawing each codeword independently and uniformly over the basic grid
(p~' - A) NV as done in the random code ensemble. Therefore (see [21]), these two
ensembles have the same random coding error exponent. It may also be shown that
with probability going to one (as n — 00) a lattice drawn from the proposed nested
lattice ensemble will satisfy the expurgated error exponent bound in (92). Thus, the
probability of error for this ensemble of nested lattices when used over a (A, Zy)-
MLAN channel with ML decoding is governed by the error exponent Ej(R;Zy,p).
|x||?/2P7»

Furthermore, since V; C V and the density of Zy is proportional to e~ inside

VY and zero elsewhere, it follows that Euclidean decoding is ML for this channel.
Thus,
Pr(Zy ¢ V1) < e "FARZvp), (94)

We can now combine (83), (88), (89), Lemma 3, Lemma 4 and (94), to obtain
PI‘(NI ¢ Vl) < eel(A)- . e—n(Ep(ez(C_R))—on(l)) + e—n(Ep(eQC)—on(l)) (95)
S efn(Ep(eﬂC*R))*o"(l)) (96)

where the second inequality follows because the first exponent dominates. This

establishes Theorem 5.

9 Conclusions

We have demonstrated that using nested lattice codes in conjunction with an MMSE-

scaled transformation of the AWGN channel into a modulo additive noise channel,
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lattice codes can achieve capacity using lattice decoding. It should be noted however
that the precise definition of lattice encoding and decoding used throughout this
work differs somewhat from that in previous works.

This transformation of the original power-constrained channel into a modulo
additive-noise channel, though sufficient for achieving capacity, is not strictly infor-
mation lossless. This loss manifests itself in the error exponent. The error exponent
is lower-bounded by the Poltyrev exponent, which was derived in [26] in the context
of coding for the unconstrained AWGN channel.

As illuminated by Forney [17], the combination of MMSE estimation with a
dithered lattice code presented here offers a useful connection between Wiener and
Shannon theories. Recent work indeed indicates that the underlying principle may
find application in diverse areas of digital communications, see, e.g., [22]. The
random dither can be replaced in practice by a suitable deterministic translation of
the fine lattice [17]. As discussed in Section 5, for finite dimensional (e.g., uncoded)
modulation the best linear estimator slightly deviates from the MMSE solution.
Section 5 also presents equivalent forms of the estimation-lattice-decoding scheme.

Similar observations were made in the source coding context, by incorporating
filters with dithered lattice quantizers [32]. Here the role of shaping is accomplished
by entropy coding. As in the scaled MLAN transformation, with “good” lattices
and optimum filters entropy coded dithered lattice quantization achieves Shannon’s
rate-distortion function for Gaussian sources.

The proposed encoding scheme may easily be generalized to non-white Gaussian
noise/linear Gaussian ISI channels. The scheme also is related to “dirty paper” cod-
ing techniques. In particular, the coarse lattice component of the nested code plays
a role similar to that of the “lattice strategy” for canceling interference known to the
transmitter [12], stemming from the work of Costa on the “dirty paper” channel [8].
Indeed, the present work was directly motivated by [12]. In this respect, it confirms
that various lattice theoretic schemes such as trellis shaping and precoding for ISI

channels may be extended so as to achieve capacity at any SNR and there is no
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“inherent” precoding loss. See [33, 25, 13] for a detailed account.

The notion of “good” nested lattices is central to our approach. Such codes are
useful for “structured binning” [3, 33]. As mentioned in Section 7, one approach
to the construction of such codes is by using self-similar lattices [5]. However, this
approach is limited and it is not clear that any nesting ratio may be approached
with self-similar lattices. The construction given in Section 7 is more general and
allows for any nesting ratio. Furthermore, it may readily be interpreted in terms of

conventional coding techniques in the spirit of trellis shaping [16].
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Appendix

A Random Coding Error Exponents of MLAN
Channel

In this section, we prove the following two propositions which together constitute

Theorem 4.

Proposition 1
B} (R) > Ep (4R — ¢\(A) (97)
for max(0,C — 82y < R < C, where €1 (A) and e3(A) are defined in (67) and (68
2

respectively.

Proposition 2
B3 (R) > B (XC"00) — () (98)

for 0 < R <max(0,C —log2).

Before proving the first proposition, we introduce two lemmas. We use the
following identity that relates the Poltyrev random coding exponent to that of an

“Infinite dimensional” MLAN channel.

Lemma 5 (Poltyrev exponent as a “spherical” MLAN exponent I)

1 T
fax p| 5 log2nePx — h;(Z) — R| = Ep(p) (99)

with u = eX°~® and Z ~ N (0, 22E5 ),

' Px+Py
Proof: Let §* = \/%—5{. Using the the fact that for Rényi entropy (as for Shannon

entropy), h;(aX) = h;(X) +loga, we can rewrite (99) as

max —ph,(5°Z) = Ep(u) (100)

0<p<1
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Define Zy = 6*Z. The Rényi entropy of order p of a (generic) Gaussian random

variable X with variance Py is

1
ho(X) = h(X) -] log epT 7 (101)
1 1 _
=5 {log 2nPx — 5 logp] (102)
1 1+p
= 3 log 27 Px + log(1 + p) (103)
substituting p = ﬁ. We therefore have
1
phs(Z2) = 3 [plog2m Py, + (1 + p)log(1 + p)]. (104)

Taking the derivative of —ph;(Z3) with respect to p, we get
T looh(Z)] = —3log2nPr +log(1+p) + 1 (105)
Thus, an extremum occurs when
log(1 4 p) = —log2mePy, (106)

or equivalently when

1
 27mePy,

p ~ 1. (107)

It is easy to verify that this extremum is indeed a maximum. Substituting (106)

and (107) in (104), we get

1 [log2m Py
—phs(Zy) = —= |—=—="=2 —log2w Py, — -log 2me P. 108
e r 7(22) 2 [ 2mePy, phGhEs 2mePy, og 2meFz, | (108)
1
= — |- — log 2meP. 1f. 109
2 [ dmep,, eTetm (109)
From the definition of Zy (57), we get
2R PP 2R 1
Pp=67P = XN ¢ = (110)
2nrePx Px + Py  2me(1+SNR) 2mep
Substituting (110) for Py, in (109) we get
1
ax —phy(Zy) = 5 |(u — 1) — log . (111)
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Finally, from (107) and (110) we note that p = 1 corresponds to a rate R satisfying

1
-1 112
27re/(27rel+SNR) (112)
from which we obtain the critical rate
log 2
R=C - 282 (113)

2
U

We next define a number of auxiliary random variables. Let R, be the covering
radius of A. Denote by B(R,) a ball of radius R, and let 2 be the second moment
per dimension of B(R,). We have (see, e.g., [30], for details)

,_1 1
n|B(R)| Ji.)
where G} denotes the normalized second moment of an n-sphere. Note that o2 is

RQ

2dx = G - U 2 =
[x[[°dx = G, - [B(Ru)| i

(114)

the second moment of a ball containing V', which has second moment Px. Thus,
Px < 0'2.
Define the following:

e Z; ~N(0,0?-1") where I" is the identity matrix of dimension n.
e Z*=(1—a)Z; +aN.
_ PxP
«Z=N (o, ﬁ)
The variance of Z* is related to that of Z by the following lemma.

Lemma 6
n  PxPy R,\? PxPy
n+2 Px+Py R¢> Py + Py’
Proof:  Recall that B ~ Unif(B(R,)) and that R, satisfies Vol(B(R,)) = Vol(V).

Since a ball has the smallest normalized second moment, it follows that

(115)

< Var(Z*) = (1 — a)’0* + o*Py < (

1 ) 1 R |?
~E > _F|B-— 11
CEIUIT > BB (116)
2
= (%) o’ (117)
Ro\?°
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Now from (118) and (23), we see that

Var(Z*)

< (-0

1 1
= (1- a)2—Var(Z1) + a?~Var(N)
n

R 1
1 ZEIU?
(%) Loy

% +042%Var(N)
( )[1—a —E||U|? + o? Var(N)]

3 ()2 PxPy
B R, Px + Py~

On the other hand, we have

n+2
.0'2

1 1
—E|[U|* < —R; =
n n n

from which follows the left inequality in (115). O

We are now ready to prove Proposition 1.

(119)

(120)

(121)

(122)

(123)

Proof of Proposition 1: We may bound the random coding error exponent of

the A-MLAN channel as follows,

EL(R)

max
0<p<1

max
0<p<1

max
0<p<1

max
0<p<1

max
0<p<1

[hs(27)

max p

0<p<1

log (

max p

0<p<1

1 1

p| = logV = ~hy(N) - R]

“logV — —hs(N") — R
Pl log " »(N")

1 1 ]

1

1 *
p| = logV = ~hy(Z") - R} — (M)

rl 1
p|5log2mePx — hy(2%) — R — 5 log 27reG(A)] —a(A)

rl
Pl3 log 2rePx — h;(Z)

~ hy(Z)] = B~ 3 log2meG(A)] — e1(A)

[ log2mePx — h;(Z) — R

F:) - %log 27T6G(A)i| — e (A)

[; log 2Py — hy(Z) — (R + (M) — ()

B} (1070) - 6 (4)
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(127)

(128)

(129)
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where (125) follows since the function p(z)® is convex-N for 0 < a < 1; (126)
follows by Lemma 9 proved below; (129) follows by Lemma 6 and since hg(aX) =
hg(X) + loga; and (131) follows by Lemma 5. O

Expurgated exponent:

We next bound the expurgated error exponent [21] of the A-MLAN channel. Since
for a modulo additive noise channel the expurgated exponent is achieved by a uni-

form input, we have

P
E$*(R) = supp [——log/ / 72 (/ VIt f y|t2)dy) dt,dts — R
p>1 t1€Y JtaceV

1
= supp[—logV2 —R—

p>1 LT

1
= supp[—logV2 - R—-
p>1 LT

o | / . ( /  Villy — ] mod A fa(fy b ] mod A)dy)

1 1
= supp l;logV2 — ElogV/

p>1 x€eVY
The last expression my be rewritten as follows. For the A-MLAN channel, define
the generalized Bhattacharyya distance of order p > 0 by

ppreaN) =tox [ ([ VRGN mod Niay) (39
xeV

Recall the definition of N”, the effective noise prior to folding, i.e., N" = (1—a)U+
alN. For the noise N”, define

%
Dthatt(NII) == log/ ( \/fNII fNII y + X)dy) . (136)
x€R™ yeRn?
We similarly define D?"*(Z*). Thus, we may write
1 1
EF(R;N') = supp [— logV — —th“tt(A; N') — R] (137)
p>1 [T n
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%log /t N /t N ( /y  Villy = 6] mod A) ey — ] mod A)dy) " dbydts

(/ Vi (y) e [Y+X]m0dA)dY>;dX—R

|-

|

dxdt 1]

(13

(13



We have the following lemma

Lemma 7

Dthatt (A, NI) S thatt (N”) (138)

Proof:
1

\/fo ) e ([y + x| mod A)dy) !

Bha . _
DM (A;N') = log

x€Y

= g/ (/EV D fr(y +A) Y fae((y +x) mod A+ X)dy |(140)

(139)

1

p

(142)

(143)

AeA NeEA
= g/ DD Vinly + V(v +%) modA+A')dy> (141)
xeV YEV AcA NeA
= log ( V o (y) frar (v + %) modA—i—)\)dy)
NeA T YER?
< log/ < V frr () fae ((y + %) mod A+)\’)dy>p
xey NeEA yeRn

= log / ( V e (3) e y+X)dy>
x€ERn? yER”?

_ Bha
— ‘Dp tt(N/I)

where (141) follows by the convexity of the function \/z and (143) follows by the
convexity of the function z'/? for p > 1. O

We also have the following identity (analogous to Lemma 5) that relates the
Poltyrev expurgated exponent to that of an “infinite dimensional” spherical MLAN

channel.

Lemma 8 (Poltyrev exponent as a “spherical” MLAN exponent IT)

1 a T
ili;f ar log 2mePx — DJ""(Z) — R| = Ep(u) (146)

for 0 < R < max(0, C — log2) with pu = eX¢~5),
Proof: Let us first compute D" (Z). We use the following property of Gaussian
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distributions,

f2y+2)fz(x) = [z +2/2)f55(x) (147)
1 e L wmr (4s)
— B 5] 2(o 2 — e 2(V20
V21 (0 /V/2) V21(v/20)
where o? = Var(Z) = %. This follows since
1 2 1 (v+z)”
f2) f2ly +2) = R (149)
2o 2no
2 2 z :DZ
- < ! ) P (150)
2o
1 1 _(Lyreyv)? (@) (151)
= é 20 - e 20
V21 (o /v/2) V27 (V20)
1 _ w+a/2)? 1 __a?
= VB ¢ W2 (152)
V27 (a/V?2) V21(V/20)
We obtain
1
P
D'(2) = log / (/. \/fz(x)fz(fv+y)dy) da (135)
T€R
1 _ (@+y)? ’
= log 20’ 202 dy d.fL' (154)
zeR \ JyeR 27r0 27m
1
z/2 2 P
= log/ (/ P 2(20)2 dy)p dx (155)
27r0
1
z/2 2 P
— log / (e o2 / B dy)pda; (156)
27Ta
= log/e 2(2\/_“)2 dx (157)
= log vV2712,/po (158)
1
= 51og87m?p. (159)
Plugging (159) into the L.h.s. of (146) and substituting 6* = \/2;1:713)(, it is left to
show that
1
sup p[— log 6" — 5 log 8mpo?] = Ep(p) (160)

pz1
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for 0 < R < max(0,C — log2) with u = e~ Differentiating the left side of
(160), we get

d . 1 9 . 1 9 1 8wo?
1 1
= —logd* — 3 log 8mo?p — 5" (162)
Equating to zero, we obtain
I ! 1 (163)
og —/— —
& §*% . 8wa2p
or equivalently
1
= —. 164
P 6*% . 8meo? (164)
Substituting (164) into (160), we have
1 1 1 1
sup p[— log6* — = log 8mpo?] = ——— |—log6* + = log6*%e| = ————.
pZIl) pl=log 2 g8mpo] 5*? . 8meo? & 2 & 5*2 . 16meo?
(165)
. . 2 _  PxP
Taking into account that 0% = 27—, we get
1 1 w
sup p[—log 8* — =log8mpo?] = ———— = L. 166
pzrl) pl—log g BOTP ] 5*? . 16mec? 8 (166)

Finally, note that from (164), we have that p = 1 corresponds to a rate satisfying

2mePx [e*®
1= o PPy (167)
Px+Pn
or
1 2mePx 1 1+ SNR

R=-log| ——5—| =zlog——— =C —log2. 168

98 (8we7PZX+PgN) 2 % & (168)
U

We are now ready to prove Proposition 2.

Proof of Proposition 2: We bound the MLLAN expurgated exponent as follows

EF(R;N') = (169)
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- sup,5; p [2logV — LDBhait(A; N') — R]
> SUP,>1 P [% logV — %thatt(N//) . R}
> Sup,>1 P [l logV — %thatt(z*) . R} — ()

- Sup,», p |3 10g &% — LDEMM(Z%) — R — & (1)

= sup,»; p [ log 2mePy — 1 DBhatt(Z*) — R —log 2meG(A)] — €1 (A)

— SUDP,>1 P [% log 2mePx — (thatt(Z*) + DBh““(Z))

— DBhrett(7) — R —log 2meG(A)] —

= SuUp,5; p [% log 2mePx — DBM(Z \srr(z — log 27reG( } —€1(A)

)
> SUp,>; P [% log 2mePx — th“tt(Z) — R —log2meG(A) — log (—“)] —€e1(A)
= sup,s; p [ log2mePx — DBMH(Z) — (R + e3(A))] — e1(A)
= ErL, (62(C—R—e2(A))) —e(A)
where (171) follows by Lemma 7; (172) follows by Lemma 10; ; (178) follows by
Lemma 6; and (180) follows from Lemma 8. [
The straight line part of the bound on F)(R;N’) in Theorem 4 now follows by

combining the results for the random coding exponent and the expurgated exponent.

Lemma 9 For any p >0

1 1 .
Proof: Using Lemma 11, which is proved below, for any p > 0
1 1 1 ney
Pha(NY) < e og e i () (182)
1
= loglfz-(x)[l5 + e1(A) (183)
1
= ;pha(Z*) + e (A) (184)
O
Lemma 10 For any p > 1
1 1
ﬁprhaft(N") < ﬁpr’wtt(z*) + e (A). (185)
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Proof: Using Lemma 11 which is proved below, for any p > 0

1 1
_prhatt(N//) < —plog/ </ \/enél(f\) fz+(y)erer®) fz. (y + X)dy> ’
n xER™ yERR?

n

= %plog / ( V2 (y) fz-(y + X)dY> " e
x€eR"? yeR”?
1

= —pDJMM(Z7) + e (A) (186)
O
Lemma 11 x)
1 fN” X)
glog ) e1(A). (187)

Proof: Let B denote a random vector uniformly distributed over a ball of radius

R, and fg(-) denotes its density

(- R~ x| < Ry

0, elsewhere

fe(x) = (188)
where 7, is the volume of a unit sphere of dimension n. Since U is uniformly
distributed over V, for any x € V we have

fu(x) _ Vol (B(R.)) _ (@)”
fax)  Vol(V) R.)

(189)

Thus ;
folx) < (%) fi(x) (190)

We next observe that for any x

1

—log /B(x)

n ji1(x)
where Z; is defined after (114), i.e., is Gaussian having the same second moment ad

B defined in (188). To see this note that for ||x|| = /no we have

1
log 2meG), + — (191)
n

1 1
- log fz, (x) = 3 log 2ea® = h(Z,). (192)
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Using (114) we have that

fZl (Ru) (n + 2)0'2 n02 1
= — = —. 193
fz,(/no) P 202 * 202 e (193)
Combining (192) and (193), we get that for ||x|| = Ry, we have
1 1 1 1
- log fz,(x) = h(Z,) — - logg = h(Zy) + - (194)
We also have for any x such that ||z]| < R,
1 1
- log fe(x) = - log Vol(B(R)) (195)
1 o?
= ;log e (196)
1 2 1 *
=5 log 2mec” — 5 log 2meG], (197)
1
= h(Z) — 3 log 2meG,. (198)

Since fz,(x) is monotonically decreasing with ||x|| , we have that (194) together
with (198) imply that for any x

1 20
le (X)

1 1
<3 log 2meG, + - (199)

We thus get

1 fox) _ 1, fulx) 1. fe(x)
e

1 1
< log (%) + 5 log 2meG, + —
n

= a(A). (200)
Recall that
N'=(1-a)U+aN (201)
and
Z'=(1-a)Z; +aN (202)
It follows from (200), (201) and (202) that
fN"( )
<€ (A). 203
D00 < (203
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B Proof of Lemma 3: Exponent of truncated Gaus-

sian MLAN channel

The random coding error exponent of the (A, Zy)- MLAN channel is given by

1 1
EN(R;Zy) = Qnax pl-logV — —hy(Zy) — B] (204)
We further have (recall that Zy is truncated version of Z*, see (84))
1 fz-(x) \*
ho(Zy) = ——1 — 205
@) = e [ (22 ax (205)
1 fz-(x) \*
1 ————— ) d 206
< l—aOg/n(l—et(n) x (206)
«o 1 1
= 1 1 «(x)%dx. 207
1_&0g1_€t(n)+1_aog ]Ran(X) X ( )
Taking o = p = ﬁ we get
h;(Z h;(Z*) + log ——. 208
pp( V)<p P( )+Og1_€t(n) ( )
Similarly we have
DBhatt v/ DBhatt VAl 1 - - 209
D} () < pDE(Z) + log (209)
Therefore, following the steps in the proof of Theorem 4 we get
E\(R;Zy) = Ep(p)—on(1). (210)

This completes the proof.

C Proof of Lemma 4: Exponent robust to fine
quantization of input

Consider the random coding error exponent corresponding to a uniform distribution

over the basic grid (p~' - A) NV. It is given by

r . _ 0 . _
E}(R; Zy,p) = max |E}(R; Zy,p) - pR] (211)
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where
1+p

1 1 1
EAUR;Zy,p) = ——log/ fz, ([y — x] mod A)T+ dy.
WEZyp) = =loe |\ w2 I

(212)
Compare this with the random coding exponent corresponding to a uniform input,

which is given by

Ej(R; Zy) = max p [E}(R; Zv) - pR] (213)
where
o 1 1 o 1+p
Ey(R;Zy) = ——log — fz,([y — x] mod A)T+dx dy = (214)
n yev \V Jxey Lip
! log/ ! Z / ! F2,(ly — x — 2] mod A) s dz dy
= = o (ly=—x—
n 2% ‘ (pil ’ A) N V‘ x€(p~1-A)NY zep~1.Y |p71 ) V| v

We next show that for any x € Vandz € p=t-V,

ﬁ /e s fz,([x — 2] mod A)dz = (1+ 0,(1)) fz,(x mod A) (215)

where A is assumed to be any Rogers-good lattice. Consider a ball of radius R, and
volume |B(R;)| = V. We have
B

G* - |IB(R)?™ = ) 216
Since Px = G(A)V?/™, this gives
G* n+2 G
e \/(“ ey n Gy VX (217)

For Rogers-good lattices, we have GG(I*:) — 1 and % =R(n)"/" =1+ 0,(1). Com-

bined with (216), this implies that for any x € V,

Ixll < Ry = R(n)" R = (14 03(1)) V/nPx (218)

where here o (1) = ,/”T“G(ij’() -R(n)'/™ — 1. Recalling that p = [e™f], we also have
forany z € p~t -V,

e (14 oy Y

) < = s

(219)
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For any x € V,
1 1 -Shef -2 ef

= . —-e Pz oxe Pz . (220)
1—e(n) /(2nPz)

va (X)

By the Cauchy-Schwarz inequality,

I1x[1? = 2[Ixlllz]| + l|z]|” < [|x + 2[|” < [|x]|* + 2[|x[||z]| + ||z|’ (221)
Therefore
— 12112 = 2||x[l]]=] +lzl12 211|112l
foXe T < fa,(x+2) < fa, (e T (222)
Now
|z]” + 2||x]|||z]| _ nPx/p*+ 2nPx/p nPx
< 1+0 (1) = —2X (1 +0,(1)) = 0,(1).
ot < TSNP (14 63(1)) = (1 0a(1)) = 0a(1)
(223)
The last two inequalities imply that
fay(x + 2 mod A) = (1+ 0(1)) fizy ()- (224)
Consequently, we obtain (215). Substituting (215) into (214), it follows that
ER(R; Zy,p) — B (R; Zy) = 0,(1). (225)

This proves the lemma.
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List of Figures

V]

Nested lattices of ratio three.

Encoding/Decoding scheme.

Equivalent modulo-additive noise channel. Addition is modulo A.

Regular slicer (ML), lattice quantizer decoder and inflated quantizer decoder.

Comparison of performance of regular slicer, standard (un-scaled) lattice quan-
tizer and inflated lattice quantizer. The dashed lines correspond to inflated

lattice quantizers with fixed values of a = 0.1,0.2,..., 1.

. Inflated lattice decoder. bold lines=Voronoi regions of original lattice code;

thin lines=decoding regions of the inflated lattice; small circles= actual trans-

mitted codewords; bold circles=inflated (imaginary) codebook.

Comparison of the (lower bounds to) error exponents of the power constrained
AWGN channel (dashed line) and the Poltyrev exponent (solid line). The
circles in the figure separate the expurgated, straight line, and random coding

part of the curves respectively.

Comparison of random coding exponent of the power constrained AWGN chan-
nel (solid line) and the Poltyrev random coding exponent (dashed line).The

curves depicted are all above the critical rates of the respective channels.
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List of Footnotes

10.

Note that the orthogonality principle implies X-X L Xbutnot X—X L
X.

. It is interesting to note that the information rate of 3log(2mePx) — h(N) is

achievable with = 1 even when N =Y — X is not independent of X.

. Inspired by a preprint of our work, Forney suggested to view this as a canonical

model which connects between Wiener theory and Shannon theory [17].

. We use here the (popular) term “decoding metric” loosely, as the distance

measure induced by ML decoding is not necessarily a metric.

. Conway and Sloane’s original definition [7] was limited to self-similar lattices.

Forney’s Voronoi codes, allow, by construction, any nesting relation. Here we
prefer to use the name “nested codes”, which links to the more general context

of structured binning [33].

. In some publications the coarse lattice is denoted A, (for shaping) or A, (for

quantization), while the fine lattice is denoted A. (for coding).
In fact, ¢ may be replaced by any member of the coset A.

Note that QF is not uniquely defined by (42) as ties may be broken in different
ways. One possibility is to take €2} to be the union of all points either satisfying
(42) with strict inequality, or in case of a tie, belonging to the Voronoi region

V.

. The term “inflated” will be explained later in this section.

The term VNR was coined in [19] where it is denoted by o?. In [26] 27repu is
called the generalized signal to noise ratio and is denoted by pu, i.e, Poltyrev’s

u differs from ours by a factor of 27e.
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11. Unfortunately, unlike for the case of capacity (corresponding to regular en-
tropy, i.e., Rényi entropy of order p = 1), there seems to be no direct way to

bound the difference between *h;(N') and h;(Z) in terms of log(2reG(A)).
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