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Abstract—Network information theory promises high gains multiple-access channel, the broadcast channel, multiterminal
over simple point-to-point communication techniques, at the cost coding of correlated sources, the interference channel, and
of higher complexity. However, lack of structured coding schemes coding with side information. See [90], [3], [24], [21] for
limited the practical application of these concepts so far. One . - ' ' "
of the basic elements of a network code is the binning scheme.tum”‘_"‘ls' Until now, hqwever, mo§t of these §0Iutlons have
Wyner and other researchers proposed various forms ofcoset rema|ned at the theoret|ca| |eVe|, W|th the except|0n Of, perhapS,
codesfor efficient binning, yet these schemes were applicable the multiple-access channel for which theory and practice meet
only for lossless source (or noiseless channel) network coding.quite closely in cellular communication. Thus, communication
To extend the algebraic binning approach to lossy source (Or gystems ignore much of the useful information available about

noisy channel) network coding, recent work proposed the idea of . . .
nest)éd codesc)nr more specific%lly, nested pa?ity?check codes for the topology and the statistical dependence between signals in

the binary case and nested lattices in the continuous case. Thesehe network.
ideas connect network information theory with the rich areas One of the key elements in the solutions of information net-

of linear codes and lattice codes, and have strong potential for work problems is the idea of “binning” [21]. A binning scheme
practical applications. We review these recent developments and divides a set of codewords into subsets (“bins”), such that the

explore their tight relation to concepts such as combined shaping . .
and precoding, coding for memories with defects, and digital codewords in each subset are as far apart as possible. As usual

watermarking. We also propose a few novel applications adhering in the “direct” coding theorems in information theory, the proof
to a unified approach. constructs the bins aandom and therefore characterizes the
Index Terms_Binning, d|g|ta| Watermarkingl error-correcting scheme in prObab”iStiC terms: the prObab|l|ty that some vector
codes, Gelfand—Pinsker, memory with defects, multiresolution, is close to (or “jointly typical” with) more than one codeword in
multiterminal, nested lattice, side information, Slepian-Wolf, 3 given bin is very small or high, depending on the application.
writing on dirty paper, Wyner—Ziv. This random construction, although convenient for analysis, is
not favorable for practical applications.
|. INTRODUCTION The main goal of this work is to show that binning schemes
. . . ,may have structure. Our ideas originate from ner’'s linear
ETWORK information theory generalizes Shannon Eos)(/—:tt code interpretation for the Sglepian—WoIfV\s%Iution [76],

. original point—to—poi_nt comm_unication model to systerw;o]. Wyner’s construction may be thought of asalgebraic
with more than two terminals. This general framework allo inning scheme fonoiselesscoding problems, i.e., a scheme

to consider transmission of more than one source, and/or oy8r. .~ "\ described in terms of a parity-check code and al-
more than one channel, possibly using auxiliary signals ('si braic operations over a finite alphabet. His solution applies

information”) to enhance performance. Existing theoretic% .
: . ) irectly to losslesssource coding where the decoder has ac-
results, although still partial, show strong potentials over con-

. X . . : cc?ss to an additive-noise side-information channel. In a dual
ventional point-to-point communication techniques, at the ¢

of higher complexitv. Classic problems in this theory are h shion, this solution applies also to channel coding over an ad-
9 plexity. P y Sitive-noise channel with an input constraint, and where the en-

coder (but not the decoder) hpsrfectside information about
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In the context of network information theory, nested codes
were proposed by Shamai, Verdu, and Zamir [71], [73], [72],
[97] as an algebraic solution for the Wyner—Ziv problem. Their
original motivation was systematic lossy transmission. Interest-
ingly, the nested code structure is implicit already in Heegard's
coding scheme for a memory with (a certain type of) defects
[45], a problem which is a special case of channel coding with
side information at the encoder. Willems proposed a scalar ver-
sion of a nested code for channels with side information at the
transmitter [88]. Barron, Chen, and Wornell [9], [1] showed
the application of multidimensional nested codes to these chan-
nels as well as to digital watermarking. Independently of this
work, Pradhan and Ramchandran [63] proposed similar struc-
tures for multiterminal source coding. Servetto [102] proposed
explicit good nested lattice constructions for Wyner—Ziv en-
coding. Chou, Pradhan, and Ramchandran [11], Barron, Chen,
and Wornell [1], and Su, Eggers, and Girod [77] pointed out
the duality between the Wyner—Ziv problem and channel coding
with side information at the encoder, and suggested using sim-
Fig. 1. Nested lattices: special case of self-similar lattices. ilar codes for both problems. A formal treatment of this du-
ality under various side-information conditions is developed by

of the channel conditions or noise. In order to extend the idédiang and Cover [20].
of coset-code-based binning to “noisy” coding problems, we This paper attempts to serve the dual roles of a focused
introduce the structure afested codesor more specifically, tutorial and a unifying framework for algebraic coding schemes
nested linear codef®r the discrete case, ameésted latticeor for symmetric/Gaussian multiterminal communication net-
the continuous case. The idea is, roughly, to generate a diluvé@rks. We hope it gives a reliable coverage for this new and
version of the original coset code; see Fig. 1. This structu@¥citing area along with providing insights and demonstrating
allows one to construct algebraic binning schemes for morew applications. While demonstrating the effectiveness of
general coding applications, such as rate-distortion with sitfte algebraic nested coding approach, we emphasize that for
information at the decoder (the Wyner—Ziv problem) [91], angéneral (nonsymmetric/non-Gaussian) networks, this approach
its dual problem of channel coding with side information at th not always suitable or it is inferior tandombinning with
encoder (the Shannon/Gelfand—Pinsker problems) [67], [41]Probabilistic encoding—decoding. The paper is organized
Specifically, nested codes apply to symmetric versions 8 follows. Section Il considers noiseless side information
the Wyner_ZiV pr0b|em’ and to important Specia| cases of tRgoblems associated with binary sources and channels, and
Gelfand—Pinsker problem such as “writing on dirty paper” (thdescribes Wyner’s coset coding scheme. Section IIl introduces
Costa problem) [18], and “writing to a memory with knowrthe basic definitions and properties of nested codes, for both
defects and unknown noise” (the Kuznetsov—Tsybakov/Hei@e binary-linear case and the continuous-lattice case and
gard—El-Gamal problem) [55], [81], [47], [45]. In addition,discusses ways to construct such codes. Section IV uses
nested codes can be used as a|gebraic bu||d|ng blocks m@sted codes to extend the discussion of Section Il to noisy
more general network configurations, such as multitermingide information: the Wyner—Ziv, Costa, and Kuznetsov—Tsy-
lossy source coding [3], coordinated encoding over mutuaﬂ%akov—Heegard—EI-GamaI problems. Section IV also discusses
interfering channels (and specifically broadcast over Gaussifybrid approach of nested coding with probabilistic decoding.
channels) [8], [98], [99], digital watermarking [9], and moreThe rest of the paper describes various applications. Sections V
Nested lattices turn out also as a unifying model for some clad VI use the building blocks of Section IV for more general
sical point-to-point coding techniques: constellation shapifgultiterminal communication problems. Section VII shows
for the additive white Gaussian noise (AWGN) channel, arftpw these ideas reflect back gint-to-point communica-
combined shaping and precoding for the intersymbol interfefon problems, which include the standard additive and the
ence (ISI) channel; see [29], [30], [27], [28] for background. dispersive Gaussian channels as well as multiple-input-mul-
Nesting of codes is not a new idea in coding theory and digitéple-output (MIMO) Gaussian channels.
communication. Conway and Sloane used nested lattice codes
in [17] for constellation shaping. Forney extended and general-
ized their construction in [50], results which were subsequently Il. WYNER'S NOISELESSBINNING SCHEME
applied to tr_elhs shaping [51], Frellls precodlng [33], [12], (_atcA_ Two Dual Side Information Problems
Related notions can be found in multilevel code constructions;,
proposed by Imai and Hirakawa [48], as well as in the work of Figs. 2 and 3 show two problems of noiseless coding with side
Ungerboek and others feet partitioningin coded modulation information, which involve binary sources and channels. As we
[82]. In the lattice literature, Constructions B—E are all multishall see, if we make the correspondepce: 6, the problems
level constructions [16], [52], [53]. and their solutions become dual [11], [1], [77], [10].
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source x source ? source

3 2 that isjointly typical with the side-information sequeng#’ }.
encoder = e=R | decoder The AEP guarantees that the true source sequence would pass
A this joint-typicality test. As for the othee2™ (X1Y) source se-

guences which are jointly typical with the side information, the
: probability that the random binning scheme would assign any
; of them to the specified bin is very small; see [21].
—=(9) ; Hence, as in oth fs by rand ding, th fsh
Z ~ Bernoulli(p) , as in other proofs by random coding, the proof shows
that a good coding schenegists The proof even hints at a de-
side information sired property of the binning scheme: it should not put together
I in one bin vectors which are “close” to (typical with) the same
{Y;}. In other words, each bin should play the role ajaod
Fig. 2. Source coding with side information at decoder£Sioisy version of ~hannel codeHowever. the proof does not show howdon-
source via binary-symmetric channel (BSC)). . T ..
structa binning scheme with enough structure to allow efficient
encoding and decoding. Can a good binning scheme have struc-

side-information

........................... ture?
message v A We shall soon see that indeed it can. To acquire some feeling
i channel T Y channel __Z> for that in some hypothetic problem, suppose a party A wishes
encoder / ~ decoder to specify an integer number to another party B, who knows
rate =R a neighboring number, but A does not know which of its two
Ly(x) < & neighboring numbers B has. An efficient solution, which re-

quires only one bit of information—just as if A knew B, is the
Fig. 3. BSC coding subject to an input constraint with side information 4p/lowing. Tell B, supposing, say, that A is even, whether it di-
encoder (Sk= channel noise). vides by four or not (for a general integer, A tell B the result of
| A/2] mod 2). In terms of the Slepian—Wolf code above, this

The first problem, lossless source coding with side infosoding scheme partitions the even numbers into two bins, one
mation at the decoder, is an important special case of themultiples of four and one of nonmultiples of four. In other
Slepian-Wolf setting [76]. A memoryless binary symmetrigvords, the bins partition the source space Iattice cosets
source{ X;} is encoded and sent over a binary channel of rate Before describing Wyner’s algebraic binning scheme for the
R. The decoder needs to recover the source losslessly in @geafiguration of Fig. 2, let us consider the second problem, de-
sense that its outpu{tf(i} is equal to{X;} with probability scribed in Fig. 3, of channel coding with perfect side informa-
larger thanl — e for some small positive number In addition tion at the encoder. Here, we need to send information across
to the code at raté?, the decoder has access to a correlat@lbinary-symmetric channel, where the encoder kniowesd-
binary source{Y;}, generated by passing the source througtancethe channel noise sequenzé.e., the times at which the
a binary-symmetric channel (BSC) with crossover probabilighannel will invert the input bits. The decoder does not have
0 < p < 1/2. Were the side information available to thghis knowledge. To sharpen the ideas of this example, we shall
encoder as well, the encoder could use a “conditional” code agsume that the channel crossover probability is half,Z.és,

rate arbitrarily close to the conditional entropy a Bernoulli1/2 process. Suppose the encoder outKutmust
satisfy the constraint (the equivalent, in essence, of the “power”
R=H(X|Y)=H(p) (2.1) constraintin the continuous case) that the average numhés of

cannot exceed?d, wheren is the block lengthantl < § < 1/2.

Now, if the side information were available to the decoder as
Hip) = —ploa(n) — (1 — p)lo(1 — well, it could cancel out the effect of the channel noise allto-

2 plog(p) = (1 = p)log(1 - p) gether byxoring ¥ ¢ z, and thus achieve capacity of

and where all logarithms are taken to base two. This result is 1

a direct consequence of the conditional form of the asymptotic C= max — H(X)=H(6) (2.2)

equipartition property (AEP) [21]: for each typical side-infor- Elon(X)j<ns 1

mation sequence (known to both the encoder and the deCO@%ker(-) denotes the Hamming weight (numbeds). Due

the source Seduence belongs with high probability to a setgfthe input constraint, however, the noise cannot be subtracted

roughly 2 members, and thus can be described by theencoderby xoring 2 z the channel input vectors would

for sufficiently large block length, where

code at rate close tH (X [Y). have an average weight of
The interesting result of Slepian and Wolf [76] shows that this
rate can be approached even if the encoder does not have ac- Flog(x® Z)} =n/2 (2.3)

cess to the side information. The idea underlying Slepian and

Wolf’s result is to randomly assign the source sequencesftr anyx sequence, thus violating the input constraint. On the
27 H(XIY)+<] pins with a uniform probability, and reveal thisother hand, ignoring the side information would nullify the ca-
partition to the encoder and the decoder. The encoder descripasity. Can the encoder make any use of knowing the néise

a source sequence by specifying the bin to which it belongs;indeed, the result of Gelfand and Pinsker [41] implies that
the decoder looks for a source sequence in the specified iith a clever binning scheme we can achieve capacity @f)
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even if the decoder does not have access to the side informe
tion z, and without violating the input constraint. The idea is to
randomly assign thg™ possible binary:-vectors to2"[# (4)—¢]
bins, and reveal this partition to the encoder and the decoder. Th
message to be sent specifies the bin. The encoder looks in th:
bin for a vectoru whose Hamming distance fromis at most

nd, and outputs the difference vecter= z ¢ w. The decoder
who receivey = @ 2z = u identifies the bin containing, and
thus decodes the message unambiguously. Hence, we achie'
a rate ofH(§) — ¢ under the desired input constraint provided
that at least one vector in the bin is within a distanédrom z;
indeed, by random selection of bins, for sufficiently largiis
very likely to find such a vector.

This solution for the configuration of Fig. 3 shows another
angle of the desired property of a good binning scheme: each bit
should contain a good collection of representative points which
spread over the entire space. In other words, here each bin play
the role of agood source codé\gain, however, random binning
lacks structure, and therefore it is not practically efficient.

B. Parity-Check Codes Fig. 4. Geometric interpretation of a parity-check code (solid) and one of its

. . cosets (dashed) and their associated decision cells.
We now turn to show an algebraic construction for these ( )

two binning schemes. Following the intuition underlying the Fig. 4 illustrates the int lati bet itv-check
Slepian—Wolf solution, Wyner's basic idea in [90] was to 'g. # Hustrates the Interreiations between a parity-chec

generate the bins as the cosets of some “good” parity—checc(?éje a'_‘d Its cosets by Interpreting the codewqrds as points of
code a two-dimensional hexagonal lattice. We may view the decoder

To introduce Wyner's scheme, let 4n, k) binary parity- (or quantizer) above as a partition{df, 1}" to 2" decision cells

check code be specified by the— k) x n (binary) parity-check of size2"~* each, which are all shifted versions of the basic
matrix H. The codeC = {e} contains alln-length binary vec- Voronoi” set

torse whose syndromeé Heis equal to zero, where here mul- {z: 2@ f(Hz) = 0} 2 Q. (2.7)
tiplication and addition are modutb Assuming that all rows of

H are linearly independent, there &%codewords irC, so the Each of the2"~* members ofY, is a coset leader (2.4) for a
code rate iglog |C|)/n = k/n. different coset.

Given some general syndroraes {0, 1}"~%, the set of all ~ An important asymptotic property of parity-check codes is
n-length vectorse satisfyingHz = s is called a cosef,. The that there exist “good” codes among them. Here “good” may
decoding functionf(s), where f: {0, 1}""“ — {0, 11", is have one of the following two definitions:
equal tq the vectaos € C, wit_h th_e minimum Hammi_ng W(_aight, i) Good channel codes over BGG: For anys > 0 andn
where ties are broken arbitrarily. It follows from linearity that large enough there exists &n, &) code of ratek/n >

the coset is a shift of the codeby the vectomw, i.e., C — e, whereC = 1— H(p) is the BSQp) capacity, with
A A a probability of decoding error smaller than
Co={z: Hx =38} ={edv:ccC}=C" (2.4) .
Pr{Z#£Z}=Pr{f(HZ)# Z} < ¢ (2.8)
where then-vectorv = f(s) is called thecoset leader
Maximum-likelihood decoding of a parity-check code, over a
BSCy = x & z, amounts to quantizing to the nearest vector in
C with respect to the Hamming distance. This vecéptan be
computed by a procedure, called “syndrome decoding,” whichii) Good source codes under Hamming distortiéior any

whereZ denotes the channel noise vector (a Berndplii
vector), andZ denotes its estimation (2.5). See [39]. We
call such a code a “good BSgzcode.”

follows from the definition of the functiorf 0 <6 <1/2,¢ > 0, and sufficiently larger, there exists
an(n, k) code of ratek/n < R(§)+¢, whereR(6)=1—
C=ydz2, 2= f(Hy). (2.5) H(6) is the rate-distortion function of a binary-symmetric

source (BSSX, such that the expected quantization error
Hence, f(Hy) is the maximudm-likelihood estimate of the ~~ Hamming weight satisfies
channel noisex. Alternatively, we can interpref(Hy) as the 1 R 1
error vector in quantizing by C, or as reducings modulo the . E {wH (X@X) } = ElwgU)}<é+e  (2.9)
code
whereX denotes the quantization &f by the code, and
f(Hy) =y mod C. (2.6) wherelU = X ¢ X = f(HX) is the quantization error,
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encoﬁg_gecoder side info

Fig. 5. Wyner's coset coding scheme for the binary-symmetric Slepian—Wolf problem in terms of modulo-code operations {pathdthesigns amount to
the XOR operation).

which is uniformly distributed ovefy,. We call such a  Note that the computation of (2.16) is unique, so unlike in
code a “good BS$-code.” randombinning we never have ambiguous decoding. Hence,
Ieétingz = e®y and noting from (2.16) that= f(H (zdy)) =

The geometric meaning of the asymptotic properties (2.8) a . N b
(2.9)is that the decision cells of a go@d n»)-parity-check code ? Hz),a deco_d_mg error ev_ent amoqnts{m;éa:} {272}
so the probability of decoding error is

are approximatelfHamming ballsof radiusnp (or né), where A
k/n+ H(p) ~ 1. (2.10) Pr{X £A#X=Pr{f(HZ)#£ Z} (2.17)

See [21]. Random parity-check arguments as in [39, Sec. 6'9}ich by (2.8) is smaller thanfor a good BSG-code. This is
imply that the same code can be simultaneously good in b@Rtually the probability that” exceeds the ceflo shifted byz,
senses. orthatZ mod C # Z.

Another measure of goodness of a linear code, not neces]hus: We were able to encodeat rate close tdf (X[Y) =
sarily asymptotic, is iterasurecorrection capability. For gen- £ (2), With @ small probability of decoding error, using side in-
eral ¢-ary alphabets (not necessarily binary) there egsti;) ~formation at the decoder, as desired.

codes, called minimum-distance separable (MDS) codes, whicH 19 5 shows a useful way to ?escribe the fljnctionir)g of this
can correctn — k erasures [6]. Asymptotically, good binaryCOd'ng scheme in terms of the “modulo-code” operation (2.6),

(n. k) codes correct almost every patternof- k erasures. u_sing thg identity (2.15). The modulo-code operation satisfies a
distributive property [6]
C. Coset Codes as Bins (£ mod C) +y) modC=(x+y) modC, Vz,y.
Consider now the use of these algebraic structures for the two (2.18)
perfect side information problems of Section II-A. In the sequaliow, note that the successive operatidhsnd f(-) at the be-
we will need to compute the error between a vegtand a ginning of the signal path are equivalent to a singled-C op-
cosetC, eration. Hence, by the distributive property, due to ithed-C
e=argmin wy(zdY). (2.11) operation later in the signal path, we can eliminate thésend
e f(-) operations without affecting the output of the scheme. We
Making the substitutions’ = z®yandC,. = y&C,,weseethat then see immediately that= z mod C.
eminimizes the Hamming weight ifi,/, thus by the definition  we turn to the dual setting of channel coding with perfect

of the decoding function and theod-C operation in (2.6) side information at the encoder (Fig. 3). Here we choose a good
e=f(s) (2.12) BSS¥-code, and, again, use 28~ ~ 2"#() cosets as bins.
— f(s @ Hy) (2.13) The encoding and decoding can be described in algebraic terms
as follows.
=y mod C; (2.14)
. Message selection: identify each syndromes with
=(vey) mod € (2.15) a unique message; this amountsito— & ~ nH($)
wherev = f(s) is the coset leader associated with information bits.

In the setting of lossless source coding with side information
at the decoder (Fig. 2), we choose a good B&edde, and use
as bins it2"~* ~ 271 ) cosets. The encoding and decoding

Encoding: transmit the error vector between the side in-
formationz and the message coskt i.e. (see (2.12))

can be described by simple algebraic operations. £ =2 mod C, (2.19)
Encoding: transmit the syndrome = Hz; this requires =[f(s® Hz) (2.20)
n —k = nH(p) bits. =(v®z) modC (2.21)

Decoding: find the point in the coset; which is closest wherev = f(s).
to the side informatiogy; by (2.12) this can be computed as Decoding: reconstruct the message as the syndrome
r=yo2z, wherez = f(s & Hy). (2.16) s = Hy.
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Fig. 6. Coset-based scheme for channel coding with perfect side information (Fig. 3).

It is easy to verify that the decoding is perfect, i.e., or has memory), then the algebraic binning schemes above are
no longer optimal. This is similar to the difficulty of applying
s3=H (x®2)=H f(sbHz)®dHz=8®Hz® Hz =38 parity-check codes to general, nonsymmetric channels, or to
(2.22) nondifference distortion measures for source coding.
due to the identityd - f(s') = & V&' € {0, 1}*~*. Moreover, 2) Digital Watermarking/Information Embeddingfhe al-

for any s, the average transmission Hamming weight satisfiegebraic construction for channel coding with perfect side in-
formation is based on the equivalent formulation of digital wa-

termarking by Barron, Chen, and Wornell [1] and by Chou,
Pradhan, and Ramchandran [11]. Inthese formulations, the side-
information signak is considered as a “host” signal, which car-
h ble to t it at rateE (§) with input ries information under the constraint that the Hamndiggor-
us, we were ate {0 fransmit ai 1 (&) with inpu €ON"tion due to the watermark code should not excéedin exten-
strainté, using side information at the encoder, as desired. _. . . L .
. . . . sion of this setting to watermarking in the presence of noise is
Fig. 6 shows an equivalent formulation of this scheme in_ . A .
. : . equivalent to the nonperfect side information case (the Costa
terms of modulcZ operations. For illustration purposes, we : . ! .
. : problem) which we discuss in Section IV. See [14], [10], [1],
have inserted a secondod-C operation that does not affect ¢ i d literat bout the diaital wat
the output. As in Fig. 5, the functioning of the scheme becom ]k.or morEI s€ mgds .?n ! feral ure at ouh € llgl 3. wa e:h
transparent by applying the distributive property (2.18) of tHRArKINg probiem and IS equivalence to channel coding wi

mod-C operation, and eliminating the firshod-C operation. S|d3e mfolrrna'uon.c ith Def h
It immediately follows that the noise cancels out so that 5) Writing to Computer Memory With Defectginother
# = v mod C = v, and clearlyy = v implies = s. well-known example of coset-code-based binning is that of

computer memory with defects [55], [47]. Herk,out of n
D. Other Variants binary digits are stuck at arbitrary positions, so the encoder can

. . write new information only at the remaining— & binary digits.
1) Nonsymmetric Channels and Sourcafe can generalize The location of the defective cells is arbitrary, and is detected

the two side information problems discussed throughout ttgs the encoder prior to writing. Various authors (mostly in

section in various ways. One way is to consider more gene{ | ) )
N ; ) . e Russian literature) developed schemes and performance
distributions for the signals in the system. It is clear from thgounds for this channel model, and showed that it is possible

equivalent formulation of Wyner's scheme in Fig. 5, that th{ao achieve the capacity @f — k bits, even if the location of the

SCheme 'S msensmve 0 Fhe strucFure_ of ?Jwe_ctor, as long k defective cells is not known to the decoder. See [47], [106],
as X is obtained by passing the side informatigrthrough a .
LT . ) ; and the references therein.
BSC. Likewise, it is easily seen from Fig. 6 that in the secon ; . o
To prove this fact asymptotically by a random binning argu-

problem the side-information signaimay be arbitrary; only, to : '
. S L ent, assume that the binamyvectors are randomly assigned
ensure that thé-input constraint is satisfied, we need to smoot[‘E

n—k—en Ri i H ic fi :
out the effect of adding using a technique called “dithering” 2 . bins, where: > 0. Th!s as&gnmeqt is fixed prior
. . . to encoding. A message containing- £ — en bits selects the
before applying thenod-C operation at the encoder; see Sec-. . . .
. C o . in. The encoder looks for a vector in the selected bin which
tion IV. It follows from this discussion, that the same schemes

. . . agrees with the values of thedefective cells, and writes this
can achieve the optimum rates Bf(p) in the former case and . : - ; .
. o . o . vector to the memory. Since each vector identifies a unique bin,
H(6) in the latter case foarbitrarily varying side-information

. the decoder can decode the message correctly, provided that the
signals. ) . . . .
. . . encoder indeed finds a “defect-matching” vector in the selected
Note, however, that if the channel connectifgandY in ) . . .
. . ) . . . . bin. Otherwise, an encoding error is declared. A standard calcu-
the first problem isnorsymmetric, or if the input constraint

in the second problem is more complex (e.g., dependgonlatlon shows that the probability of an error event is given by

%EwH(f(s@HZ)) <Ste (2.23)

by the BSSé-goodness of the code and the symmetnZof

1Dithering can be used to guarantee (2.23) for a nonsymma&trisee the —[n—k—en] ank
discussion in the sequel. [1 -2 }
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coding, or noise immunity in channel coding, we need to dilute
the coset density in space. Nested parity-check codes generate
such a diluted system of cosets in an efficient way.

The continuous analog of a parity-check code is the lattice
code. Being a construction in Euclidean space, the lattice has
continuously many cosets. The notion of a nested lattice code
s allows to define dinite sample of lattice cosets efficiently. This

1 will provide the basis for algebraic binning schemes for contin-
4 : uous signals.
Y : This section establishes the basic definitions of these con-
8 cepts. Itis an extended and more complete version of the discus-
sion by Zamir and Shamai [97]. We start with the binary case
Fig. 7. Capacity with causal (dashed), and noncausal (solid) SI at the encodBd nested parity-check codes, and then continue to the contin-
in the setting of Fig. 3. uous alphabet case and nested lattice codes.
A nested code is a pair of linear or lattice codés, C,) sat-
which goes to zero as goes to infinity for any > 0. (There isfying
are2"—* valid n-vectors, and each of them is in the selected bin
with probability 1,/27—k—¢n ) C;CCy (3.1)

An algebraic coding scheme which achieves this capacity ]
uses the cosets of amasure correction codas bins. Specif- 1-€- €ach codeword af; is also a codeword of;. We callC;
ically, assume a-ary linear code of length which can correct the “fine code” and’, the “coarse code.”

n—k erasures (each erasure is a fisiry symbol). If the code is )

MDS (e.g., a Reed—Solomon code) [6], then it contafhsode- A. Nested Parity-Check Codes

words. This implies that each fixed patterniofymbols takes  If a pair {(n, k1), (n, k2)} of parity-check codes; > ks,

all the¢* possible values as we scan gfecodewords; further- satisfies condition (3.1), then the corresponding parity-check
more, the code hag*~* distinct cosets (including the originalmatricesd; and H, are interrelated as

code), each of which satisfies this property. It follows that if we

112

use these cosets as bins, the encoder can find a defect-matching H,

vector in each bin, for any pattern bfdefective cells. Hy=| --- (3.2)
A noisy generalization of this problem will be discussed in AH

Section IV-D.

4) Causal Side InformationShannon proposed the perfec;,\,h(__,reH1 is an(n — ki) x n matrix, Hz is an(n — k) x n
binary side information problem, without the input constrainatrix, andA H is a(k; — k) x n matrix. This implies that the
as a motivation for his treatment of tbausalside information syndromess; = H;z ands, = H,z associated with some
case [67]. Unlike the setting in Fig. 3, in Shannon’s formulatiop.vector z are related as, = [s!. As'], where the length
the channel input depends only on the past and present sampfeas is &, — k. bits. In particular, ifz € C;, then sh =
of the channel noise, i.e., [0, ..., 0, As*]. We may, therefore, partitiod, into 2k1—*2

cosets of’; by settings; = 0, and varyingAs, i.e.,
2z, = wi(w, 21, ..., %), i=1---n
= U Ca sy,  Wheres, = [0, As']. (3.3)

C
wherew denotes the message to be sent. It follows from the anal- ! L
Asc{0,1}F1—k2

ysis of Erezet al.[30], [28], [27] that the capacity witlbausal
side information and input constraifitas above, is given by  of fundamental importance is the question: can we require
C=200sé6< 3- See the dashed line in Fig. 7. This capacityyqh components of a nested code, the fine code and the coarse
which is of course lower than that achieved by tl@causal cqge, to be good in the sense of (2.8) and (2.9)? More interest-
binning scheme solution, is realized by appropriate time sharipgyy, it turns out that in the network problems discussed below,
of two strategiest; = u;®z; ("perfect precancellation”) afrac- gne of the component codes should be a good channel code,
tion 26 of the transmission time, ang = 0 (*idle”) a fraction  while the other component code should be a good source code;

(1 — 20) of the transmission time, wheta, us, ..., u,25 @' see the discussion in Section II-C. If a nested code is indeed
the information bits, i.eqw = (uy, ..., un2s). “good,” where the fine code is a goagd-code and the coarse
code is a good,-code,q2 > ¢1, then by (2.10) the number of
[ll. NESTED CODES PRELIMINARIES cosets in (3.3) is about

The binning schemes discussed so far are not suitable for
“noisy” coding situations, i.e., source coding widistortion,
or transmission in the presence of amknown(random) noise
component. In the noiseless case, the cosetsifis) filled the wherex~ means approximation in an exponential sense (i.e., the
binary space completely. To allow further compression in sourdéference between the normalized logarithms is small).

2k1—k2 ~ 2"["’(’12)_"’(’11)] (34)
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B. Lattices and Nested Lattice Codes L log(2meo?) ando? are the differential entropy and the
We turn to Euclidean space and to nested lattices. Let us first variance of the ANGNZ, respectively, such that

introduce the basic properties of a lattice code. Adimen- P.=Pr{Z gV,} <e. (3.12)

sional latticeA is defined by a set of basis (column) vectors . ]

g1, ..., g, inR". The latticeA is composed of all integral com- Such codes approach the capacity per unit volume of the

binations of the basis vectors, i.e., AWGN channel, and are called “good AWGN channel

a?-codes;” see [62], [16].

A={t=G iiel"} (3.5) i) Good source codes under mean squared distortion mea-

sure:For anye > 0 and sufficiently larges, there exists

wherezZ = {0, £1, £2, ...}, and then x n generator matrix ann-dimensional latticet with

G is given byG = [g; | g2| - - | g,,]- Note that the zero vector
is always a lattice point, and th&tis not unique for a giver. log(2meGr) < e (3.13)
See [16].

A few important notions are associated with a lattice. The
nearest neighbor quantiz@x-) associated with is defined by

i.e., the normalized second moment of good lattice codes
approaches the boudd2re asn goes to infinity; see [95].
Such codes, scaled to second momBntapproach the
Qz)=LeA if|z—£|<|z—2], Vel c A (3.6) quadratic rate-distortion functiaR(D) at high-resolution
guantization conditions [96] and are called “good source
where|| - || denotes Euclidean norm. In analogy with the basic ~ D-codes.”
decision celk}, in the binary case, the basic Voronoi cell bf

is the set of points ifR™ closest to the zero codeword, i.e.,
o . mate Euclideaballs of radius/no? (or v'nD); see [16], [95],
Vo = {z: Q) =0} (3.7) [62]. This implies that the volume of the Voronoi cells of good

where ties are broken arbitrarily. The Voronoi cell associatégcodes satisfies asymptotically
with each? € A is a shift of\, by £. In analogy with (2.6) the i1
mod-A operation is defined as n logV'~ 2 log(2med) (3.14)

In analogy with the binary case, the meaning of i) and ii)
is that the basic Voronoi cells of good lattice codes approxi-

whereé corresponds to? (or D).
Itis interesting to note that a lattice which is good in one sense
need not necessarily be good in the other. This is analogous to

which is also the quantization error sfwith respect to\. The th -k fact that latti h King i i valent
second moment ah is defined as the second moment per di- € well-known fact that fattice sphere packing1s not equivaien

. i L to lattice sphere covering; see [16] and [100].
mension of a uniform distribution ovej ) . . . ) .
0 A pair of n-dimensional latticegA;, As) is nested in the

2 / ||| dz 3.9) Sense of (3.1), i.,eAs C Ay, if there exists corresponding gen
Vo

RV, erator matrice€?; andGs, such that

z mod A =z — Q(x) (3.8)

whereV = Vol (V) = fva dz is the volume ofY;. A figure of Go=Gy-J
merit of a lattice code with respect to the mean squared er@gkereJ is ann x n integer matrix whose determinant is greater

distortion measure is the normalized second moment than one. The volumes of the Voronoi cells/of andA, satisfy
_ 1 1 2 5 24,2n Vo =det{J} -V} (3.15)
G(A) = m . g . /VO ||$|| de =0 /V . (310)

whereV, = Vol (Vy 2) andV; = Vol (Vs 1). We call
Ydet{J} = /Vo/ V)

The minimum possible value @f(A) over all lattices irR™ is

denotedG,,. The isoperimetric inequality implies th&t,, >

1/2me ¥ n. When used as a channel code over an unconstrairied nesting ratio
AWGN channel, [62], [30], the decoding error probability is the Fig. 1 shows nested hexagonal lattices whtk: 3-1, wherel
probability that a white Gaussian noise vecirexceeds the is the2 x 2 identify matrix. This is an example of the important

basic Voronoi cell special case dfelf-similar latticeswhereA; is a scaled—and
possibly rotated—version af; [15].
Pe=Pr{Z ¢ Vo}. (3.11)  The points of the set
The use of high-dimensional lattice codes is justified by the {A1 mod Ay} £ {A1 NV, 2} (3.16)

existence of asymptotically “good” lattice codes. As for parity-

check codes in the binary case (Section II-B), we consider t a(?f called theoset Ie.adergf ‘/.\2 relative toA,; for eachy €
L V«\f 1 mod As} the shifted latticeA, , = v + Az is called a
definitions of goodness. :

cosetof As relative toA;. Mapping of border points in (3.16)

i) Good channel codes over AWGN chantiar anye > 0 (i.e., points ofA; that fall on the envelope of the Voronoi region
and sufficiently large:, there exists an-dimensional lat- } ») to the coset leader set is done in a systematic fashion, so
tice A whose cell volumé’ < 27M#)+<] 'whereh(Z) = that the cosetd, ., v € {A; mod A,} are disjoint. It follows
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that there ard’»>/Vy = det{.J} different cosets, whose unionThe fine latticeA; D A, is typically much more complex in

gives the fine lattice order to achieve large coding gains, i.e., make the decoding error
. probability P. small as required by (3.12). Therefore, its “effec-
U Ao = A;. (38.17) tive dimension” isn.3
vC {A; modAsz) Loeliger’s construction is based on drawing a randoithi-

. ) mensional code oveZ, wherep is a prime number, and applying
Note that for any; € Ay, reducing; mod A, (see (3.8)) gVes .4 etion A [16]. This forms a good fine latticesindimen-

the leader of the (unique) coset which contdinsEnumeration sional Euclidean space nested with a coandeic lattice with

of the cosets can be obtained using a parity-check-like matfixqiing ratio, /[n] p. While this nesting in a coarse cubic lattice
[16]. ) ) ) ) is just an artifact of any type A construction, we can utilize it to
As mentioned in the binary case, of fundamental Importang@,in 4 fine code nested in a gosshrseattice as well. Specif-

is the question of existence of a sequence of good pairs of neq@jmy, denoting the: x & generator matrix ak’, as@, we trans-
lattices, where one of the lattices (the fine one or the coarse oR§i then, = & x m-dimensional Euclidean space by applying

is good for AWGN channel coding, while the other is good fog; 1 each of then consecutives-blocks. This transformation
source coding under mean squared distortion. See the d'scusﬁk‘%@:erves the random code properties required in Loeliger's con-

in Section I1I-C. If a nested lattice pair is indeed good in thigiryction, which for the appropriate choice@imply the good-
sense, where the fine lattice is a gofidcode and the coarseness properties i) and ii) in Section 111-B. As discussed in Sec-

lattice is a good,-code,é; > é1, then by (3.14) the number of tjon |v/-C, this factorizable form also has some practical merits,

cosets ofA, relative toA; in (3.17) is about but it requires modifications for small nesting ratios.
1{A; mod As}| = Va/Vi = (62/61)n/2 (3.18) . An explicit (and practlcal) construction of good nested codes
in real space was introduced by Forney and Eyuboglu [51],
where~ means approximation in an exponential sehse. [33]. Here, a trellis code plays the role of a finite complexity

Another special issue that arises in the application of nestedinite-dimensional lattice. The preceding existence argument
codes is the “self-noise” phenomenon. In simple words, it is tfier good nested lattices can be extended to such trellis-based
immunity of the channel-code component of the nested codested codes. In fact, in the applications discussed later it may
to noise induced by the quantization error of the source-code practically advantageous to replace the nested lattice codes
component. This issue will be discussed in detail in Section IWith nested trellis codes.

C. Construction of Good Nested Codes IV. Noisy SIDE INFORMATION PROBLEMS

For the binary case, existence is straightforward by the prop-Re|ative cosets of good nested codes generate efficient bin-
erties of random ensembles of parity-check codes [39, Sec. 6,{4]19 schemes for “noisy” network coding problems. To demon-
For a more explicit construction one may proceed as followgrate that, we first consider the simpler settings of coding with
[58]. LetG be the generating matrix of &, n) codeCz thathas  sjde information. These settings are in a sense noisy extensions
roughly a binomial distance spectrum. This property guarantegisthe two basic settings of Section Il, Figs. 2 and 3, and are
thatC, is a good parity-check code. One can now add cosetsygsed on [72], [97], [1]. In the sequel, we switch back and forth
C; (or equivalently, rows td@¥) and still retain a binomial spec- petween the binary case and the continuous case, and for conve-

trum for the new code, denoted By. Furthermore, from the nience we use the same lettersy, » to denote source/channel
construction it is evident that,  C;. See also Heegard’s con-ygriables in both cases.

struction of partitioned Bose—Chaudhuri-Hocquenghem (BCH)
codes [45]. A. The Wyner-Ziv Problem
We present a detailed construction of good nested IatticeC

. . onsider the lossy extension of the configuration in Fig. 2 of
ensembles (Construction-U) in a future work [30], [31]. W%ource coding with side information. As in the lossless case, the

shall point out here the basic elements. Our construction ﬁcoding and decoding functions take the form
based on Loeliger's construction of lattice ensembles [59%,

and is similar to common approaches aiming at incorporating i=f(z) and z=g(i, y) (4.1)
shaping gain into coded modulation [33], [86], in that thgagpectively. However, in the lossy case we allow some distor-
“effective dimensionality” of the coarse and fine lattice may,qn, petween the source and the reconstruction

greatly differ. That is, at large nesting ratios it might suffice to 1 .

use a relatively low-dimensional source-coding (shaping) lat- o BdX, X)<D (4.2)

tice to makelog 27eG(A) small enough as required by (3.13)¢,, some distortion measurk Wyner and Ziv [91] showed that
Denoting such &-dimensional lattice byA;, the construction ¢ v 2nqy are doubly binary symmetric, wheté = X & Z

forms then = mX Iy—dimfensipnal coarse lattice by aCartesia{Mth Z Bernoulli-p, andd is the Hamming distance, then the
product of this basic lattice, i.e., minimum coding rate is given by

Ay = Ay X Ay X oo X Ay, (319)  Rwy(D) =tce{H(p+ D) - H(D), (p, 0)},

2Note that for the good channel code component, i@fdicates the AWGN 0<D<yp (4.3
power, which is in general smaller than, or equal to the second moment of the
lattice. For the good source code component, thigridicates the mean square  3The dual case of complex-coarse/simple-fine nested lattices can be achieved
distortion, which coincides with the second moment of the lattice. using concatenated codes, and it will be discussed elsewhere.
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rate [bits]

0 i i i
0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5

Fig. 8. Rwz(D) for a doubly symmetric binary source.

wherep * D = p(1 — D) + (1 — p)D is the binary convolution Encoding: quantizer to the nearest point i}, resulting
of pandD, i.e., Rwz(D) is the lower convex envelope of the inz, =z & f(Hx) € Cq; then transmiths = AH -z,
function H(p + D) — H(D) and the point D = p, R = 0); see which requiresi; — ko ~ n - [H(p+ D) — H(D)] bits (see
Fig. 8. (3.4)).

In the continuous case, Wyner [89] showed thaXiandY Decoding: computes, = Hax, by zero padding, i.e.,
are jointly Gaussian, and the distortion measure the a squared g, = (0, As); then reconstruct by the point in the coset
error, then Ca s, Which is closest tgy, an operation that can be written

1 o2 as (see (2.11) and (2.12))
Ryz(D) = 5 log < Z)ly> ., 0<D<oaZ, (44 F=y®w, wherew = fo(sy® Hoy). (4.5)
Time sharing this procedure with the “idle pointD = p,
whereo?, s the conditional variance of givenY'. R = 0) gives theRy, function (4.3). Itis left to be shown that

Interestingly, the Wyner-Ziv rate-distortion function (4.3}he reconstructio is equal with high probability te,, and,
in the binary case is strictly greater than the conditionglerefore, by the definition of the fine codé, Edy (X, X)
rate-distortion functionR,, (D) = H(p) — H(D), which satisfies the distortion constrai. To that end, consider
corresponds to the case where the side information is availaplg. 9, which shows an equivalent schematic formulation of
to both the encoder and the decoder. On the other handthfs coding—decoding procedure in termafd-C, operations
the quadratic-Gaussian case the two functions coincide, il§ased on the identity (2.15). Note that the concatenatidxn/f
Rywz(D) = Ry,(D). zero padding, and(-) in the signal path can be replaced by a

The standard proof of the achievability of the Wyner-Ziginglemod-C, operation, whose output # = 2, mod C.4
function is by random binning; see, e.g., [21]. We now show ho8ince we have two successiuad-C, operations at the signal
to achieve these rate-distortion functions using relative cosetsth, we use the distributive property (2.18) to eliminate the
of nested codes, following the constructions in [72], [97]. Odirst, and arrive at the equivalent channel shown in Fig. 10, with
constructions generalize (4.3) and (4.4) in the sense that the= ¢ & x, denoting the quantization error. It follows that

side informationy may be an arbitrary signal (not necessarily &= ((e,®2) mod Co) &y (4.6)
Bernoulli/Gaussian).

In the binary-Hamming case, we use a pair of nested parity- cd- (e, 2) Dy 4.7)
check codes with check matricé%;, and H,, where HY =
[AH"; Hf] and(-)" denotes transpose, as defined in (3.2). We =4 (4.8)

require the fine cod€; to be agood sourceD-code and the  aysing this formulation, the vectai in (4.5) is given by = (v @ )
coarse cod€, to be agood channep « D-code mod Cy
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™S

mod C, side info.

Fig. 9. Wyner—Ziv encoding of a doubly symmetric binary source using nested linear codes.

“ where Z is an independent zero mean Gaussian with variance
i X R a2, ie, o2 = Var(X[Y) = ¢2.6 The random variablé”
X=y+z () /_ﬁ“’l w X may be arbitrary (not necessarily Gaussian). Our nested code
NP Y mod €, —(H)—— ion di is an i i i
construction discussed next is an improved version of the basic
) Ty + T v construction of [97] (which was optimal only fe£ > ¢2), and

of [1] (which extended [97] to any ratio of2 to o2, but did not
Fig. 10. Equivalent channel for the coding scheme of Fig. 9. take into account the exact effects of the self-noise).
Use a nested lattice pain;, A2) whose generator matrices
o _ . _ are related byy, = G - J, as discussed in Section IlI-B. Re-
yvhere: de.notesequallty conditional on correctdecodmgn_d quire the fine lattice\; to be a good sourc®-code, and the
in the last line we useg © 2z = z. Thus, correct decoding cogrse lattice, to be a good channe®-code. Let the (pseudo)
amounts to(e, ® 2) mod C; = ¢, ® z, which implies that 5nqom vectolZ, the “dither,” be uniformly distributed over
& =z, as desired. The decoding error probability is equal t0, ,, the basic Voronoi cell of the fine lattice. We shall assume
that the encoder and the decoder sltammmon randomnesso
Pe=Pr{(E,®Z) mod C; # B, ®Z}.  (49) thatt/ is available to both of them. Let = /1 — D/o2 denote

. . . the optimum estimation coefficient to be used in the following.
Note that B, and Z are statistically independentZ is P ¢

Bernoulli-p, and Encoding: quantizeaz + u to the nearest point iy,
resulting inz, = Q1(ax + u), then transmit an index
1 Ewy(E,) = 1 Edy(X,X,)=D which identifiesy, = £, mod As, the leader of the unique
n n

relative coset containing,; by (3.18), this index requires
log(V2/V1) = % log(c?/D) bits.

thus,
Decoding: decode the coset leades, and reconstruct
1
= Bwy(E,® 2Z) =Dxp. (4.10) ras
n Zz=y+aw, wherew =[v;—u— ay] mod A,.

Hence, if the quantization errdf, were a Bernoulli process, (4.12)

thenE; & Z were a Bernoulli-(D = p) process, and theD = Thjs procedure is unique up to scaling. For example, we can

p)-goodness of the coarse code would have implied that equivalently inflate(A;, As) by a factorl/«, quantizez di-

P, < e. However,E, is not a Bernoulli process. In fack; rectly (instead ofvz), and multiply the output of the second

is distributed uniformly ovef, 1, the basic Voronoi cell of; mod-A, operation by? (instead ofa).

(see (2.7)p. o _ Note that the coding rate coincides with (4.4) as desired. To
We see that the quantization error generated by the fine cQdfnplete the analysis of the scheme, we show that the expected

plays the role of a noise component for the coarse code. Waan squared reconstruction erﬁoE||f( — X|2~D.

call this phenomena “self noise,” and as we shall see, it appearsg that end, consider Fig. 11,7\L/vhich shows a schematic for-

in almost all applications of nested codes to binning schem@sy|ation of this coding—decoding procedure. Note that in the

Can the coarse code, the good channel code component of{he e we suppressed the intermediate mapping»ointo the

nested code, protect against errors induced by the self-noise 2\ gsmitted index. As in the binary case (2.18),ifel-A, op-
will address this question momentarily, in the context of nestedlation satisfies a distributive property

lattice codes.
To achieve the Wyner—Ziv function in the quadratic Gaussiar{(z mod A)+%y) mod A=(z+y) mod A, Ve, y (4.13)

case, we assume thatandY are related as _ _
(which easily follows byQ(xz + Q(z')) = Q(z) + Q(z)).
X=Y+Z (4.11) This property implies that we can eliminate the firsbd-A,
operation in the signal path, and arrive at the equivalent channel
5Even for a nonuniform source the encoding scheme can #Bgc® be uni-
form over,, ; using subtractive dithering based on common randomness; seéNote that any jointly Gaussian paiX, ¥") can be described in the form
the Gaussian case later. (4.11), replacing” with aY".
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Fig. 11. Wyner—Ziv encoding of a jointly Gaussian source using nested lattice codes.

leq dimension, implying that their convergence in probability (im-
X C C W C % plied by (4.19)) implies convergence of their second moments,
x mod A, eb_\ and we conclude that the reconstruction error is indeed arbi-
i Toty Ty trarily close toD, provided that (4.19) holds, i.e., that the de-

coding error indeed vanishes.
Fig. 12. Equivalent channel for the scheme of Fig. 11.

Good Nested Codes and the Self-Noise Phenomenon
of Fig. 12, wheree, denotes the subtractive dither quantizatioRroof of (4.19)

error [95] To show (4.19), consider the definition of the error event in

g = Q1(ax +u) — (o + u). (4.18). Note that the argument of thexd- A operation satisfies

1 1 1
Observing that the input to theod-A, operation in Fig. 12 is ;E||@Z+Eq||2:;EH@ZHQJF;EH—UHQIGQUZQJFD:UZQ
(owz + e,), we write the final reconstruction as

where we used the properties of subtractive dithered quantiza-
z=a((az+e;) mod Ay)+y (4.14) tionasin (4.20); see [96], [95]. Thus,dZ + E, were AWGN,
il then thes2-channel-goodness of the coarse code would imply
=alozte)+y (4.15) thatP., — 0asn — oo and (4.19) is proved. But the quan-
=2+ (ae,— (1 - a?)z) (4.16) tization errorE, is not AWGN and, thereforeyZ + E, is not

either. Thus, we again encounter the “self-noise” phenomenon,
where, as earlief:2" denotequality conditional on correct de- where part of the noise seen by the channel code component of
coding and in the last line we usgg+ z = x. We conclude that the nested lattice pair is induced by the quantization error of the
conditional on correct decoding, the equivalent error vector i$ource code component.
. 9 The “self-noise” phenomenon was observed in [72], [97],
z-z=oae—(1-0%)2 “417)  \where itwas conjectured that asymptotically its effect is similar
while the decoding error probability is given by to a Bernoulli process in the binary case, and to AWGN in the
. continuous case. This is, indeed, plausible by the source-coding
Pen =Pri(eZ + Bq) mod Ay # aZ + By (4.18) goodness of the fine code. Other works which dealt with nested-
As we shall show later, for a sequence of good nested codeslike constructions adopted this argument to justify their deriva-
probability of decoding error vanishes asymptotically, i.e.,  tions[1] or tended to disregard this phenomenon. However, there
(4.19) Wasno rigorous treatment until recently. Now, if the fine and
R coarse code components were independent, then the effect of the
Hence, the reconstruction err&r— X converges in probability self-noise could have been made identical to a Bernoulli/AWGN
to the right-hand side of (4.17). Now, the second moment pgfocess by appropriate randomization of the coarse code, e.g.,
dimension of the right-hand side of (4.17) is given by interleaving in the binary case. However, we cannot randomize
1 2 12 one code component while keeping the other component fixed,
n Ellak, - (1 -a”)Z]| because the nesting relation connects the two components. In a
1 5 1 oM 112 recentwork [30], Erez and Zamir confirm the conjecture made in
=, Ela=UIF + Bl — oD Z|" - (4.20) [72], [97] by putting an additional condition on the nested code.
= 2D + (1 - a?)20? (4.21) This condition extends the meaning of a “good channel code,”
= as defined for the lattice case in item i) of Section III-B:

P n—0, asn — oo.

=D (4.22) i)* Exponentially good channel codes over AWGN
for any y, where in (4.20) we used a property of subtractive  channel: For anyn ande > 0, there exists am-di-
dithered quantization, [96], [95]; namely, th&, is indepen- mensional lattice with cell volume:2~l*(Z)+] where
dent of X (and therefore of), and is equal in distribution to h(Z) = 3 log2reo? ando? are the entropy and the
—U; and in (4.22) we substitutes? = 1 — D/o2. On the other variance of the AWGNZ, respectively, such that
hand, in view of (4.14) and since theod-A, operation only (e
reduces the magnitud& — X has a finite second moment as P. =Pr{Z ¢ Vo} <O (4.23)
well. Thus, both sides of (4.17) have a finite second moment per whereF(e) > 0.
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As discussed in Section IlI-B, for good codes, the Voronoi reandom binning solution for general channels with side infor-
gion V), tends to a Euclidean ball, implying that the quantizanation [41].

tion errorE, is roughly uniform over a Euclidean ball of radius In the binarymod-2 additivie-noise channel case, Barren
v/nD. The analysis of [30] shows that the effect of such a noise. [1] showed that if the known interferenéeis a binary-sym-

on the decoding error probability ssitexponential im relative  metric source, the unknown nois& is an independent
to an AWGN with the same power. Thus, if the coarse lattid@ernoulli¢ source, and the channel input satisfies an input
A5 is exponentially good, the effect of the self-noise on the detamming constraint}; Ewy(X) < 6, then the capacity with
coding error probability (4.18) is asymptotically equivalent tgide information at the transmitter is given by

AWGN. A similar analysis shows this fact with respect to the

binary case, and it can be found in [32]. C(6) =u.ce{H(6)— H(p), (0,0)}, 0<6<0.5

Note that the existence of a sequence of lattice channel codes (4.27) )
with exponential decay of the decoding error probability (as #here u.c.e{.~} d'enotes upper convex envglope asa funcyon
(4.23)) was shown in [62]. Yet, the existence of a good nest@ ¢ Thus, in this case we loose in capacity for not knowing
pair of lattices, as required by the Wyner—Ziv encoding schemésat the receiver, because with an informed receiver we could
above, is a more delicate question, which we address in anotReRieve capacity of? = H(6 « p) — H(p), which is larger for
work [31]. any0 < 6 < 1/2.

In the next section, we shall see that the “self-noise” phenom-We now demonstrate how to achieve these side-information
enon occurs in a “reversed” manner also in the dual problefPacities using algebraic binning schemes, based on the
of channel coding with side information. We note also that Eéelatlve cosets of a g(_)od nested linear/lattice _code pair. In fact,
gers, Su, and Girod observed this phenomenon in their analy#§ Scheme generalizes (4.26) and (4.27) in the sense that
of scalar digital watermarking schemes (“scalar Costa”) at highe interferences’ may be an arbitrary signal (not necessarily

host-to-watermark ratio [25]. Gaussian/Bernoulli). The following configurations are based
on [1], yet with a more exact analysis of the effects of the
B. The Costa Problem: “Writing on Dirty Paper” self-noise.

The second setting we consider is a special case of channép both cases, we tune the fine COdetO. the (effectwe_) “”"”‘“’Yr_‘
coding with side information at the transmitter, known adoise level, and the coarse code to the input constraint. Specifi-
“writing on dirty paper.” ' cally, in the continuous case, we choose for the fine lattican
Consider the channél exponentially good chann%fi;NTI;,—code (as defined in (4.23)).
The coarse latticé\, should be a good sourde-code. In the
Y=X+5+N (4.24) binary case, we choose for the fine ca@lean exponentially
ood channep-code, and for the coarse co@ga good source

whereX andY are the channel input and output, respectivel code. Let the (pseudo) random vedkdibe uniform over the

N is an unknown additive noise, atis an interference signal basic Voronoi cell of the coarse code, i. » (latlice case)

known to the transmitter but not to the receiveks in the con- . ) ' E0,2 .

) ) : . , . ar Qy o (binary case). As in our scheme for the Wyner—Ziv

figuration of Fig. 3 (and unlike Shannon’s causal formulation blem O is a dither sianal. k 10 both the t it q

[67], [28]), the encoder knows thentire interference vector problem,t/1s a dither signal, known to bo € transmitter an

S 7 (s S..) prior to transmission. Hence, the encodinthe receiver via common randomness. For the continuous case
~ W On) P ' ’ Yefine also the estimation coefficient= P/(P+0%),and use

and decoding functions have the form the following encoding procedure.

z=f(w 8 and &= g(y) (4.25) Message selection: identify each cosed, ,,» € {A; N

respectively, wheres denotes the message. This setting extends ~ Yo,2}, With a linique message, by (3.18) this amounts to
the configuration of channel coding with perfect side informa-  108(V2/V1) = 5 log(1 + P/o) bits pern-block.
tion discussed in Section Il (Fig. 3), in the sense that here there Encoding: transmit the error vector betwees +« and

is an additional noise componéi¥ ) which is unknown to both the selected cosét, ., i.e.,
the transmitter and the receiver.
Costa [18] adhering to the Gelfand—Pinsker setting [41], z=[v—as—u] modA; (4.28)

showed that ifS and NV are statistically independent Gaussian
variables, and the channel input must satisfy an average
power constraint: £||X||? < P, then the capacity with side
information at the transmitter is given by

wheres is the interference vector andis the dither. By
the properties of dithered quantization

LX) vens=s=r
n

1 P
C= 3 log <1 + 012\,> (4.26) independently of the values ofands, where the expecta-
tion is over the dithel/.

Decoding: reconstruct the message as the unique coset
containingQ:(ay + u); the leader of this coset can be
computed as

wherea?; is the variance ofV. Thus, the effect of the inter-
ferenceS is canceled out completely, as if it were zero or it
were available also at the receiver. The proof is based on the

“Note that any channé&l = X + Z with side informationS, whereZ and R
S are jointly Gaussian, can be reduced to the form (4.24). v = Q1(ay+u) mod As. (4.29)
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......... Encoder e, AWGN Channel SOOI xS
c_xS f : : o B Lattice L
mod-Az % — > Dgodmz -~ mod-Ag F—n
H : B H 1

Latice .

mod-Az x Decoding  Lwi mod-Ap
: Ql

Fig. 14. Equivalent representation of encoding—decoding for the Costa problem.
Neg
v vy |Lattice Dec. S
+ mod-A - mod-A, |V
N 2 O 2

Fig. 15. Equivalent channel for the Costa problem.

Fig. 13 depicts this procedure. In the binary case, the pradistributive property to eliminate the firshod-A», operation,
cedure is the same, setting = 1, replacingA, by Co, and and arrived at the equivalent channel of Fig. 15. It follows that
regarding the “lattice decoding?;(-) as minimum Hamming

1" _ _
distance decoding with respect to the fine c6geThis results Y =lv-as-u)+(s+n)
in —(1—-a)z+s+n)+u modA, (4.33)

10g(|§202|/|§201|) ~ n[H((S) _ H(p)] =['v +an — (1 — Oé).'l‘] mod As. (4.34)
Tpus, the equivalent noise componentis = an — (1 — a)x.

uite surprisingly, an interesting lemma in [28], [27] shows that
this noise is independent of the input so the equivalent channel
is modulo-additive.

bits of information, and an average codeword Hamming weig
of §. Time-sharing this procedure with the “idle poin§ =
0, R = 0) gives theC'(6) function (4.27).

We want to show thadl? = V with high probability, so that the
message is decoded correctly. In the binary case, the distributiveemma 1 “Inflated Lattice” [28], [27]: The channel from
property of themod-C, operation allows to eliminate the firstto Y”, for U uniformly distributed ovei, o, is equivalent in
mod-C, operation, and obtain that the decoded coset leadedistribution to the channel

given by Y"—[o+No] mod Ay,  whereNeq=[(1—a)U+aN]

Q1(v+ N) mod C, (4.30) (4.35)
and wherelN ., is independent ob.

v

o

C

v (4.31)

Substitutinge = P/(P + %), the second moment per di-
where the second equality holds conditional on correct derension ofN., is equal to
coding. By thep-goodness of the fine code and sindeis 5 5 5 5
Bernoulli-p, the second line indeed holds with high probability. (1 -a)’P +a’oy = Poy /(P +ay)-

The proof that the decoding error probability Thus, if N, were AWGN, then thePo2, /(P + 03,)-channel-

s goodness of the fine lattice would imply th@t (Y”) mod A,
Fe=Pr(V£V) (4.32) is equal tae with high probability, and, thereford’, is small as

is small also in the continuous case is slightly more involved ddesired. However, the “self-noise” componéht— «)U is not
to the presence of the estimation coefficientc 1. Consider Gaussian, but rather uniform ovEg,. Yet, as in Section IV-A,
first Fig. 14, where we replaced the gaitin the signal path by a if the fine lattice is exponentially good, then the probability of
shortcut and compensated for that by subtracdting o)y from  decoding error goes to zero in spite of the slight deviation of
y'; we also inserted anotheiiod-A. operation which by the N., from AWGN. See [30] for a detailed proof. Thus, with
distributive property does not affect the final result, and denotgdod nested codes, the proposed scheme approaches capacity,
its outputy”, i.e.,y” = [ay + u] mod As. We then used the as desired.
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As discussed in Section VII, if we choose the coarse lattite the encoder, or to both the encoder and the decoder, then the
to be cubic, the preceding scheme becomes a dithered versiapacity of this channel is given by
of Tomlinson precoding [80], wher€ plays the role of “inter-
symbol interference.” C=(1-p)(1-H()).

Note that the case = 0 corresponds to the Kuznetsov-Tsy-
bakov problem, [55], which can be solved using a geoa-

In practice, the “goodness” requirement from the twgyrecorrection coset code (correctirgn(1 — p) erasures per
components of the nested code is not equally stringent. Ablock), as discussed in Section I1-D.
the quadratic Wyner-Ziv problem of Section IV-A (source A nested coding approach for this problem was proposed by
coding with side information) the channel coding goodnessyhakov [81] and Heegard [45], where the codes are referred to
of the coarse code determines the decoding error probabilfy“partitioned” codes. Heegard showed that nested parity-check
(4.19). Hence, the coarse lattice must be sufficiently complgydes may achieve the capacity of the channel above as well
to make this probability small. On the other hand, the sourgg syggested specific code constructions for this problem based
coding goodness of the fine code has only a slight effegh BCH codes. We now give a heuristic description of a nested
on the rate, and therefore in practice the fine lattice can Bgrity-check code solution in the terminology of this paper. The
simple. For example, if the fine code is simply a cubic latticgne code component is a good Bs@ode of dimensiom, as
(corresponding to scalar quantization), tien = G1 = 1/12,  defined in Section II-B. The coarse code component is good in
instead of the optimum valu&, = 1/2r¢; see (3.10). 3 different sense than discussed so far. It should have the prop-
This implies cell volumeV; = 3 log(12D), and rate redun- erty that the projection of the code on almost every subsepof
dancy of ;log(2me/12) ~ 0.254 bit per sample above the components is a good BSScode of dimensiomp. Note that
Wyner—Ziv-rate distortion function. For a general lattitethe  for ¢ = 0, this property amounts to goaasurecorrection at
rate redundancy becomgdog(2rcG(A)). coding rate slightly higher tham Observe also that the require-

In the dual Costa problem of Section IV-B (channel codingyent becomes less restrictivecascreases; random coding ar-
with side information) this behavior is reversed. The Channﬁhments imply that there exist parity-check codes satisfying this
coding goodness of tHne code determines the decoding eroproperty at coding rates slightly higher thatl — H(c)). It
probability P, in (4.32); in the terminology of digital communi- fg|lows that such codes have slightly less tieaft —»(L—H(e)]

cation [52], the “coding gain” of the fine lattice should be hightgsets, each of which satisfies the desired property above.
enough to achieve a desiréd without too much excess power.

C. A Note on Coding Complexity

The source coding goodness of tearsecode only slightly af- Me_ssage selection: identify each_ relative coset with a
fects the rate; the coarse lattice cell volumé& g(P/G(A)), unique message; the number of bits pelock are thus
so the rate gain relative to a cubic lattice is given by (see (3.10)) | 1202 | on[Ll—p(1—H(e))]

QmJ)”%< 20 )

1
— log(1/12G(A
g loElt/12G) = n(1 - p) (1 - H(©)).
a term called “space-filling gain” in the quantization litera-
ture [43] and “shaping gain” in the digital communication  Encoding: look for a vector in the message coset which
literature [52], [100]. Hence, the asymptotic gain of a good is e-compatible with the known defect, that is, it agrees
coarse lattice with respect to a simple cubic coarse lattice is with thenp stuck-at values a fractioh— ¢ of these cells.
only %10g(27re/12) ~ 0.254 bit. See discussion regarding  (Such a vector exists with high probability by the BSS
constellation shaping in [51], [33]. e-goodness of everyp projection of the coarse code.)

The perfect source/channel decoupling of the nested code dis- Store this vector in the memory, or declare an error if it
cussed above ceases to hold at low coding rates, i.e., at small does not exist.
nesting ratios. In this regime the “self-noise” becomes a sig- Decoding: do conventional BSC decoding of the fine
nificant portion of the equivalent channel noise. This implies  code from the stored vector, and identify the cosetr{es-
that the decoding error probability is determined not only by  sage) to which the decoded vector belongs. The decoding
the properties of the channel coding component of the nested error is small by the BS€-goodness of the fine code, and
code, but also by the source coding component. because the stored vector has a totahoferrors (inten-

. i tional npe at the stuck-at positions, and randeifi — p)e

D. Writing to a Memory With Noise and Defects errors at the other positions).

The third setting we consider is another special case of
channel coding with side information at the encoder, proposkd Nested Codes with Probabilistic Decoding

by Tsybakov [81] and Heegard and El-Gamal [47]. A binary s far we assumed that the unknown noise componéhts (
memory is modeled as a channel with three states in the Wyner—Ziv problem, andV’ in the Costa problem) corre-
S € {stuck at zero, stuck at one, BS{Y spond to memoryless binary—§ymmgtric_/Gaussian-poise c_:han-
) ’ nels. For such channels, maximum likelihood (ML) is equiva-
where the state process is memoryless, with probabijigyof lent to minimum Hamming/Euclidean distance, so it lends it-
each of the “stuck-at” states, and probability p of the “BSC”  self to algebraicdecoding of the nested code. We may extend
state. As shown in [47], if the state sequence is known in advartbe schemes above to more general additive noise channels if
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we keep the nested coding structure, but alpwebabilisticde- formation variables instead of on¥,(") andY (), which are
coding. This amounts to replacing the Voronoi decision cells obrrelated with the sourc&’. From arandombinning view-
the channel code component (the coarse code in the Wyner—Zaint, this configuration is basically the same as before, since we
problem or the fine code in the Costa problem) by ML decodirnzan view the two side information variables as a single variable
decision cells. with two components. However, an algebraic formulation for
Information-wise, a good nested code is equivalent to a utite solution is not straightforward. Specifically, following the
formly distributed random code ovs; see Section I11-C. Such solution in the single side-information terminal case, we would
a code is not necessarily optimal for a general (non-Gaussi#iké the decoder to reconstruct the soutcda an algebraic op-
correlated) noise and a general coding rate. Nevertheless, in¢h&ion on some coset information and the side information, i.e.,
limit of high coding rate (i.e., large nesting ratio), a good nesteting
cp_de With probabil_i_stic de_coding becomes optimal for any ad- zeC,, y(l) —z+ z(1)7 and y(2) =g+ 2® (5.1)
ditive noise. Specifically, it can be shown that asymptotically

asD — 0, the rate-distortion performance of the ML-decodefy€reCs is a suitable coset code. In the binary case, maximum-
Wyner—Ziv nested coding scheme is likelihood decoding ofe from (5.1) amounts teveightedmin-

imum Hamming distance decoding (becapgey™"), () has
~ h(X|Y) - 1 log(2reD) four values, one per each of the four possible pajt¥, v*)).
2 Thus, we must use “soft” decisions, rather than basic algebraic
provided thath(X|Y) = h(Z) is finite. Also, the asymptotic operations as desired. Nevertheless, in the joint Gaussian case,
rate—power performance of the ML-decoded Costa nesté pair(y), 4(®)) in (5.1) can be reduced to a singeffi-

coding scheme becomes, Bs— oo cient statistic ay*) + By@, wherex and /3 are suitable min-
1 imum mean square error (MMSE) estimation coefficients. The
b log(2meP) — h(N) conditional distribution ofX given this statistic is Gaussian,

with variance equals to the conditional varianceX6fgiven
provided thath(N) is finite. Note that these expressions cox + z(1) X + Z(2, Thus, the problem reduces to conven-
incide asymptotically with the rate-distortion and the capacitibnal lattice decoding in the presence of AWGN, as in the single

functions, respectively [27], [105]. side-information terminal case.
Combining the two cases (multiresolution and multiple side-
V. MULTITERMINAL CODING OF CORRELATED SOURCES information terminals), we can devise nested coding schemes

The nested coding schemes above, in the presence of Sidéqﬁ_more. general configurations, e.g., rate distortion when side
formation, provide the basic blocks for more general netwofRformation may be present/absent [46], [54].
coding schemes. In the context of source coding, the main ap
cation we address is multiterminal (or distributed) source codi
[3], [94]. This configuration generalizes the problem of source The general form of the Slepian—Wolf problem allows en-
coding with side information at the decoder, discussed in Sexpding of both correlated sourcéSandY’, at ratesi?; andRs,
tions II-A and IV-A. Before considering this application, werespectively [76]. The resulting configuration consists of two
briefly consider two related problems: multiresolution sourcgeparate encoders and a common decoder, as shown in Fig. 16.
coding, variants of which are known alsosisccessive refine-  Lossless reconstruction éf andY” is possible if and only if

% The Theoretic Multiterminal Rate Region

mentor multistage source codin@6]; and multiple side-infor- Ry >H(X|Y), Ry> H(Y|X)
mation terminals. Ri+Ro > H(X, Y). (5.2)
A. Two Related Problems A lossy version of the Slepian—Wolf problem was considered

Multiresolution Source CodingA multiresolution source PY Several researchers, but a tight solution was found only in

code consists of two codewords, the first contains a coarse §Becial cases [91], [3], [4], [61], [94]. In the quadratic-Gaussian
scription of the source, while the second contains a refinem&aSe: the largest known explicit single-letter characterization of

of this description. Nested codes provide a straightforwa]jae set of achievable rates is given by a *long Markov chain

mechanism for multiresolution source coding, where the coarddution” [3]
and fine components}; and(;, generate the coarse and fine Ry >I(X; X + N1]Y + Ny)
Shescrlr)t;pns, resE)t'ecftwer.t'B)r/a the sguccture of éhe nest?d clode, Ry >I(Y; Y + Nao|X + Ny)
e relative coset informatiord;; mod C,, provides a natural SHXY V- X
construction for the refinement codeword. However, unlike Fat By —I()_x’ Vi X+, Y+ ‘_NQ) _ (5.3)
in side information problems, both components of the nestédiere(V1, N2) are any independent Gaussian variables, such
multiresolution code should be “goosburce codes.” More that
importantly, this code imotinduced by a binning mechanism. Var (X|X 4+ N, Y 4+ Np) < Dy
Hence, this problem is, in fact, conceptually different than t
problems discussed so far, and it will not be developed here
further. Var (Y|X =+ Nl, Y =+ NQ) S DQ
Multiple Side-Information TerminalsConsider the problem and whereVar (A|B) denotes the conditional variance df
of Fig. 2, but assume that the decoder has access to two sideginen B.
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go"e'a‘ed Lossless problem, we can avoid the effect of the deviationZffrom a
ources Channels Bernoulli process by a suitable choice of these codes.) The third

X X stage requiresn principle, rate of
Common Ry Decoder A 1 )
Encoder v R/ =-HX|X'Y) (5.4)
L A n
Y Y ~HX|X+2,X +2) (5.5)
R =H(p)+ H(6)— H(p+¥6) (5.6)
- Encoder 1 4y
% where (5.5) uses the approximate Bernoulli formZf while
Decoder g (5.6)follows using the chain rule and using the fact tNais a
binary-symmetric source. It follows that the total ré&@e+ Re =
" — R} 4+ R,+ R is approximately
Encoderg—"v (1= H(8))+(H(p  8))+(H (p)+ H(6)—H(p * 5))

=14+H(p)=H(X,Y)
Fig. 16. General multiterminal source coding configuration.
and by varyings in the ranged < 6 < 1/2 we obtain the en-

. . . . tire boundary of the rate region (5.2). Unfortunately, however,
As usual, the information-theoretic solutions above are base(i. . . 2 .
ieving (5.4) is problematic in practice, as we need to encode

. : - ) -ac
on random binning c_odmg schemes and jointly '_[yp|cal quOd".];lgbinary sourcéX ) giventwo noisy binary version$X’, Y);
[22], [21]. Our goal is to realize these rate regions using alge- . : : . . :
. . . o . s discussed in Section V-A, we cannot realize this encoding
braic coding—decoding schemes, and specifically, using nesﬁ%qn ure algebraic operations, but must use a more complex
codes as building blocks. Similar formulations were derived b gp g P ' P

¥oft” decision decoding.
Pradhan and Ramchandran [63]. Lossy Case:The latter difficulty does not exist in the (lossy)

guadratic-Gaussian case. Following the discussion of the loss-
less case, without loss of generality we assume that the rate of
Lossless CaseWe start with the lossless version, knownhe X -terminal is smaller than the corresponding rate distortion
as the Slepian—-Wolf problem. As in Section Il, we assunfanction, i.e.,R; < Rx(D;) = %bgo—g/pl_ Consider first
that X andY form a doubly symmetric memoryless sourcethe caseR, > Ry (Dy) = %10g 0—5/1)2_ QuantizeY at rateR,
and are related a& =Y + Z, soH(X) = H(Y) = 1,and into a codeword’” with distortion Var (Y|Y’) = D}, < D,.
H(XY) = H(Y|X) = H(Z) = H(p). Clearly, the case Assuming entropy-coded dithered quantization (ECDQ) with a
whereR; > H(X)andR, > H(Y') is redundant, and trivially “good” k-dimensional lattice [95], the quantization er@t =
solved by single terminal codes. Hence, without loss of gengr? _ Y is additive and white, and becomes AWGNE*, ask
ality we can assume thdt; < H(X).If R, > H(Y) = 1, goes to infinity, i.e.,
then we can compreds§losslessly using a single terminal code,
and the problem reduces to that of encod{fg) with side (VarY|Y +2*)=D) and R, —I(Y;Y + Z%).
information at the decoddil”), as discussed in Section II-A.
The interesting case is thu$(X,Y) — R, < R, < H(Y). Then, use a nested lattice Wyner—Ziv code, to enctdeith
One way to solve this case is by time-sharing the “cornélstortionDy, given side informatio” = X + Z + Z* atthe
points” (H(X|Y), H(Y)) and (H(X), H(Y|X)) in the decoder. The rate require}; = Rxy-(D1), can be written
(Ry1, Ry)-plain, each corresponds to a simple side informatic# (X; X + Z”[Y"), whereZ” is an independent Gaussian
prob]em as discussed earlier. random variable such thatr (X|X+Z”, Y/) =D;. Thus, the
An alternative way to solve the latter case is to usearce- Pair (£, 1) lies on the boundary of the region (5.3) whenever
splitting approach [66]: quantize the first source iXd such 2 > Ry (D2).
thatnR, = H(Y|X’), and transmifX’ across the first channel ~Consider next the more interesting case, where both rates are
at rateR, ; then, encod@ given side informatioX” at the de- smaller than the corresponding (marginal) rate distortion func-
coder, and transmit the corresponding (coset) codeword acrb@ss, i.e., 1 < Ex(D:) and Ry < Ry (D). Similarly to
the second channel at rafie; finally, encodeX losslessly given the lossless case, we can realize this casenbg-sharingtwo
the side-information paifX’, Y), and transmit the codeword Points in the(R1, R»)-plain, having the form
across the first channel at ral#/, as an addendum to the code-
word of the first stage. If we general in the first stage using
a good sourcé-code, the erroZ’ = X’ — X is roughly a and
Bernoulli-6 process. Hence, we realize the first stage at rate (Ry = I(X; X + N{|X + Ny), Ry = Ry (Dy)).
R} = 1— H(6). Furthermore, sinc&’ =Y + Z + Z’, we can
realize the second stage using the coset information of a go8lternatively, we can use aource-splittingapproach. First,
channel = §-code, at raték, ~ H(p = §), as discussed in Sec-quantize X at rate R/ into a codewordX’, such thatR, is
tion 1. (Note that similarly to our treatment of the “self-noise’equal to the conditional rate-distortion function¥fgiven X’

C. Multiterminal Nested Codes
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at distortion levelD,.8 As above, we use ECDQ of sufficiently column vector is denoted b, andY’, is the received M x 1)

large dimension, so th&' = X + Z’, whereZ' is approxi- vector. The(M x K) matrix H, designates the matrix character-
mately AWGN. Then, use a nested lattice Wyner—Ziv code tring the MIMO channel. Unless otherwise stated, it is assumed
encodeY at rate R, and distortionD, with side information thatH, = H is areal deterministic known matrix and all signals
X + Z' at the decoder. Finally, use a nested lattice Wyner—Zare real valued.When relevant, we tredf as a realization of
code to encod&X at rateRR/ and distortion)); , given the two a random matrix process. We also impose average power con-
side-information variableX’ = X + 27’ andY = X+ 7 which straints on the input signals, and state the constraints according
are approximately jointly Gaussian by the properties of ECD@ the specific application discussed.

Unlike the binary case discussed earlier, we can convert these

two side-information variables into a single sufficient statisti®. The Single-Input Gaussian Broadcast Channel

and hence realize the latter stage using a “conventional” nestegh this case/s’ = 1 andA/ designates the number of separate
lattice code with algebraic encoding—decoding. See the discysers, so that

sion of multiple sidg—information Ferminals in Sgction V-A..It Y= hiX,+ Ze i i=1,2. ..., M. 6.2)
follows that by varying the quantization resolution at the first o i
stage, the resulting rate®, = R, + R” and R, realize the Letthe entries of thé) x 1) vector

entire rate region (5.3) using nested lattice codes, as desired. hi =h=(hy, ho, ..., hap)*

(with upperscripfl’ standing for the transpose operation) be or-
VI. COORDINATED ENCODING OVER MUTUALLY INTERFERING  dered in increasing ordéli;| < |h¢,1|. We also assume that the
CHANNELS noiseZ; is independent and identically distributed (i.i.d.) )n
In this section, we apply the paradigm, observations, and @1d normalized to unit variance per compon&t? ;) = 1.
sults of the preceding sections to a variety of problems assoEhis is a classical description of a Gaussian degraded broadcast
ated with interfering channels. In particular, we heavily rely oghannel [19], [21], the capacity region of which (assuming no
Section IV-B and demonstrate the power of the nested latti€@mmon rate components), is given by the union of all rates si-
coding approach in settings of single and multiple users andmltaneously satisfying
multiple-element (vector) communication.

After presenting the general model in Section VI-A, in Sec- 1 h2 P, .
tion VI-B we address the Gaussian broadcast channel [19] anéfi < 3 log | 1+ Y; ) i=1...,. M
then broaden our view to discuss the framework of the broad- 1+ h? DI
cast approach for the block-fading channel scenario, for single J=itl 6.3)
{he muliantenna é?fi&‘fféfgfaencé'e".?evc'éﬁuvy”'t'lé;?e‘éﬁﬁ"[%i"[S%here the union is taken over all power assignmdRY, § =
[99], [7]. In all these cases, a nested lattice approach is in fac ’a2’ -+, M, satisfying an average power constraint

M
natural and appealing capacity-achieving strategy. <
Two applications, though seemingly different from the above, Z P = SNR (6.4)

are then shown to be fully equivalent as far as the nested Iattiggre E(X2) < SNR designates the input average power con
H t —_ -

technique goes. Specifically, in Section VII-B, it will be con-_,_. . ; :
: . . . strajnt, wherekE is the expectation operator. The classical ap-
cluded that the standard single-user dispersive Gaussian channe : ; S ;
: ! roach [21] to achieve this region is by decomposing the trans-
as well as the single-user multiantenna (MIMO) channel can. . o .
e o mitted signalX, into a sum of independent componetis;,
also be treated within a similar framework. '

X . i=41,..., M, where
For the sake of conciseness, we reduce the systems d|scu§sed1 DR y
in this section to the basic setting that has already been ad-
; ¢ Xi=3 Xi,
=1

=1

dressed in Section IV-B and invoke the relevant results and ob- (6.5)

servations. We refer to the nested coding scheme for this settg}% whereE

2 _ 3 : an H
as “dirty paper coding.” (Xm) = F;. Now, {X, ;}}_, carries the coded

message information to usérwhich is assumed to comprise
A. The General Model the output .of a good (capgcny—aghlevmg) Qaussmn codg of rate
_ _ ) R,. Decoding is accomplished via successive cancellation, that
The_ model on which we focus is the vector Gaussian chanfelihe decoder of usécan reliably decode the messages of all
described by preceding user§l, 2, ..., i — 1}, as the channel is degraded,
that is,|h1| < |he| < -+ < |hp]|. The interference that stems
Yi=H X, +2 6-1)  from the already successfully decoded users is absolutely re-
wheret = 1, 2, ..., n designates the discrete-time index ar1H1oved, while the interference of the users not yet decoded is

n stands for block length. HerX, stands for the transmitted ac\c/:\l/,lmc;JIatecti ;’:md a}ddedt:](_) th? a”.’b'f”‘ Gaussrllal? nt(;lse. th
(K x 1) column vector. The Gaussian ambient ngigé x 1) ¢ depart here from tis classical approach by the way the
decomposition (6.5) is interpreted and by the way the actual
8Note that in view of (5.3),R, is in generalgreater than the conditional ) ) ) ) ) )
rate-distortion function oF given thefinal description ofX ; on the other hand, ~ °EXtensions to circularly symmetric complex signals is straightforward.
the conditional rate-distortion function decreases monotonically as the side ind9t is tacitly assumed that each user is equipped with the codebooks assigned
formation is refined. ThusX ' is coarserelative to the final description oX . to all users that it can potentially decode.
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Fig. 17. Nested lattice encoding—decoding for the two-user broadcast channel.

coding—decoding strategy is constructed. Ttheuser outputat ~ As mentioned, the nested lattice approach yields here an
timet is algebraic binning strategy and is applied straightforwardly as
el Y described in Section IV-B. One important feature here is that
Yii=hi | Xe. +Z X, + Z X, ;| +Z.: (6.6) the mechanism is not dependent on the Gaussianifspf,}
= P (6.7)11 Further, also the first usér= 1, for which S, ; = 0,
¥¢, can use a capacity-approaching lattice code, as addressed
in Section VII, which is indeed a special case. This provides
i—1 a unifying nested lattice based approach of optimal signaling
Sei=h; Z Xi, (6.7) over the Gaussian broadcast channel.
j=1 In Fig. 17, the nested lattice approach is demonstrated for
dthoefM = 2 user broadcast channel. User= 1 produces
Gaussian codewords, which are decoded taking the full inter-
ference penalty of user 2 (who enjoys a better channiélas>
?ﬁ?ﬂ This code can be based on a lattice approach, as described
{Besdection VII-A, and so depicted. User 2 treats user 1, to whom
power P is assigned, as interference known beforehand at the
Gt)rannsmitter{SL 2 = hoX; 1 }7_; and hence uses a nested lattice
s?rategy. That is, user 2 selects a codeword from the fine lattice

The part

is interpreted as an interference sequence known ahea
“time” (for all ¢t = 1, 2, ..., n) at the transmitter. This is in-
deed the case at hand, as the transmitter controls the gener
of all {X;;},¢ = 1,2,..., M. The “dirty paper coding,”
which encompasses the nested lattice technique, as descr
in Section IV-B, guarantees the achievability of the rgt&s}

as in (6.3). Note also that here the other interference term s

by useri and then transmits an appropriate error vector based on a coarse
M lattice modulo operation.
Wi i = h; Z Xy, (6.8) The underlying interpretation giving rise to the nested lat-
j=i+1 tice techniques, mentioned also in [9] and [101], conforms, in

functions as an additional noise component, approaching Gat?ﬁt_’ _to the b_asic insight provided by the Marton approach in
sianity as the lattice dimension grows. Caution should be ex&€Mving achievable rates for general broadcast channels [60]
cised here abX; ;}, j > i mayfunctionallydepend or{ X, ;. and evidently yields here, in the degraded channel case, the

Nevertheless, they are ensured todbatistically independent fE” capa_mlty regg;/. Specmc,ally, Theorgm 2 0:1 Marton E)N'th
due to the dither, so we can regafd ; asadditivenoise. This 1€ SPecial case ¥ (Marton’s [60] notations) chosen to be a

conforms to the fact that in the “dirty paper” setting (the Cosfeonstant, is directly related to this interpretation. The informa-

mOdeD)_( is independent Qf t_he interfering sigr&[lg]. Foran 1Though here, Gaussianity of the marginals is preserved by the very fact that
alternative treatment of this issue, see [8, Appendix], [98], [99]... . are so constructed as to achieve the capacity of the respective channel.
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tion-carrying signal of the first user plays the role of a state sef the associated error exponents. In certain cases, it may
guence given beforehand to the transmitter for the second uséso provide some practical advantages of signal processing.
For this special case, the linkage to the Gelfand—Pinsker [4pecifically, at the (usually small) cost of the additional com-
setting is evident, as indeed mentioned in [41]. A well-knowplexity of the modulo-coarse-lattice operations at the encoder
random binning interpretation of this special cadé-¢onstant) and the decoder, this “precoding” strategy saves the cost of
of Marton’s region is given in [40]. The focus in this paper, athe fine-lattice decoding of the interfering signal (directed for
demonstrated by the example at hand is to show specifically htve bad receiver) at the good receiver. Obviously, extensions
in the realm of a Gaussian broadcast channel binning is effif the nested lattice technique to the broadcast approach for a
ciently implemented in terms of a nested lattice code. multiple-access setting, where the different users communicate
Furthermore, there are some inherent advantages within tiver fading channels [68] are also straightforward, and again
advocated setting as opposed to the conventional onion peeliaty on the very same principles as in the “dirty paper” case.
at the decoder approach [19], [21]. Here, those users that exphis is also the case for a multiple-transmit/receive antenna,
rience better channels do not have to reliably decode the m&s-which certain aspects of the broadcast approach are under
sages assigned to the users who experience degraded (watly. Another aspect of nested lattices mentioned in Section V
channels, and in fact the “better” users may even be fully iis its natural application to multiresolution [3] problems and
norant of the codebooks assigned to those “degraded” userspacessive refinement techniques [26], [65]. As indicated in
property which may be advantageous for secured communifa; the successive refinement and the broadcast approach are
tion. This occurs without affecting the achievable rate region gsrfectly matched to transmit over composite or compound
in (6.3). channels where reliability (distortion) is refined as the channel
Yet, it is not that absolutely no information is revealed abotigalization improves. The possibility to treat both these aspects
those users corresponding to the degraded channels, whichvétgin the nested lattice paradigm demonstrates the rather
not reliably decodable within this paradigm, but rather that th&oad scope of this idea.
amount of information is exactly the same as if i.i.d. inputs had )
been generated and the underlying coding strategy of those uersl & Multielement Broadcast Channel
was totally ignored. See the conclusions in [78], where the rel-We now turn our attention to the multiple-antenna broadcast
evant result here corresponds to the case where the transmésemple, which again is characterized by the basic equation
invests no special efforts in improving the state estimation at tf@&1). Within this representation, the veciXr designates the
receiver, and hence allocates no power to that purpose. power-constrained input into thE-transmitting antennas and
The ability to treat successfully the standard broadcast stte vectorY; designates the associated signal received at the
ting with no loss of optimality within the framework of nested antennas of the different and noncooperative users, each
lattice codes opens a variety of possibilities. Here we highligaguipped with a single antenna. The matfix is assumed
the broadcast approach to a fading channel [69], [68]. Withkmown and fixed and it stands for the MIMO propagation
this framework, in a single-user setting any channel gain reabefficients. For simplicity, we assume here that= M and
ization is interpreted as a different (virtual) channel connectélte matrix 4 has full rankk.
to a different user. In this framework of composite channels [5], This model has recently been proposed and first treated in [8],
the transmitter, which is not aware of the specific channel rf98], [99], and [74], [102], where the single-cell multiple-an-
alization, is able to adapt the reliably transmitted informatioi@nna broadcast channel and multicell single antenna per cell
to the actual channel conditions. In [69], the continuous casege studied, respectively. Subsequent efforts extending the orig-
where the channel gain takes on real (or complex) realizationsal results of [8], [98], [99] appear in [7], [92], [103], [85], [84],
is treated and the optimal average throughput strategy is exphad [49].
itly identified. The broadcast transmission scheme advocated in [8], [98],
The fact that we were able in this section to retain th®9] employs the lower triangular quadratic residue (QR-LQ)
Gaussian broadcast channel capacity region adhering to degomposition
nested lattice approach, makes this technique immediately ap-
plicable to the general broadcast approach to communicate over H=GQ (6.9)
a composite channel [19]. Evidently within this applicatio
the reliable decoded rate depends on the realizdtiand is a
nondecreasing function ¢f|, as all information decoded for
a particular realizatioth; may also be decoded for a “better” X, =Q"6, (6.10)

realizationh,, where|hy| > |hy|. One may therefore wonder,,qreg, is the information-carrying signal, and where super-

what, if at all, is the advantage of the nested lattice approagfyint, stands for the Hermitian transpose. The transformation
over the standard ordered decoding and cancellation in suc .310) is power preserving

case where the information intended for some degraded gain

realization is to be decoded anyhow. Note that with the nested E|X:|* = E|6:]* = SNR (6.11)
lattice approach, all information streams are decodgdiallel This decomposition combined with (6.1) then yields
(see Fig. 19) as opposed to serial decoding and cancellation. i—1 9 K
This strategy eliminates the error propagation associated witlyt’i =00+ Z GijOrj+ Ziis T
the standard approach, which manifests itself in the behavior i<i t=12...,n

"WhereG is ak x K lower triangular matrix and) is a K x K
orthonormal matrix. The channel input is given by
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Fig. 18. The nested lattice encoding—decoding for the multiantenna broadcast channel.

(6.12) constraint (6.11). The RKI approach turns then to be the special

whereg; ; is thes, j entry of the matrixG. Again, the received cassar of = I This transformation (6.16) gives rise to the
signal has assumed the recognizable form of the “dirty papéi"m' lar equation

Costa setting where Yii=piibi+ Z pi 00 j + Z pi.i 05+ Zii (6.17)
t1=1,2,..., K J<i J>i
S, ;= 0 LT S 6.13 _ - .
b ; Gig 0.3 t=1,2...,n ( ) where p;; are appropriate coefficients determined by the ma-

plays the role of the interference sequence perfectly known tt)re|gesG, @, B. Here

forehand of the transmitter. Sei= Z pij Or 5 (6.18)

The application of a nested lattice technique to this frame- J<i
work, as depicted in Fig. 18, is straightforward and relies again
on the canonic blocks of the “dirty paper” nested lattice en- Wi = Z pij Or.; (6.19)

coders and decoders, as presented in Section IV-B and depicted 3 J”
in Figs. 13-15. The resultant achievable rates of this approadFg identified to be, respectively, the post-cursor and precursor

coined in [8], [98], [99] “ranked known interference (RKI),” iselements as in (6.7) and (6.8). Again, the nested lattice pre-

evidently given by coding for user eliminates the effect ofS, ;}7—, known be-
1 forehand at the transmitter for= 1, 2, ..., n, giving rise to
U {Ri < 3 log (1 + |gis)* P) i=1,2, ..., K} the achievable set of rates
(r:}
(6.14) 1 |piil® P
where the union is taken over all power assignmefits= U &< glog | 147 +3 PP |
E)6,.;|? such that the average power constraint (6.11) P} =i
K
> P <SNR (6.15) i=1,2.,.. . KYS. (6.20)
=1
is satisfied. _ o . . .
A generalization of the RKI approach is also suggested in [g]h€ union operation in (6.20) is as in (6.14). The entries of
[98], [99], where the transformation used is the matrixB and the power assignmefif’;} subjected to the

. average power constraint (6.15), can be chosen to optimize
Xy =Q" B0, (6-16) certain rate features as the total throughEL;,[f;1 R; [8], [98],

The matrix B is an upper triangular matrix satisfying[99]. Indeed, forK = 2, it was demonstrated in [8], [98],

trace% (BB*) < 1, so as to maintain the average powef99] that the generalized RKI method achieves the optimal
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throughput in this multiple antenna, generally nondegradeahproach in this application, as first advocated in [8], [98], [99],
broadcast-channel setting. This optimality holds also for geis-intimately and directly related to trellis precoding, as applied
eral K [7]. It was further demonstrated that even the basic RKaterin [92], [103]. Note that standard trellis precoding, when ap-
(whereB = I) technique is asymptotically optimal in the highplied to the “dirty paper” configuration is optimal only at asymp-
and low signal-to-noise ratio (SNR) regions, where in the lattestically high SNR, while the nested lattice precoding scheme is
case it reduces to the beamforming zero forcing technique [8ptimal throughout the whole SNR region, and that this is due to
[98], [99]. the introduction of the inflation factax (which in fact can also
The application of the nested lattice technique in this gendse combined with the trellis precoding strategy).
alized RKI approach operating over the multiantenna broadcasie have focused on the multiple-antenna broadcast setting.
is straightforward and depicted in Fig. 18, whéjeis replaced However, the same model is applicable to a variety of broad-
by @* B. This application is again, in principle, the same as igast applications as, for example, that of high-speed twisted pair
the broadcast channel or the ISI case of Section VIl as expresre-line communications [42]. For the sake of simplicity, we
sion (6.17), is of the very same structure as (6.6) and (7.5), ffave restricted our attention to real-valuBgand X, in (6.1).
spectively. A similar decomposition to the basic RKI transfoilExtensions to circularly complex valued matrices and vectors
mation (6.9) was suggested in [42] to combat far-end crosstalke straightforward and mainly require proper normalizations,
for a discrete multitone-based system. Their approach, i.e., pighich are already accounted for in (6.9)—(6.11). Having this ex-

coding, is however Tomlinson-like [64], [34], and as such sulension in mind is the reason for invoking the complex notation
jected to shaping, modulo and power losses. The possible §$€6.10), (6.11), and (6.16).

of a Tomlinson precoder in a coordinated transmission setting

has also been mentioned iq .[35].. The RKI technigue, whichV”' N ESTED CODES IN POINT-TO-POINT COMMUNICATION

interprets the LQ decomposition in terms of the “dirty paper” . ] .

channel, is free of all the above degradations as described, ant this section, we demonstrate that the nested lattice ap-

the nested-lattice technique which implements the full poteRtoach presented can also be relevant to standard point-to-point

tial of the RKI (either basic or generalized) technique is indedioblems. We paint out two examples, lattice codes and de-

a natural coding/signaling strategy in this multiantenna broagRding for the AWGN channel, and achieving the capacity of

cast setting. Again, the precursor (6.19) interference inherentiussian dispersive (ISI) channels through precoding.

cannot be alleviated, since symbols in the precursor are coded

in order to eliminate the effect of their post-cursors, containirfy Nested Codes With Lattice Decoding for the AWGN

the current symbol. This is evident, as otherwise one could f4hannel

laciously surpass the maximum achievable throughput capacityrhis application turns out to be a by-product of the encoding—

(evenin theK” = 2 case). decoding scheme of Section IV-B (the Costa problem). We
In [74], [75] the very same ideas are applied to a somewhgiiow that using nested codes in conjunction with dithering

different setting of a multicell downlink, and it was shown thafechniques, the power-constrained AWGN channel can be

multicell central processing has a fundamental impact on th@nsformed into a modulo lattice additive noise channel having

achievable throughput. Subsequent developments of this apfle same capacity as that of the original channel. By so doing

cation based on the results in [85] are reported in [49], whefig are able to retain the “one” in the capacity formula of the

also per-cell-site antenna power constraints are examined. AWGN channel which was sacrificed in prior works on lattice

We have demonstrated the results here assuming that #e@oding (see discussion in [53]). This allolattice decoding
MIMO propagation matrixt! is given. Extensions té/ being to be optimal for all SNRs.

a realization of a random matrix process can also be treated, ape Buda’s Theorem [23] states that a lattice code, cut
is done in [8], [98], [99]. into a bounded region with second momét can approach
The approach of [8], [98], [99] has recently been extended #tbitrarily close (in the limit of high dimension) the capacity
[92], [103], where it has been shown that the sum rate of theog (1 4+ P/N) of an AWGN channel at SNR= P/N. This
multielement broadcast channel can be achieved using the “diégult has been corrected and refined by several investigators,
paper” principles as in [92], [103], for any number of users anske [57], [83], [62], [59]. The optimality of this scheme relies
any number of elements (antennas). To that end the vector gepen maximum-likelihood decoding, i.e., on finding the lattice
eralization of Costa’s approach [93] has been invoked. This gbsintinside the bounded regiomhich is closest to the received
servation has also been made in [85], where the rate region asigghal. In contrast, “lattice decoding” amounts to finding
[92], [103] was interpreted in its dual setting as the union of céie closest lattice point, ignoring the boundary of the code.
pacity regions of an associated multiple-access channel, oversalch an unconstrained search seems to save complexity, and
power assignments among its users subjected to a total avenagains codewords’ symmetry, and thus attracted some special
power constraint. Nested lattice coding as described here can éttention. However, existing lattice coding schemes with lattice
mediately be used in the generalized setting as well, noting thigicoding can transmit reliably only at rates upsttog P/ .
the vector “dirty paper” setting [93] breaks up to a set of parall@his loss of “one” in rate means significant degradation in
scalar standard “dirty paper” channels, via the classical singufsrformance for low SNR. In fact, it was conjectured [59] that
value decomposition applied to the original vector channel. THettice decoding is optimum only at high SNR, i.e., that with
duality has also been exploited in [84] to show the throughput dpitice decoding the raté log P/N cannot be surpassed. See
timality, presenting an elegant rigorous proof. The nested lattiakso discussion in [53].
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Fig. 19. Nested lattice encoding—decoding scheme for AWGN.

In [29], [30] it is shown that the encoding scheme of Seavhere
H _ H “ [Pt} H H . 1 ™ .
tion IV-B may be applied, “as is,” to the ordinary (no side in v = exp <_ / log (1 " SNR|H(e—39)|2) g -1

formation) AWGN channel. This scheme, along wittice de- 2 J_

coding preserves the one in the capacity formula. Specifically, (7.3)

by takingS = 0 we may regard the encoding scheme as sho/#7d where ,

in Figs. 13 and 14 as a dithered lattice code transmitter along H(D) =Y h;D’ (7.4)
J

with a lattice decoding receiver, for the AWGN channel. Since _ _
it was shown in Section IV-B that lattice decoding may achiev&gands for the formab transform of the associated ISI coeffi-
the capacity of the Costa channel using the latter scheme, it foeNts [12]. Here, SNR designates the signal-to-noise ratio. The
lows that the same is true for the AWGN channel, regarded @§°ression’y may, in fact, equal the original channel capacity
a special caséS = 0). The resulting encoder—decoder is debrovided the transmission-shaping filter is selected to imple-
picted in Fig. 19 and its equivalent channel is the same as for fREN the Capa'cny-gcmev-mg water-pouring spectrum over the
Costa nested coding scheme (Fig. 15). Notice that the lattice §8ginal Gaussian dispersive channel. Hence, no optimality loss
coding operatior); does not depend on the exact distributiof incurred by assuming i.i.d. information-carrying inp@fs, ;
of the equivalent noise (4.35); rather, it is a Euclidean near&&p]: We focus here on the feedforward MMSE decision feed-
neighbor quantizer, as if the equivalent noise was AWGN. Pack (MMSE-DFE) equalizing filter [12], the output of which
We note that this transmission scheme in effect transforrtime epoctt IS given by .

the original AWGN channel into a modulo-lattice additive noise 7o P

. . . . . . Vi=X h; X ; h_; Xt + M. 7.5
one. This transformation is not strictly information losslessin =~ ©~ ¢ T2 hiKe ) b X + My (7.5)
the sense that it does not preserve the mutual information. Hoyy- .
ever, the (information) Iost) goes to zero as the dimension ofct)L:Y>Ie post-cursor (causal) and precursor (anticausal) parts are

codek goes to infinity. This suffices for achieving the channel’s Esignated by, and ¥, respecively, and are given by

i=1 i=1

capacity, albeit may result in a suboptimal error exponent. S, = Z ;}j X (7.6)
j=1
B. Dispersive (ISI) Channels 00
We now show that the classical ISI channel also falls into We=> h Xy (7.7)
the general framework of Section VI. Consider the dispersive i=1
Gaussian channel, which can be expressed by resembling a stationary version of the MIMO broadcast example

- as in (6.17). Here[ﬁj} designates the ISI coefficients at the
Yo=Y hXeyj+Z, t=12..n (7.1 outputof the MMSE-DFE feed-forward filter arid,} stands

J for the corresponding filtered noise samples. This is referred to
This can be viewed as a special case of (6.1), With= 1 in[12] as a canonic form mainly due to the fact that mutual in-
and whereH, = H is an countably infinite “row vector,” formation is preserved on a symbol-by-symbol basis, provided

i.e., a sequence, with componerts; }. In this notationX, an ideal DFE is available as to cancel the post-cufspy ef-
in (6.1) is composed of overlapped vectors of componerfect. This can be seen by calculating the associated SNR
(X4, Xoo1, -, Xo—y --)F, which are shifted by a single 9 9 oy
coordinate, with time, whergX, } stand for the scalar inputs to B/ [BEW) + B(ME)] =~ (7.8)
the ISI Gaussian channel. In this applicatigi; } designates referred to as the MMSE-DFE-U SNR, withstanding for “un-
the received samples afd; }, j # 0 are the ISI coefficients. biased,” meaning that in (7.5) the equivalent precursor noise
The additive Gaussian noise samples are denotgdZby. We  term is uncorrelated with the desired signal [12]. Evidently (see
assume that this equation represents the sampled output of[tf#, [104]), the sample-per-sample-wise mutual information,
matched filter which preserves information. Suboptimal filteringssuming ideal DFE(V;; X;| X1, Xz, ..., X;:_1) equals the
can also be represented within the setting of (7.1), as in [13]full input—output mutual informatiod 5 ({Y;}; {Xt}) (or, as

We further assume that the ISI coefficieffs; } account for said, the optimal channel capacity), provided fully reliable feed-
the transmission filter, channel time-invariant transfer functidmack decisions are available. This observation motivated the in-
characteristics, and the receiver matched filter. The informatiomeduction of a capacity-approaching coding strategy [44] where
carrying input symbolg§X; } are assumed to be i.i.d. Gaussiarthe decisions fed back are taken after decoding of a capacity-ap-
The input—output mutual-information normalized per channgtoaching code is completed, and therefore decisions are reli-
use equals able. The basic scheme is sketched in Fig. 20 for the time con-

- 1 tinuous dispersive channel. The central mechanism is the inter-

INQY ) {X}) = 5 log(1 +) (7.2) |eaver/deinterleaver guaranteeing that post-cursor symbols be-
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transmitter channel
ENCODER N-column pulse
rate < C .
e interleaver shape channel
— bc;);c)ac(ity) || write-rows L. (water- +
approaching transmit- pouring) filter +
code columns filter
n(t) - noise
Receiver
DEINTERLEAVER baud
CODE MMSE-DFE-U matched
~=— write columns [<—| +1— feed-forward |= Tat€ filter
DECODER . filter sampler

output-rows

MMSE-DFE-U |3
feedback filter

Fig. 20. The Guess—Varanasi MMSE-DFE coding strategy for the Gaussian dispersive channel.

long to different codewords, which were already decoded. THisit are still subjected to the modulo loss in the low SNR region.
is why, in principle, when capacity-approaching codes are uséal,the extreme case, where the coarse lattice in our scheme
the decoding error probability at the near-capacity operationaltaken to be a (Cartesian product of a) scalar quantizer, the
point is guaranteed to be negligible. This is in contrast to praested precoding scheme actually becomes almost identical
viously used DFE schemes, where the feedback filter makescombined coding and Tomlinson precoding. The crucial
use of “unreliable” symbol-by-symbol decisions. Thus, reliablgifference is the scaling facter which in this case must be op-
post-cursor symbols are fed back and ideally removed befaii@ized numerically (as a function of the SNR), see [28]. Even
the current codeword gets decoded. if we take Costa’sy = P/(P + N), the rate loss of this scheme
The scheme we advocate here uses in fact the interleaverlpper-bounded by the shaping gain;2log(2ne/12) =~
deinterleaver as in Fig. 20. However, the DFE part is replac@d54 bit, at any SNR. The Laroia precoding [56] technique
by nested latticgprecodingas in the “dirty paper” case. Notewhich is part of the V-34 modem standard, might be viewed
that when codeworg, which comprises thgth row in the in- as a certain lattice/trellis-based precoding, which guarantees
terleaver, is to be encoded, the post-cursor interference desigse to capacity performance at high rates (asymptotically
nated by the signal§S, ,} comprises, due to the interleavinghigh SNR conditions). See also [34], where lattice precoding
previous codewords. Since, as described in Section IV-B, nesfed Tomlinson-based processing has been addressed. Nested
lattice precoding is capable of retaining capacity over the “dirtgttice coding—decoding, as advocated here, approaches ca-
paper” channel (and an AWGN channel as a special case), fhiity at all rates and SNR values. In fact, the inflated lattice
approach achieves capacity over the regular ISI channel. Thishnique manifests itself in the introduction of the scalar
strategy is depicted in Fig. 21 for the continuous Gaussian digid the uniform dithering (see Section IV-B). These are crucial
persive channel. The setting is identical to that of Fig. 20, betements so as to guarantee near-capacity operation throughout
for the coding which is replaced by the “dirty paper” encodehe whole SNR region and not only at high SNR scenarios.
and the decoding by the “dirty paper” decoder, where the latterEvidently, this ISI precoding scheme can easily be general-
does not require any DFE loop. The blocks of the “dirty papeiZed to the multiple-antenna (MIMO) single-user channel with
encoder and decoder are shown in Figs. 13 and 14. the propagation matri# (replacing the time-invariant channel
Evidently, precoding techniques are widely used over ttigter A ; of (7.1)) available to both the transmitter and the re-
ISI channel. While standard Tomlinson precoding [64] suffexiver [79]. In fact, this precoding technique is immediately ap-
inherent degradation of power loss, modulo-loss, and shapislicable to a MIMO, Bell Laboratories Layered Space—Time
loss [70], [87], the more sophisticated trellis precoding [33BLAST) [38] type communication where the Cholesky-based
and Laroia precoding [56] avoid the shaping and power losditering is performed at the receiver and the resultant interdata
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N
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‘dirty paper’ deinterleaver baud
output MMSE-DFE-U
< nested lattice [<—| write columns [<| feed-forward |<——— rate filter —
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decoder output-rows P

f

dither sequence

Fig. 21. The “dirty paper” capacity-approaching strategy for the Gaussian dispersive channel.

stream interference, usually coped with by post-decoding DFiBt to be necessary, but yet, the nested approach facilitates a
[38], is absolutely eliminated by the “dirty paper” precoding asew angle of perspective. Multiple-description lattice quantizers
described here. A Tomlinson-type precoding for this setting hEi07] seem to have similar structure, but were not considered in
been presented in [37], [36]. this work.

A closing comment refers to the effect of the precursor des-We examine, first, noiseless source coding problems with
ignated byW, (7.7) in both the broadcast (as presented in trgde information available to the decoder and dual schemes of
previous section) and ISI settings. The interference from thisnstrained point-to-point transmissions, with side information
part is taken in full, and that despite of the fact that the pravailable to the transmitter only, adhering basically to Wyner’s
cursor is also composed, in principle, of symbols produced @iset coding. We introduce the notion of nested codes either
the transmitter. Any mitigation of interference associated wittn a binary or continuous alphabets, and extend then the
this signal (precursor) is inherently prohibited (in the broadcadiscussion to noisy side information settings, as the Wyner—Ziv
and MMSE-DFE-U ISl setting). This is evident as otherwisgate distortion problem, and the Costa, “writing on dirty paper”
the achievable rate region would fallaciously surpass the ulind the Kuznetsov-Tsybakov—Heegard—El-Gamal defected
mate broadcast channel rate region and the dispersive Gaussiamory problems. We note also that since the Costa problem
channel capacity. This is a manifestation of the fact that futuaad the problem of digital watermarking are equivalent, the
symbols (part of the precursor) represent codewords which amkested lattice scheme also provides a capacity-achieving
so produced as to mitigate the interference of past (post-curssmjution to the latter problem. The basic building blocks of
symbols. In the MMSE-DFE ISI channel setting, this inheremtested coding are then used to address classical multiterminal
limitation is another manifestation of the inherent disability tproblems, as correlated sources encoding—decoding, degraded
implement vector processing combined with ideal DFE, as thH&aussian broadcast channel, and a nondegraded Gaussian mul-
yields a fallacious surpass of the ultimate Shannon capadityle-antenna broadcast setting. We also study the nested coding
[70], [44]. approach on the standard point-to-point AWGN channel, and
the classical dispersive Gaussian channel, and demonstrate how
capacity can be achieved adhering to the basic building blocks

In this tutorial paper, we have presented the paradigm of alf nested coding. It is emphasized that trellis precoding via
gebraic binning in an effort to encompass a class of the ritlronoi region coding as in [51], [33] can also be interpreted
information-theoretic settings where random binning ideas areterms of nested lattice codes and, in fact, this may serve as a
applied and beyond. The underlying framework is the nestpdssible practical construction of nested lattice codes.
codes, which have recently been studied extensively in a vaAs a closing remark, it is interesting to mention that nested
riety of applications. The unified framework of nested structurezbdes were recently speculated to be the central ingredient in
coding encompasses also other settings, where binning se#imesaccurate replication of the Genome [2].

VIIl. CONCLUSION
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