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On Lattice Quantization Noise 
Ram Zamir, Member,  IEEE, and Meir Feder, Senior Member,  IEEE 

Abstract- W e  present several results regarding the propert ies 
of a  random vector, uniformly distributed over a  lattice cell. This 
random vector is the quantization noise of a  lattice quantizer at 
high resolution, or the noise of a  dithered lattice quantizer at all 
distortion levels. W e  find that for the optimal lattice quantizers 
this noise is wide-sense-stat ionary and  white. Any desirable noise 
spectra may be  realized by  an  appropriate linear transformation 
(“shaping”) of a  lattice quantizer. As the dimension increases, the 
normalized second.moment  of the optimal lattice quantizer goes  
to 1/2xe, and  consequent ly  the quantization noise approaches 
a  white Gaussian process in the divergence sense.  In entropy- 
coded  dithered quantization, which can be  modeled accurately as  
passing the source through an  additive noise channel,  this limit 
behavior implies that for large lattice dimension both the error 
and  the bit rate approach the error and  the information rate of 
an  Additive White Gaussian Noise (AWGN) channel.  

Index Terms-Lattice, quantization noise, shaping, normalized 
second moment,  d ivergence from Gaussianity. 

I. INTRODUCTION 

I N high-resolution quantization theory, it is common to 
assume that the quantization error of a  uniform or lattice 

quantizer has a uniform distribution over the basic cell of 
the quantizer [l], [S], [9]. This approximation is completely 
accurate for all resolution levels in (subtractive) dithered 
quantization, where a uniformly distributed noise, the dither, 
is added intentionally to the source before quantization and 
then subtracted from the quantizer output; see, e.g., [lo], [ 111, 
[21], and [22]. In any case, the (additive) uniform quantization 
noise model provides a convenient tool in analyzing schemes 
incorporating uniform, lattice, or linear trellis quantizers. 

In light of this model and the wide use of lattices in signal 
coding, it is interesting to characterize the statistical properties 
of a  random vector which is uniformly distributed over the 
basic cell of a  lattice; see, e.g., [12]. Thus we analyze in this 
paper the spectral properties and the divergence from Gaus- 
sianity of this random vector, referred to as lattice quantization 
noise. We mainly focus on optimal lattice quantizers, i.e., 
lattice quantizers that minimize the power of the quantization 
noise, and on their limit properties as the lattice dimension 
increases. 
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To be precise let us begin with the definition of a  lattice 
quantizer, which is somewhat broader than the usual definition 
given, e.g., in [4]. A quantizer is defined by a set of code points 
and a partition which is associated with it. The code points of a  
K-dimensional lattice quantizer form a K-dimensional lattice 
L = {li}, i.e., 

I; E RK, 1, = Q, li + lj E L vi, j . (1) 

No overload is assumed. Throughout the paper we assume that 
the lattice is nondegenerate,  i.e., it is spanned by K linearly 
independent basis vectors (the rows of its generator matrix). 
The partition P = {Pi} associated with the lattice quantizer 
is a collection of disjoint regions (whose union covers RK) 
which satisfy 

Pi=ii+Po={n:: :-i;EPo} (2) 

i.e., the ith cell is a  shift of the basic cell Pa by the ith point of 
the lattice. The lattice quantizer QK = {L, P} : RK -+ RK 
maps every vector gK E RK into the lattice point that is 
associated with the cell containing zK, i.e., 

QK(:K) =  I;, if gK E Pi . (3) 

The simplest example of a  lattice quantizer is the uniform 
(scalar) quantizer, whose code points are (0, *A, f2A,. . .}, 
and its quantization function Qi : ‘R --) R is such that 

Ql(x) = iA, for iA - A/2 5 x 5 iA + A/2. (4) 

In general, however, there are many possible partitions with 
respect to a given lattice, all have the same cells volume 
V = p(Po) which equals the reciprocal of the lattice points 
density, or the determinant of the lattice’s generator matrix 
[4]. When every source vector is mapped into the nearest  code 
point (as in the uniform quantizer example above), we get the 
Voronoi partition, in which the ith cell (denoted now Vi) is 
given by 

K = {: : II: - ZiII I II: - &(I, v.i #  i> (5) 

where (( (( denotes some norm. The discussion in this paper 
will be limited to the Euclidean norm. Fig. 1  shows three 
possible partitions with respect to the hexagonal lattice, where 
partition A is a Voronoi partition. We  note that while the 
Voronoi partition (5) is optimal in many cases, sometimes the 
more general definition of the partition and the mapping rule 
(3) is needed. One such example occurs when we incorporate 
pre- and post-filters [23] in the quantization process. Other ex- 
amples are noisy source quantization, and entropy-constrained 
quantization. 
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Fig. 1. The hexagonal lattice and three possible associated partitions: 
A-Voronoi partition (hexagons), B-rectangles, C-rhombuses generated 
via shaping of the Z  lattice and its Voronoi partition. 

An important structure figure of lattice quantizers which is 
used extensively in the literature as a measure for the quantize1 
efficiency is the normalized second moment  [4] 

GK = G(QK) = G(G P) =  z V1+2,K . (6) 

The normalized second moment is invariant to scaling and 
rotation of the space. It relates the density of the lattice points 
l/V, with the Mean Squared, quantization Error (MSE) per 
dimension 

1 ./PO ll:l12dz EZ-- 
K V 

z GK . v~/K. 

For the uniform scalar quantjzer Gi = l/12 Y 0.08333, 
while G2 N 0.080188 for the hexagonal lattice quantizer 
with a Voronoi partition (see Fig. 1). It was recently shown 
by Poltyrev [19] (see also Section III in this paper) that as 
K + co, the minimum value of GK --+ 1/27re = 0.058550. 

The goal of this work is to analyze the quantization noise, 
given either by QK(:) -9, or by QK(:+z)-~-~, where z is 
the dither, for dithered quantization. As noted in the beginning 
of the paper, this noise is modeled as a random vector 

z - U(Po) (8) 

uniformly distributed over the basic cell of QK. We  investigate 
in this work the statistical properties of z. In the next section 
we show that for optimal lattice quantizers the correlation 
matrix of 3  is proportional to the identity matrix, i.e., the com- 
ponents of Z  are uncorrelated and have the same power. Then, 
we further analyze this correlation matrix when the lattice is 
linearly shaped. Section III determines the distance of this 
vector from a Gaussian vector measured by the (normalized) 
information divergence, and shows that this distance vanishes 
asymptotically for large (optimal) lattice dimension. 

A slight generalization of the lattice quantizer is the tessel- 
lating quantizer, in which the basic cell PO may be rotated, and 
not only translated, to get the ith cell [8], [14]. For example, 
an equilateral triangle cell generates a tessellating quantizer 
which is not a  lattice quantizer. Despite their slight generality, 
tessellating quantizers are not considered in this work since 
their resulting noise can not be modeled as additive. 

II. LATTICE QUAN~ZATION NOISE SPECTRA 

In this section we consider 

R,%qZZt) = $1 ggtdg 
PO 

(9) 

the autocorrelation matrix of the quantization noise 2 N 
Lf(Po). Note that since the lattice is nondegenerate, R, is not 
singular. By (7) and (9), the MSE per dimension of the lattice 
quantizer may be rewritten as t = trace{R,}/K. 

Dejinition 1: A lattice quantizer is white if the samples 
of its quantization noise are uncorrelated and have the same 
power, i.e. 

R, = E I (10) 

where I is the identity matrix. 
The normalized second moment of the lattice G(QK) can 

be expressed in terms of R, as 

G(QK) = $  E!$!J =  L  . 
trace{ R,} 

V2/K K ’ 

Furthermore, by the arithmetic-geometric means inequality 
(see, e.g., [5, Theorem 16.8.41]), trace{R,}/K 2 (R,jliK, 
and thus G(QK) is lower-bounded by 

G(QK) 2 j& ’ IR,I1fK v-4 

where 1.1 denotes determinant. Equality holds if and only if R, 
is a  diagonal matrix with identical elements on the diagonal, 
i.e., if and only if QK is a white lattice quantizer. 

The optimal lattice quantizer in RK, denoted Q”,pt, is the 
lattice quantizer with the minimal possible normalized second 
moment GFt, where the minimization is taken over all lattices 
and their possible associated partitions [4]. Our main result in 
this section is given by the following theorem: 

Theorem 1: Q”,“” is white, and the autocorrelation of its 
quantization noise is 

R,EG”KP~.V~/~.I. (13) 

This theorem implies, for example, that the hexagonal lattice 
quantizer (A;) and the body-centered cubic lattice quantizer 
(A$), which are known to be optimal for K = 2 and 3, 
respectively, are white. 

To prove this Theorem we need to introduce the notion of 
“shaping” a (lattice) quantizer: 

Dejinition 2: The shaping of a  quantizer QK by a K x K 
nonsingular matrix A, is the quantizer Qk for which 

Q’,(X) =  A . QK(A-~x). 

It is easy to verify that if QK in the above definition is 
a lattice quantizer, then so is the shaped quantizer Q(K = 
{L’, P’}, whose code points and quantization cells are 

Zi = Al; and P,! =  {g : A-‘: E P;} (14) 

respectively. For example, Partition C (the rhombuses) in 
Fig. 1  was generated by shaping the 2 lattice and its associated 
Voronoi regions (which are squares), using the transformation 

A= (: $ )- 
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Fig. 2. Various shapings of the hexagonal-lattice / hexagonal-cells quantizer: 
(a) rotation, (b) scaling to north direction, (c) scaling to north-east direction. 

We observe the interesting fact that the transformed partition 
P’ is not the Voronoi partition associated with the transformed 
lattice L’. The Voronoi regions associated with the lattice in 
the example of Fig. 1  are, of course, hexagons (Partition A). 
The reason is that, in general, (1~ - &(( 5  ((E - lj (( does not 
imply llA(g - ii) I( < I (A(c - $)I 1, unless A is proportional 
to some measure preserving transformation (i.e., if and only 
if AAt 0: I) [9, sec. 8.581, and thus A& is not necessarily the 
nearest code point after the transformation. Fig. 2  illustrates 
various shapings of the hexagonal-lattice / hexagonal-cells 
quantizer. The dashed line in Fig. 2(b) represents the Voronoi 
cell of the transformed lattice. 

Following well-known formulas from vector analysis, the 
volume of the shaped quantizer cells is 

V’ zz 
s 

dg  = IAl . 
J’ 

dz  = IAl . V 
PA PO 

and the noise vector of the shaped quantizer, z’ N U( PA), 
equals in distribution to AZ. This implies 

R; = AR,At (15) 

i.e., the transformation A shapes the spectrum of the quanti- 
zation noise. 

We  can now proceed and prove Theorem 1. 
Proof: Let R, be the autocorrelation of the quantization 

noise associated with the optimal quantizer Q”,““. We  show 
below that if R, is nonwhite we can get a better quantizer. 
But we assume that Q”,“” is optimal. Thus R, must be white. 

Specifically, let 

A = &. R,lj2 (16) 

where RL II2 is an inverse root of R, and 6’ is a positive 
scalar, i.e., AAt = 6’ . R;l. As can be seen by substituting A 
into (15), shaping Q”,“” by A results in a white lattice quantizer 
Q’,, for which the autocorrelation of the quantization noise is 
RL = ~‘1, and the cells volume is 

V’ = IAl . V = &)“/lRzl . V. 

By substituting into (1 l), we get 

G(Qk) = - . 
trace{t’l} (R,(l/K 

(V’;2/K K = V2/K 5  G(Q’$? 
(17) 

where the inequality follows from (12), with equality if and 
only if Qzt is white. q  

Let us discuss some consequences of the result above. First, 
it follows from (16), (17), and the optimality of the Voronoi 
partition, that by iterating between whitening and Voronoi 
partitioning one monotonically reduces (i.e., improves) the 
normalized second moment of a  given lattice quantizer. Actu- 
ally, Theorem 1 adds another necessary condition to the well- 
known Lloyd conditions [13], [15] for the optimal quantizer. 

Second, the shaping procedure implies that by an appropri- 
ate linear transformation of a  (nondegenerate) lattice quantizer, 
any desired quantization noise spectra may be obtained. The 
optimal quantizer in the sense of minimizing the square error 
is white; however, a  nonwhite lattice quantizer obtained by 
shaping Q”,“” using a transformation A is optimal, for example, 
under a weighted square error criterion, i.e., minimizing the 
expected value of (2 - g)“W($ - z), where AAt = W-l. 
Nonwhite lattice quantizers also occur when pre/post-filters 
are incorporated in the coding process (see, e.g., [23] or any 
recent article on the CELP technique for speech coding). 

Finally, this theorem can be extended to infinite-dimensional 
lattice quantizers, i.e., to trellis-coded quantizers (TCQ) [3], 
[16] having a linear structure. We  denote by Qoo the trellis 
quantizer, and we replace the matrix A by the discrete time 
invariant shaping filter a  = {a,}, 7~ = 0,&l, f2,. . ., whose 
frequency response is 

A(f) = can. e --jny -l/2 5  f 5  l/2. 

The shaped infinite lattice quantizer is now 

Q:,(z) = a * Q&z-l) * x) 

where z is a source sequence, a(-I) = {ai-‘)} are the 
coefficients of the inverse filter (i.e., the inverse Fourier 
transform of l/A(f)), and * denotes the convolution oper- 
ator. Spectral shaping will also occur when Qa is in the 
feedback loop, resembling predictive-TCQ [16]. Now, let 
z= . . ~~-l,~O,&,..~, denote the (stationary) quantization 
noise process of Qco. As shown in the Appendix, in some 
sense 2 is uniformly distributed over the infinite-dimensional 
basic cell of Qoo. Clearly, if the quantization noise spectrum 
is SZ(f), then after shaping it becomes IA(f)12S,(f). As 
discussed in the Appendix, the normalized second moment 
of &a is defined as 

G(Q,) 6 (2re)-l& 

where t is the power of 2, and P(Z) is the entropy rate 
power of 2. This definition coincides with (7) in the finite- 
dimensional case, since then P(z) = (27re)-l . V2/K. Thus 
if we shape a white trellis quantizer (i.e., a  trellis quantizer 
whose noise spectrum is flat) we get t’ = E. J IA(f)12df, and 

P(z’) = P(z) . exp (1 ln 14.f>12 4) 
and thus 

G(QL) = G(Q,). s IW)l” d f 
exp (s ln I-W  I2 4) 
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which, by Jensen’s inequality, is greater than G(Q,) with 
equality if and only if A(f) is white. 

III. THE DIVERGENCE FROM GAUSSIANITY 
OF THE QUANTIZATION NOISE 

In the preceding section we investigated the spectral proper- 
ties of the lattice quantization noise. This section addresses the 
distribution of the lattice quantization noise, and specifically it 
focuses on its distance from a Gaussian distribution. A Gauss- 
ian quantization noise is desirable, at least for Gaussian sources 
and MSE criterion, since it resembles the form of the noise in 
the forward-channel realization of the rate-distortion function 
[2]. Furthermore, Gaussian quantization noise corresponds to 
an efficient covering of high-dimensional spaces. 

In our context, the natural measure for the distance of 
the distribution of the quantization noise from a Gaussian 
distribution is the information divergence, also called “relative 
entropy” or “Kullback-Leibler distance”; see [5]. 

Dejnition 3: The divergence from Gaussianity of a  vector 
u E R” with a density fu, is 

D(“;u*) = W d Ifu*) = .I’,,. &log2 = h(U*)-/Q) 
(18) 

where h(.) denotes differential entropy. This is the divergence 
between g and the Gaussian vector U* having the same mean 
and covariance as u. Similarly, the divergence of u  from 
white Gaussianity is defined as 

;n(&vy) = h(li[/) - h(U) = ; log (27ree) - h(/) (19) 

where W  is a white Gaussian vector with the same average 
power, t, as u. 

Note that 

qu; W) = D(U; u*) + qu*; W) 2 D(U; u*) 

with equality if and only if the autocorrelation of u  is white. 
Throughout the sequel the logarithm base is 2, and information 
quantities are measured in bits. The divergence in (18) can be 
written as a difference between entropies since 

qU*) 2 - 
J 

fg* log fg* = - J fulog fg- 

(see [5, p. 234.]), and a similar identity justifies (19). 
We  turn now to evaluate the divergence from Gaussianity of 

the lattice quantization noise. Since z is uniformly distributed 
over a region whose volume is V, we may use (7) and write 
the entropy per dimension of z as 

&h(Z) = + log V = f log (c/G(QK)) . (20) 

Now, let W  - n/(0, 61) be a white Gaussian vector with 
power t. By (19) and (20), the divergence of z from white 
Gaussianity per dimension is given by 

$D(Z; W) = i log (%rec) - a  log (~/G(QK)) 

= a log (27reG(QK)) (21) 

bits per sample. Note that shaping the lattice quantizer does 
not affect its divergence from Gaussianity D&z*), since 
the divergence is invariant to invertible transformation of 
its arguments. But D&l&‘) does vary with shaping, and 
attains its minimum, D(z;z*), when QK is shaped by 
the whitening transformation A given in (16). The figure 
i log (2neG(QK)) . is about 0.254 bits for uniform scalar 
quantizer (where G(Qr) = l/12), and is about 0.227 bits for 
the two-dimensional hexagonal quantizer. We  show next that 
for the optimal lattice quantizers Ggt --) &, as K --f co, 
and thus for these quantizers 

as K+oo. (22) 

The interpretation of this result is that the distribution of the 
quantization noise converges to a white Gaussian distribution 
in the divergence sense.  

A. The  Asymptotic Normalized Second Moment  
of Optimal Lattice Quantizers 

It is well known that a ball has the minimal moment of 
inertia among all shapes of equal volume. A simple application 
of this property to (6) provides the following lower bound on 
@QK): 

A 1  s,, I l~i12d~ 
G(QK) ?G';i=( v1+2/K 

= T(K1+ 2) . I’+(K/2 + 1) 

1 

(K + 2) . Vi’” 

where SK is a K-dimensional ball with volume V (i.e., with 
the same volume as PO), G’;, denotes the normalized second 
moment of SK [4, p. 452.1, r(.) is the Gamma function, and 

v,, = 
@ I2 

I’(K/2 + 1) 

is the volume of a  ball with a unit radius. From (23) we can 
compute GI = A, and realize that as K -+ 00, Gk decreases 
monotonically to the limit & M  A, at a  rate 

log (2neGk) = 0 

We  claim that 1/27re is also the limit of G”Kpt: 
Lemma 1  (Poltyrev): 

opt 
GK -& asK-+m 

at a rate 

(24) 

log (27reGFt) = 0 (25) 

Lemma 1 was originally inferred from the work of Zador 
[20] and a conjecture made by Gersho in [8]. The bounds 
obtained by Zador implied that the average normalized second 
moment of the cells of the optimal K-dimensional quantizer 
(for uniformly distributed data) goes to & as K 4  00. 
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(a) (b) 
Fig. 3. The radii R, and RI for a square (a), and for a hexagon ( b). 

However, Zador did not give any characterization of these 
quantizers. Later on, Gersho claimed (without a proof) that this 
optimal K-dimensional quantizer is a tessellating quantizer, 
implying by Zador bounds that & is the asymptotic normal- 
ized second moment of the best K-dimensional space-filling 
polytope. Lemma 1, whose proof below is due to Poltyrev [19], 
shows that this minimal possible GK is actually asymptotically 
achievable by the basic cells of a  sequence of lattice quantizers. 

Proof: Let R, denote the covering radius of PO, and Rl 
denote the radius of a  ball having the same volume as PO, 
i.e., v = VK . R,K; see Fig. 3. For any lattice quantizer QK 
we can write 

RZ 2 

WQK) I K . V2,K = K . ;;,K ’ (26) 

To see this, note that from (11) 

G(QK) = ~E/1Z/12/V2’” 

where z is uniformly distributed over PO, and, since l]z]l < 
R, for every 2 E PO, we have immediately El lzl I2 5 Rz. 
Using (23) and (26), we can bound G(QK) by 

GT,IG(QK)IG- “; 2  . @ /K (27) 

where 0 = (R,/Rt) K is the density of the covering of RK 
by the lattice quantizer [4, p. 3121. 

Now, following a result by Rogers [4, p. 3921, there exist 
lattices whose covering density (with respect to their Voronoi 
partition) satisfies 

0 5 cK(log K)” 

B. Convergence of Noise Blocks to Gauss ian@ 

The proof of Lemma 1 shows that in some sense the Voronoi 
regions of the optimal lattice quantizers become closer to balls. 
This observation provides a simple geometric explanation of 
the Gaussian limit behavior of the quantization noise, since, 
by Poincare theorem (see, e.g., [6]), the projection on any 
finite-dimensional hyperspace of a  uniform distribution over a 
ball, becomes, in the limit as the ball dimension increases, a 
distribution of an i.i.d. Gaussian vector. 

By utilizing (22) we can provide a statistical characterization 
of this limit behavior. Let @  denote a modulo-K addition, and 
let 

denote an m-block starting at 0  $1 of the vector 2 associated 
with the quantizer QK. The density of Zi,“F  is denoted 
f z~am. Let 

@ @ I 

4(z) = (2Tt;m,2 ,-11z1?/2~ 

denote the density of a  zero-mean m-dimensional Gaussian 
vector with an autocorrelation ~1, where E = + E{ I ]zl I “} is 
the MSE per dimension of the lattice quantizer. Finally, let 

denote the L1 distance between the m-variate densities f 
and 4. Now, if we could assume that the quantization noise 
samples Z1, . . . , ZK are circular-stationary, then (22) would 
imply that for every sub-block of size m  starting at 6’ 

Ilf z;g;n - 4111  -+ 0, as  K -+ co. 

However, this assumption, in fact, is not true and so we show 
this claim only on the average over all starting points 19. This 
result will follow as an immediate corollary from Lemma 1 
and the following theorem: 

Theorem 2: Let z be uniform over the basic cell of QK. 
Then, for any 1 5 m  5 K 

$ y Ilf,$z; - ddl? I m . In (%eG(QK)) 
B=O 

(29) 

where 1) . 115 denotes square ,Cr distance, and In (.) denotes 
natural logarithm. 

Corollary 1: For a fix m  and the sequence of optimal lattice 
quantizers 

asK-+cc (30) 

for some constants c and a. This implies that for these lattices 
@ l/K + 1 as K + cc and i.e., llf,p, - 4111 + 0 in the Mean Square (MS) sense over 

0 N U(O... K - 1). 
Since ‘convergence in the MS sense implies convergence in 

probability, most of the dither sub-blocks tend to have a white 
Gaussian density in the L1 sense in the limit of large lattice 

Substituting into (27), and observing that log (K . Vi’K/2xe) dimension, i.e. 

goes to zero as 0 , yields the desired result. 0  Prob{O : Ilfi;gF - qy1 > S} + 0 vs > 0. 
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Proof Let 0 N 24(0,. . . , K - 1). Let W i N ti(O, t), achieve the rate-distortion function in pre/post-filtered ECDQ 
i = I,... , m  be i.i.d. Gaussian variables, independent of 0, of Gaussian sources. 
whose variance E is the MSE per dimension of QK. Note that Let X = Xi, X2, . . be a discrete-time stationary source. 
W lm N 4. We  have the following chain of identities and an Let ZCK) = ZjK), Z,!jK), . . ’ be a process obtained by con- 
inequality: catenating i.i.d. blocks z - U(Pa). Namely, ZcK) is the 

$ yqzgy: WY) Qzgg;“; wyp) 
quantization noise process associated with successive quan- 
tizations by QK. Finally, let W  = WI, W,, . . . be a white 

e=o Gaussian process with power E. We  denote by 

(2 T  log (27ret) - h(Z~~~(@) 7(X; Y) e 
1 

lim --1(X1 . . . Xn; Yi . . . Y,) (34) 72’00  n  

= 5 log (27ret) - -K Kc h(Z,B$;“) the mutual information rate per sample between the jointly 

B=O stationary processes X and Y, assuming the above limit exists. 

(b) m  
< T  log (27ret) - Fh(ZF) 

Note that 7(X; X + ZcK)) always exists for a  stationary X 
independent of .ZcK), since the entropy rate of ZcK) is finite 

g T  log (%reG(QK)) 
w.1. 

(31) Theorem 3: Assume that Z(K) is the noise process associ- 

where D(.; .]O) and h(.IO) denote conditional divergence and 
ated with the optimal K-dimensional lattice quantizer. Then, 
if X is a stationary Gaussian source 

conditional entropy given 0 [S, sets. 2.5, 9.41, and where (a) 
follows from a conditional version of the decomposit ion in 
(19), since 

lim I(X; X + Z(K)) = 7(X; X + W) . (35) 
K-CC 

Furthermore, there exist a  sub-sequence of lattice dimensions 

where the expectation is taken over 0 and 2 (note that for 
an optimal lattice quantizer it follows from Theorem 1 that 
E{Zf} = E for each i); (b) follows since, similarly to a 
theorem by Han [5, Theorem 16.5.1.1 

(the normalized joint entropy of a  set is upper-bounded by the 
normalized sum of the entropies of circular shifted subsets); 
and (c) follows from (20). 

The desired result (29) now follows from [5, Lemma 
16.3.11, which states that the divergence upper-bounds the 
square of the Cl distance, i.e. 

u  

C. The  Equivalence in Information of the AWGN Channel  
and  the ECDQ 

We recall from [21] and [22] that the coding rate of Entropy 
Coded Dithered Quantization (ECDQ) is given by the mutual 
information in an additive noise channel, whose input is the 
quantized source, and where the noise is independent of the 
source and is uniformly distributed over the mirror image of 
the lattice quantizer basic cell. Using Lemma 1 and Corollary 
1, it is shown below that the coding rate of ECDQ tends, in 
the limit of large (optimal) lattice dimension, to the mutual 
information in an Additive White Gaussian Noise (AWGN) 
channel. This limit behavior is utilized in [22] to show a 
simple tradeoff between the sampling rate and the quantization 
resolution in ECDQ of band-limited sources, and in [23] to 

Kl,Kz,..., such that for any stationary source X 

lim sup 7(X; X + Z( Kn’) 5  7(X; X + W)  . (36) 
R-CC 

In this theorem, the result for Gaussian sources (35) is 
slightly stronger than the result we were able to prove for 
general sources (36). In addition, the proof in the Gaussian 
case is much simpler, and follows directly from Lemma 1. It is 
conjectured, though, that (35) holds for non-Gaussian sources 
as well [18]. 

Proof We start with the proof of the Gaussian source 
case, which is straightforward. As was shown in Section I, 
the optimal lattice quantizers are white, i.e., E{Zi} = 0, and 
E{Z;Zj} = E.&, for all i and j. Thus (ZcK))* = W  for all 
K, where, as in (18), (.)* denotes a Gaussian process having 
the same mean and correlation function. Let 

h(X) 2  Jim l/n. h(X1. .X,) 

denote entropy rate of a  stationary process, and recall that 
the mutual information rate in the additive noise channel 
X + X + N is given by 

~(x;x+N)=~(X+N)-h(N). (38) 

Utilizing known bounds for the mutual information in an 
additive noise channel fed with a Gaussian source [5, p. 26311, 
and the relation 

h(W) - h(Z(“)) =  &(,zF; WIK) 
K 

we may write 

7(X; x + W ) 5 7(X; x + dK)) 
~T(x:x+W)+~D(z~;w~). (39) 

By (22) the upper and lower bounds coincide asymptotically, 
and (35) is proved. 
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We now consider the general case. Writing the information 
rate 7(X; X + Z(K)) as a difference between entropy rates as 
in (38), we immediately see from (20) and (24) that 

APPENDIX 
MORE ON Qm 

Ii( + f log 27ret = Z(W). 

In this Appendix we discuss quantities associated with the 
quantization noise of a  linear trellis quantizer, which is an 
infinite-dimensional lattice quantizer whose structure is time- 
invariant. Let 

Thus we only need to show that the upper limit of h(X+Z(K)) 
is upper-bounded by x(X + W). For the ease of notation, let 
Ze denote 2~~~. Since (30) implies convergence in probabil- 
ity over 0 N U(0 . . . K - l), it follows from the Borel-Canteli 
Lemma [7, p. 4031 that there exist some (monotonically 
increasing) sub-sequence of indices KI, Kz, . . . for which the 
convergence in (30) is in probability 1, i.e., for any block 
length m  

pcK) = {Xl . . . XK : SW(x) = . . . 0, 0, 0  . . . , 0  
for some II: = . ..~-~.ZO,Z~...ZK,ICK+~,...} 

be the projection of the basic cell of Qoo on the first K 
coordinates, and let VcK) = p(P,$“‘) be its volume. Define 
the quantity 

for almost every realization of initializations 0 = O(K). This 
implies that for any block of size m  taken from X, the Cl 
distance between the density functions of X + zoKn) and 
X + .I&’ converges to zero almost surely, as n ---f 00. Note 
that all types of convergence in n which are used throughout 
this proof are with respect to the random initializations 0. 
Thus by the semi-continuity of the divergence (see, e.g., [17]) 

Since the quantizer is time-invariant, the sequence Km 
is monotonically decreasing’ with K, implying that the limit 
above exists. v may be interpreted as the effective volume per 
dimension of P,$03), the infinite-dimensional basic cell of Qoo. 

Consistently with our model of the quantization noise, 
the quantization noise process 2 = . . . Z-1, Zo, Zi . . . is 
associated with trellis quantization of a  uniformly distributed 
source. Particularly, & = Q,(X)i - Xi, where 

xi N 24(-L/2, L/2), i = 0, kl, f2,. . . 

lim inf D(lc_ + zoKn). ,X* +W) L  D(X+ W;X* +W) a.s. n.--+m 
(40) 

where, of course, (40) holds also in probability. Since the 
divergence is nonnegative, (40) must hold also on the average 
over 0, i.e. 

liminfD(X+ZoK”);X* +W]O) 2 D(X+ W;X* +IV). 
n-i03 

Since (Z(K))* = W  for all K, we utilize the decomposit ion 
(18) of the divergence from Gaussianity into entropies and 
get, for any sub-block of size m  

are i.i.d., and where L  is very large compared to the size of 
the quantizer’s cells, so that edge effects may be neglected. 
Note that since the trellis structure is time-invariant, the 
quantization noise 2 is a stationary process. Clearly, for 
each K, (2, . . . ZK) E PiK), and for large K all blocks 
(2, . . . ZK) are equally likely. This implies that the entropy 
rate of the quantization noise is 

h(Z) a lim 
K-CC 

;h(& ‘. ’ 2,) 

= $lm + log VcK) = log V 

and hence its entropy rate power is [2] 
l im SUP h(X + ZLK-) IO) 1. /2(X + w) 0 - 

n-00 
(41) 

where h(.IO) denotes conditional entropy given 0. 
Now, since X is a stationary process, Z(K) is a block- 

stationary (cyclostationary) process with a period K, and 0 
is uniformly distributed over the period of Z(K), it is easy 
to show using (32) that &h(X + ZLK) 10) is monotonically 
decreasing with the block size m  to the limit h(X + Z(K)), 
that is, to the entropy rate of X + Z(K). Thus 

;h(X + @+3) > X(X + dK)) 

for every block size m, implying by (41) 

limsupril(X + 2 (K,)) < X(X + W) _ 
n.~oo 

(42) 

which proves the theorem. 0 

When a K-dimensional lattice quantizer is shaped by a ma- 
trix A, its second moment is multiplied by trace{AAt}/K, and 
the volume of its basic cell is multiplied by JAI =  JAAtj1/2, 
or equivalently, the entropy power of a  uniform distribution 
over its basic cell is multiplied by lAAtll/“. In other words, 
the second moment and the entropy power are multiplied by 
the arithmetic and the geometric averages, respectively, of the 
eigenvalues of the matrix AAt. Analogously to that, it follows 
from the Toeplitz Distribution Theorem [2, p. 1121 that when 
Q03 is shaped by a filter A(f), -l/2 5 f 5 l/2, the second 
moment and the entropy rate power of its quantization noise 
are multiplied by J IA( df, and exp (J In IA(f)/” df), 
respectively. 

’ This property is analogous to the behavior of the entropy rate of blocks of 
a stationary process, and it is shown easily using the notion of “conditional 
volume” defined in [24]. 
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