
The Capacity Loss of Uncorrelated Equi-Power

Gaussian Input over MIMO Channel

Tal Philosof

Dept. of Electrical Engineering - Systems

Tel-Aviv University

Tel-Aviv 69978, ISRAEL

talp@eng.tau.ac.il

Ram Zamir

Dept. of Electrical Engineering - Systems

Tel-Aviv University

Tel-Aviv 69978, ISRAEL

zamir@eng.tau.ac.il

Abstract
We investigate the capacity loss of uncorrelated Gaussian input with equal power (i.i.d
Gaussian input) over a multi-input multi-output linear additive noise (not necessarily
Gaussian nor uncorrelated) channel. Previous work showed that this is the best input
in the case of Gaussian noise, assuming the channel matrix is known at the receiver but
unknown at the transmitter. We show that i.i.d Gaussian is a robust input also when
the noise is not Gaussian and derive bounds for the capacity loss. Specifically, we show
that for nt transmit antennas and nr receive antennas, the capacity loss of i.i.d Gaussian
input is smaller than min{nt

2
, nr

2
log2(1+ nt

nr

)} bits, for any noise and channel matrix. This
bound is apparently not tight. Nevertheless, for the case of Gaussian noise we derive a
stronger bound: nr

2
log2(

nt

nr

) bits for 1 ≤ nr ≤ nt/e and nt

2
log2(e)

e
bits for nr ≥ nt/e which

is tight for a ”critical” channel matrix.

1 Introduction
Consider a multi-input multi-output (MIMO) channel model with additive noise

Y = HX + N, (1)

where H ∈ R
nr×nt is the channel matrix, nt and nr are the number of transmit and

receive antennas, respectively, X ∈ R
nt and Y ∈ R

nr are the transmitted and received
symbols, respectively, while N ∈ R

nr is a general (not necessarily Gaussian nor indepen-
dent) additive noise. The power constraint is tr(Rxx) = E||X||2 ≤ P , where tr is the
trace operator and Rxx = EXXT is the covariance matrix of X.

The capacity achieving input for this channel depends on both the channel matrix
and the noise statistics. Therefore, it requires knowledge of these parameters not only
at the receiver (which is relatively easy) but also at the transmitter. For the case of
Gaussian noise, it was shown in [4] that the compound channel capacity [2], where the
channel matrix belongs to ”isotropic” set, is achieved using i.i.d Gaussian input. In [3],
the capacity loss of i.i.d Gaussian input was considered for Rician MIMO channel with
additive Gaussian noise.

A white Gaussian transmission over a single-input single-output (SISO) additive noise
channel with power constraint, where the noise distribution is arbitrary, was considered
in [6]. It was shown that the information rate loss due to using white Gaussian input
instead of the optimum input distribution is bounded by half bit per channel use, while



for colored Gaussian noise the loss for not performing the water filling optimization is at
most log2(e)/2e = 0.265 bit per channel use.

In this paper we extend these results to i.i.d Gaussian input over MIMO channel
with arbitrary noise and with Gaussian noise. Throughout this paper we use the term
capacity loss for the gap between the capacity of MIMO channel with perfect channel
state information (CSI) at the transmitter and receiver (which takes into account the
noise statistics), and the mutual information achieved using i.i.d Gaussian input.

2 Main Result

2.1 Capacity Loss for Arbitrary Noise
The capacity with perfect CSI and general noise statistics is given by

C(H,N, P ) , sup
X:E||X||2≤P

I(X; HX + N), (2)

where the maximization is over all possible joint distributions of the input vector satisfy-
ing the power constraint. We present a uniform upper bound for the capacity loss due to
using i.i.d Gaussian input over MIMO channel with arbitrary additive noise. Similarly
to the concept used in [6] for the SISO channel case, we start by deriving the following
lemma for a MIMO channel.

Lemma 1. For a MIMO channel (1) with input X′ and noise N

C(H,N, P ) − I(X′; HX′ + N) ≤ C∗(H,X′), (3)

where

C∗(H,X′) , sup
Z:E||Z||2≤P

I(HZ; HZ + HX′). (4)

Proof. The proof is a simple extension of the proof of [6, Lemma 1].

Note that the quantity C∗(H,X′) is independent of the noise distribution N, hence it
bounds the capacity loss for using X′ for any additive noise channel with channel matrix
H. The worst capacity loss for using X′ is bounded from above by the maximum of
this quantity over the channel matrix supH C∗(H,X′), where H belongs to unrestricted
channel matrix set. The smallest bound is achieved by X′ that minimizes the maximum
value of C∗(H,X′), i.e, the X′ which achieves

C∗ , inf
X′:E||X′||2≤P

sup
H

C∗(H,X′). (5)

Lemma 2. The minimum of the worst capacity loss bound (5) is achieved by X′ = X∗,
where X∗ ∼ N (0, P

nt

Int
) is i.i.d Gaussian distribution and Int

is the nt × nt dimensional
identity matrix.

Proof. The proof is given in Appendix A.

As a consequence we have the following theorem.

Theorem 1. (Arbitrary Noise) For the nr × nt MIMO channel (1) with any noise N

and channel matrix H, the capacity loss is bounded by

C(H,N, P ) − I(X∗; HX∗ + N) ≤ C∗, (6)



where X∗ ∼ N (0, P
nt

Int
) is i.i.d Gaussian input, C(H,N, P ) is the channel capacity, and

C∗ =

{

1
2
nt , nr ≥ nt

nr

2
log2 (1 + nt

nr

) , 1 ≤ nr ≤ nt,
(7)

bit per vector channel use, where nr and nt are the number of receive and transmit an-
tennas, respectively.

Proof. The proof is given in Appendix B.

For nr ≥ nt, where there are more receive antennas than transmit antennas, the loss
for using i.i.d Gaussian input is at most 1

2
bit per channel use per transmit antenna,

similarly to the result in [6]. However, for 1 ≤ nr < nt when there are more transmit
antennas, the bound is nr

2
log2 (1 + nt

nr

) bits which is less than nt

2
but more than nr

2
bits.

Therefore, we can not state that the loss is bounded by half bit per degree of freedom,
i.e 1

2
min(nt, nr). For example, for one receive antenna the bound is 1/2 log2(1 + nt)

bit, which goes to infinity as the number of transmit antennas increases. In Figure 1,
we illustrate the behavior of the bound on the rate loss for constant nt. The function
nr

2
log2 (1 + nt

nr

) is concave w.r.t nr (assuming nr is a continues variable). We believe that

nr

2

nr

2
log2 (1 + nt

nr

)

C∗

nt

nr

nt

2

Figure 1: The Capacity Loss of a MIMO channel

this upper bound is not tight, and the distance from the true curve of the worst loss is
still unknown. Nevertheless, for the case of Gaussian noise, we show in Section 2.2 a
tighter bound which can actually be achieved, and can be considered as a lower bound
for the loss for an arbitrary noise.

2.2 Capacity Loss for Gaussian Noise
The bound in Theorem 1 takes into account two effects. One is the ”shaping loss” due
to Gaussian input being mismatched to the higher order statistics of the noise, and the
other is ”water filling loss” due to white input being mismatched to the matrix H and to
the noise covariance. In this section we focus on the second effect by restricting attention
to Gaussian noise.

We define a critical channel matrix HC which is a worst case channel matrix which
has min{nr, nt/e} identical non-zero elements on the main diagonal and all off-diagonal
elements are zero.
Theorem 2. (Gaussian Noise) For a MIMO channel (1), with additive Gaussian noise
N,

C(H,N, P ) − I(X∗; HX∗ + N) ≤ C∗
G, (8)



where X∗ ∼ N (0, P
nt

Int
) is i.i.d Gaussian input, and

C∗
G =

{

nt

2
log2(e)

e
, nr ≥ nt/e

nr

2
log2 ( nt

nr

) , 1 ≤ nr ≤ nt/e.
(9)

Equality holds if H = HC is the critical channel matrix defined above. Thus, for a
Gaussian MIMO channel the capacity loss of i.i.d Gaussian input is at most log2(e)

2e
' 0.265

bit per channel use per transmit antenna.

Proof. The proof of the bound is given in Appendix C. A case of equality is given below.

The tightness of the bound can be shown for the case that H = HC with high SNR,
and uncorrelated unit variance noise. For 1 ≤ nr ≤ nt/e the capacity is C(HC ,N, P ) '
1
2
nr log2

P
nr

, and the rate achieved using X∗ is I(X∗; HCX∗ + N) ' 1
2
nr log2

P
nt

, so the

rate loss is given by C(HC ,N, P ) − I(X∗; HCX∗ + N) ' 1
2
nr log2

nt

nr

. For nr ≥ nt/e

the channel matrix HC has effectively only nt/e sub-channels, therefore the capacity
is C(HC ,N, P ) ' nt

2e
log2

P
nt/e

, and the rate achieved using X∗ is I(X∗; HCX∗ + N) '
nt

2e
log2

P
nt

, so the rate loss is given by C(HC ,N, P ) − I(X∗; HCX∗ + N) ' 1
2
nt

log2 e
e

.

It follows from Theorem 2 that the bound C∗
G on the capacity loss can be achieved.

Figure 2 illustrates both bounds of Theorem 1 and Theorem 2. It can be seen that the
bound for Gaussian noise is strictly less than that for arbitrary noise.
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Figure 2: The two bounds on the capacity loss of i.i.d. Gaussian input

3 Discussion
We presented two uniform upper bounds for the capacity loss for using i.i.d Gaussian
input over a MIMO channel with additive noise. The first bound is for arbitrary noise
(not necessarily Gaussian) while the second one is for (colored) Gaussian noise. The
former bound is apparently not tight. On the other hand, for the Gaussian noise case
the bound on the loss can actually be achieved. Due to its tightness, the latter bound
provides a lower bound for the maximum loss for general noise. For multiple transmit
antennas and single receive antenna these upper and lower bounds are close, so we have
a good approximation for the true capacity loss for arbitrary noise.

There are several scenarios in which Theorem 1 can be applied in communication
over a MIMO channel where the channel matrix and noise statistics are known at the



receiver. For instance, the receiver may have perfect knowledge of the channel matrix and
the noise statistics by a learning process, while the transmitter may stay ignorant to the
channel and the noise statistics. In this case, a limited feedback link is needed between
the receiver and the transmitter in order to inform the encoder about the rate. Due to
the transmitter ignorance to the channel matrix and the noise statistics, a capacity loss
is incurred. For example if the channel matrix/noise statistics are changing too fast, it is
worthwhile to use fixed shape codebook (such as good codebooks for an AWGN channel),
since it is not possible to adapt the codebook frequently.

Another scenario is a system that uses “rateless” code, where the transmitter has
fixed codebook while the receiver uses for decoding only part of the transmitted block
which is needed for reliable decoding and ignores the rest of the block. This concept
was introduced in [5] for transmission of common messages in broadcast channels. In
this scheme there is no need for feedback link between the receiver and the transmitter,
since the receiver determines the effective rate solely. Another case that does not require
feedback link is of stochastic channel matrix with high order dimensions, i.e., nrnt À 1,
where each element of the channel matrix is drawn i.i.d. According to the law of large
numbers, the capacity (which is an average rate per received antenna) converges to a
fixed value, which is therefore known to the transmitter (assuming that the transmitter
knows the channel matrix and the noise statistics).

The i.i.d Gaussian input can generate a single codebook for all transmit antennas,
or alternatively, a set of independent codebooks, one for each transmit antenna. In the
former scheme the transmitter needs to know the MIMO channel capacity, while in the
second scheme it requires to know the rate that each transmit antenna can carry. This
equivalent to achievable rate point in capacity region of the corresponding multiple access
channel (MAC) where the transmitters have independent codebooks. It follows that the
capacity loss bound applies for the MAC.

We currently study the loss of using sub-optimal codebook for point to multi-point
problems.

Appendix

A. Proof of Lemma 2
We first show that without loss of generality we can assume that the channel matrix H
is a full rank nr × nt matrix with orthonormal rows where nr ≤ nt, i.e, rank(H) = nr.
Generally, a channel matrix G is nr × nt real matrix with rank r not necessarily a full
rank, thus r ≤ min(nt, nr). Since the vectors GX∗ and G(Z+X∗) have at most r linearity
independent components, therefore there is a matrix T ∈ R

r×nr such that

h(G(Z + X∗)) = h(TG(Z + X∗)) (10)

h(GX∗) = h(TGX∗), (11)

hence
I(GZ; GZ + GX∗) = I(TGZ; TGZ + TGX∗). (12)

The equivalent channel matrix G̃ = TG is r×nt matrix, where r ≤ nt with rank r. Using
Gram Schmidt process G̃ can be written as G̃ = RH, where R ∈ R

r×r is non-singular



lower triangular matrix and H ∈ R
r×nt is a full rank with orthonormal rows, thus

I(GZ; GZ + GX∗) = I(RHZ; RHZ + RHX∗) (13)

= I(HZ; HZ + HX∗), (14)

where (13) is from (12) and using that TG = RH, (14) is from the fact that multipli-
cation by R which is non-singular square matrix does not change the mutual information.
As a consequence from above, when we are dealing with the capacity loss term I(HZ; HZ+
HX∗), the channel matrix set can be restricted to full rank channel matrices H ∈ R

nr×nt

with orthonormal rows where nr ≤ nt.

Initially, we show that

nr

2
log2(1 +

nr

nt

) ≤ sup
H

C∗(H,X′), ∀ Rx′x′. (15)

For any Rx′x′ there is unitary matrix Q such that Rx′x′ = QΛx′QT where Λx′ is nt × nt

diagonal matrix with increasing order of the eigen values on the main diagonal. Further-
more, let choose the following channel matrix H̃ = WQT where W ∈ R

nr×nt is diagonal
matrix with unit elements on its diagonal, therefore H̃ is full rank with orthonormal
rows. A lower bound for supH C∗(H,X′) is given by

sup
H

C∗(H,X′) ≥ C∗(H̃,X′) (16)

= sup
Z:E||Z||2≤P

I(H̃Z; H̃Z + H̃X′) (17)

= sup
Z:E||Z||2≤P

I(H̃Z; H̃Z + X̃) (18)

≥ I(Z̃; Z̃ + X̃) (19)

=
nr

∑

i=1

I(Z̃i; Z̃i + X̃i) (20)

≥
1

2

nr
∑

i=1

log2

(

1 +
P/nr

σ2
X̃i

)

(21)

=
nr

2

nr
∑

i=1

1

nr

log2

(

1 +
P/nr

σ2
X̃i

)

(22)

≥
nr

2
log2

(

1 +
P/nr

1
nr

∑nr

i=1 σ2
X̃i

)

(23)

≥
nr

2
log2

(

1 +
P/nr

1
nr

P nr

nt

)

(24)

=
nr

2
log2

(

1 +
nt

nr

)

, (25)

where in (18) we define X̃ = H̃X′, thus Rx̃x̃ = WΛx′W T which is nr×nr diagonal matrix
where R

X̃X̃
(ii) = ΛX′(ii) for i = 1 . . . nr. For Z̃ ∼ N (0, P

nr

) i.i.d Gaussian random vector
we have (19), (20) is by using chain rule for mutual information. While (21) is from the

fact that for additive channel I(Z̃i; Z̃i + X̃i) ≥ I(Z̃i; Z̃i + X̃G
i) = 1

2
log2(1 + P/nr

σ2
x̃

) where

X̃G
i ∼ N (0, σ2

x̃
), i.e, the additive channel with Gaussian noise has the lowest capacity.



Since log(1+1/x) is a concave w.r.t x, (24) is due Jensen Inequality, while (25) is due to
∑nr

i=1 σ2
x̃
≤ P nr

nt

, since Rx̃x̃ has the lowest nr eigen values of Rx′x′ where tr(Rx′x′) ≤ P .

On the other hand, we show that

sup
H

C∗(H,X∗) ≤
nr

2
log2(1 +

nr

nt

). (26)

For X′ = X∗ (4) becomes

C∗(H,X∗) = sup
Z:E||Z||2≤P

I(HZ; HZ + HX∗), (27)

since X∗ ∼ N (0, P
nt

Int
) the optimum is achieved by Z with Gaussian distribution [1,

p.488], thus

C∗(H,X∗) = sup

{

1

2
log2

|HRzzH
T + P

nt

HHT |

| P
nt

HHT |

}

.

s.t : Rzz º 0 (28)

tr(Rzz) ≤ P.

Let define the matrix D , HRzzH
T + P

nt

Inr
. The rows of H are orthonormal then

HHT = Inr
, hence the denominator in (28) is constant, while the nominator is:

|HRzzH
T +

P

nt

Inr
| ≤

nr
∏

i=i

Dii (29)

≤

(

1

nr

nr
∑

i=1

Dii

)nr

(30)

=

(

tr(HRzzH
T ) + P

nt

nr

nr

)nr

(31)

≤

(

P + P nr

nt

nr

)nr

(32)

=

(

P

nr

+
P

nt

)nr

, (33)

where (29) is from the Hadamard Inequality [1, p.502], (30) is due to the Arithmetic-
Geometric Mean Inequality, (32) is from the fact that tr(HRzzH

T ) ≤ P , since H has
orthonormal rows. Using (28) and (33), C∗(H,X∗) can be written as

C∗(H,X∗) ≤
1

2
log2

(

P
nr

+ P
nt

P
nt

)nr

(34)

=
nr

2
log2

(

1 +
nt

nr

)

. (35)

It can be noticed that equality is achieved for Rzz = P
nr

HT H, since (28) is a convex
problem over convex constraints this solution is a global maximum. Finally, (26) is



proved since (33) holds for any channel matrix H especially for the worst channel matrix
H, thus

sup
H

C∗(H,X∗) ≤
nr

2
log2

(

1 +
nt

nr

)

,

with equality if Rzz = P
nr

HT H.

From (26) and (15) we have that

sup
H

C∗(H,X∗) ≤ sup
H

C∗(H,X′), ∀Rx′x′ . (36)

The proof follows since X′ = X∗ minimizes supH C∗(H,X′).

B. Proof of Theorem 1
Using (5) C∗ is given by

C∗ = inf
E||X′||2≤P

sup
H

C∗(H,X′) (37)

= C∗(H,X∗) (38)

≤
nr

2
log2(1 +

nt

nr

), (39)

where (38) is from the definition in (4), (39) is due to (35).

Now, let us derive the bound for nr ≥ nt. In Lemma 2 it was shown that without loss
of generality the problem can be reduced to nt × nt full rank orthogonal channel matrix,
therefore the capacity loss is bounded by C∗ ≤ nr

2
log2(1 + nt

nr

) = nt

2
.

C. Proof of Theorem 2
We assume a MIMO channel Y = HX + N , where the noise N ∼ N (0, Inr

) without loss
of generality, since for a given channel matrix and additive Gaussian noise statistics, the
problem is equivalent to a new channel matrix and uncorrelated Gaussian noise with unit
variance.

The channel capacity can be calculated using Singular Value Decomposition (SVD) of
H, thus

H = Q2∆QT
1 , (40)

where Q2 ∈ R
nr×nr , Q1 ∈ R

nt×nt are unitary matrices and ∆ ∈ R
nr×nt has zero elements

off-diagonal. Using unitary transformations Ỹ = QT

2
Y and X = Q1X̃ at the encoder

and decoder, respectively, the capacity is given by

C = max
E||X||2≤P

I(X; HX + N) = max
E||X̃||2≤P

I(X̃; ∆X̃ + Ñ), (41)

where Ñ = QT
2 N, hence Ñ ∼ N (0, Inr

), while the power constraint is E||X||2 =
E||X̃||2 ≤ P .
Generally, for any channel matrix with rank(H) = r the problem can be reduced to r×r
square problem, since ∆ has only r non-zero elements on the diagonal (assuming that
the non-zero elements are ∆ii for i = 1 . . . r), thus the capacity is given by

C = max
E||X′||2≤P

I(X′; RX′ + N′), (42)



where

R = {Rij} = ∆ij, i, j = 1 . . . r

X ′
i = X̃i, i = 1 . . . r

N ′
i = Ñi, i = 1 . . . r

where N′ ∼ N(0, Ir) and R is diagonal matrix with non zero elements on the diagonal.
This model corresponds to a parallel channels model with colored noise by multiplying
the receiver input by R−1. The capacity of parallel channels is achieved using water filling
optimization [1], the noise covariance matrix Λ = diag(λ1 . . . λr) is diagonal matrix where
λi = 1

R2
ii

≥ 0, thus the capacity is

C =
1

2

r
∑

i=1

log2 (1 +
(ν − λi)

+

λi

)

s.t :
r

∑

i=1

(ν − λi)
+ ≤ P. (43)

On the other hand, the rate achieved using i.i.d Gaussian input X∗ ∼ N (0, P
nt

Int
) is given

by

I(X∗; HX∗ + N) =
1

2
log2

|H p
nt

Int
HT + Inr

|

|Inr
|

(44)

=
1

2
log2 |

p

nt

HHT + Inr
| (45)

=
1

2
log2 |

p

nt

Q2∆∆T QT
2 + Inr

| (46)

=
1

2
log2 |Q2(

p

nt

∆∆T + Inr
)QT

2 | (47)

=
1

2
log2 |

p

nt

∆∆T + Inr
)|, (48)

where (46) is from (40). Since ∆∆T = R2, we have that

I(X∗; HX∗ + N) =
1

2
log2

r
∏

i=1

(1 +
P

nt

R2
ii). (49)

Since R2
ii = 1

λi

for i = 1 . . . r, it can be written as

I(X∗; HX∗ + N) =
1

2

r
∑

i=1

log2

P
nt

+ λi

λi

. (50)

Finally, the capacity loss is the difference between (43) and (50), therefore

C − I(X∗; HX∗ + N) =
1

2

r
∑

i=1

{

log2 (
λi + (ν − λi)

λi

) − log2

P
nt

+ λi

λi

}

(51)

=
1

2

r
∑

i=1

{

log2(
max(λi, ν)

λi

·
λi

λi + P
nt

)
}

(52)

=
1

2

r
∑

i=1

{

log2

max(λi, ν)

λi + P
nt

}

. (53)



Let define I , {i : ν − λi > P/nt, i = 1, . . . , r}, where |I| is the cardinality of I, thus

C − I(X∗; HX∗ + N) = ≤
1

2

∑

i∈I

log2

ν

λi + P
nt

(54)

≤
1

2

∑

i∈I

log2

ν − λi

P
nt

(55)

=
1

2
|I| ·

∑

i∈I

1

|I|
log2

ν − λi

P
nt

(56)

≤
1

2
|I| · log2

( 1

|I|

∑

i∈I

ν − λi

P
nt

)

(57)

≤
1

2
|I| · log2

nt

|I|
(58)

=
nt

2
·
|I|

nt

· log2

nt

|I|
, (59)

where (55) is from the fact that ν, P
nt

and λi are positive, (57) is from Jensen’s inequality,
(58) follows from the power constraint of (43).

The function |I|
nt

·log2
nt

|I|
is concave function w.r.t |I| and has global maximum at |I| = nt

e
,

which implies that we can split the bound into two cases:
For 0 ≤ nr < nt

e
- we have that |I| ≤ r ≤ nr, since the function |I|

nt

· log2
nt

|I|
is increasing

over the interval |I| ∈ [0, nt/e), therefore the capacity loss is bounded for |I| = nr by

C∗
G =

nt

2
·
nr

nt

log2(
nt

nr

) (60)

=
nr

2
· log2(

nt

nr

). (61)

For nr ≥
nt

e
- the capacity loss is bounded by the loss at the global maximum, thus

C∗
G =

nt

2
·
log2(e)

e
. (62)

References
[1] T. M. Cover and J. A. Thomas, Elements of information theory, Wiley, New York,

1991.

[2] I. Csiszar and J. Korner, Information theory - coding theorems for discrete memoryless
systems, Academic Press, New York, 1981.

[3] D. Hosli and A. Lapidoth, How good is an isotropic Gaussian input on a MIMO
Ricean channel?, Presented at the ISIT 2004, Chicago, USA (Jul. 2004), 291.

[4] D. P. Palmoar, J. M. Cioffi, and M.A. Lagunas, Uniform power allocation in MIMO
channels: A game-theortic approach, IEEE Trans. Information Theory IT-49 (Jul.
2003), 1707–1727.

[5] N. Shulman and M. Feder, Static broadcasting and common information broadcasting
in general, Presented at the ISIT 2000, Sorrento, Italy (Jun. 2000).

[6] R. Zamir and U. Erez, A Gaussian input is not too bad, IEEE Trans. Information
Theory IT-50 (Jun. 2004), 1362–1367.


