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Abstract— At the birth of information theory, Shannon
surprised the communication world with the concept of
random coding, which he used for proving the ultimate
limits of his theory. This powerful tool is, however, non-
constructive. In Shannon’s words: “An attempt to obtain a
good approximation to ideal coding by following the method
of the proof is generally impractical... related to the difficulty
of giving an explicit construction for a good approximation
to a random sequence.” A practical substitute to random
coding are structured codes (one example of which - the
Hamming code - appeared already in Shannon’s paper from
1948). Multiterminal information theory provides us now
with a new surprise: for some distributed coding problems
structured codes seem to be better than random codes! This
summary of my ISIT 2010 plenary talk discusses how lattice
codes are used in Gaussian multiterminal settings, and the
intuition they provide for the question in the title.

I. M OTIVATION

It is not hard to detect the few differences between the
two faces in Fig. 1. Once detected, it is also not too hard
to describe them with just a few words. But would a few
words be sufficient if the two faces were described by two
separateobservers?

Fig. 1: Find (and communicate) the differences.

An information-theoretic analogue of this question is
the “two help one” problem of Fig. 2, which was proposed
in a seminal paper from the late 70’s by Körner and Mar-
ton [25]. They showed that if one wishes to reconstruct
the modulo-two sum of two correlated binary sources from

Dec.

Enc. X

Enc. Y

Enc. Z

ẐY
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Fig. 2: The Körner-Marton configuration.

their independent encodings, then linear coding seems to
be better than random coding.

Specifically, the Körner-Marton (KM) setup consists of
a binary doubly symmetric source(X,Y ), and an “error”
variable Z = X ⊕ Y indicating whenX and Y are
different, i.e.,Pr(Z = 1) = Pr(X 6= Y ) = θ. The goal is
to encode the sourcesX andY separately such thatZ can
be reconstructed losslessly. If coordination between the
encoders were allowed, then they could compute the XOR
sequenceZ1, . . . , Zn and encode it at a rate ofH(Z). Via
a “genie aided” argument, Körner and Marton showed that
in theuncoordinated case, the sum rate required is at least

Rx +Ry ≥ 2H(Z). (1)

Furthermore, this sum rate can be achieved by alinear
code: each encoder transmits the syndrome of the observed
source relative to a good linear binary code for a BSC with
crossover probabilityθ.

A common technique in proving direct coding theorems
in information theory is the use of arandomcode, induced
by somesingle-letterformula. In an attempt to find such
a formula for the problem in Fig. 2, Körner and Marton
examined a “natural” extension for the solution of the “one
help one” problem [1], [46]; the resulting achievable rates
satisfy, [25, appendix]

Rx +Ry ≥ H(X,Y ). (2)

These rates correspond to Slepian-Wolf encoding ofX
andY [9],1 and are clearly strictly contained in (1) (since
H(X,Y ) = 1 + H(Z) in (2) is greater than2H(Z) for

1It can also be derived from the Berger-Tung achievable region [3] for
distributed lossy coding ofX andY with one reconstruction̂Z under
the distortion measured(X, Y, Ẑ) , X ⊕ Y ⊕ Ẑ.



θ 6= 1
2 ). Thus, the “natural” random binning solution for

the “two help one” problem is suboptimal, and inferior to
structured (linear) coding.

Does this mean thatany random coding scheme (i.e.,
single-letter solution) would be suboptimal for the “two
help one” problem? Instead of dealing with that directly,
we turn to structured (lattice) coding in the Euclidean
space, with the hope to get further intuition about this
issue in multi-terminal Gaussian setups.

II. W HY LATTICES?

Lattices form effective arrangements of points in space
for various geometric and coding problems, e.g., sphere
covering and packing, quantization, and signaling for the
additive white Gaussian-noise (AWGN) channel [6], [16],
[10]. The best lattice for each problem may be different.
Nevertheless, as the dimension goes to infinity, there exist
lattices which tend to be “perfect” for all problems.

In the context of this talk, lattices serve as a bridge from
the low dimensions of common modulation techniques
(PCM, PAM, QAM) to the large dimensions of coded
modulation schemes, or to the infinite dimension of Shan-
non’s theory. They also provide an “algebraic” binning
scheme for some Gaussian side information problems
[52], [13]. Moreover, recent developments in the area
of Gaussian network information theory, [35], [36], [26],
[40], [41], [38], indicate that lattices are sometimes even
better than their random coding counterparts!

III. L ATTICE DEFINITIONS AND FIGURES OFMERIT

An n-dimensional latticeΛ is defined by a set ofn
basis vectorsg1, . . . , gn in R

n. The latticeΛ is composed
of all integer combinations of the basis vectors, i.e.,

Λ =
{

λ = G · i : i ∈ Z
n
}

, (3)

where Z = {0,±1,±2, . . .}, and then × n generator
matrix G is given byG = [ g1 | g2| . . . | gn ]. WhenG
is the unit matrix, we obtain the integer latticeZn. Thus,
Λ in (3) can be written also asGZ

n. Note that the zero
vector is always a lattice point, and thatG is not unique
for a givenΛ. See [6] as an excellent background.

A few important notions are associated with a lattice.
The nearest neighbor quantizerQΛ(·) is defined by

QΛ(x) = λ ∈ Λ if ‖ x−λ ‖≤ ‖ x−λ′ ‖ ∀ λ′ ∈ Λ (4)

where‖ · ‖ denotes Euclidean norm, and ties are broken in
a systematic manner. The fundamental Voronoi region of
Λ is the set of points inRn closest to the zero codeword,
i.e., V0 = {x : QΛ(x) = 0} . The Voronoi region
associated with eachλ ∈ Λ is the set of pointsx such
thatQΛ(x) = λ, and is given by a shift ofV0 by λ.

Other fundamental regionsP0 exist which generate
a lattice partition of the form{λ + P0}λ∈Λ, and a
corresponding lattice quantizer

QΛ,P0
(x) = λ if x ∈ (λ+ P0). (5)
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Fig. 3: The fundamental Voronoi region and its packing
radius, covering radius and effective radius (radius of the
sphere having the same volume). Packing and covering
efficiencies are measured by the corresponding ratios.

For example, the fundamental parallelotope{Gα : 0 ≤
αi < 1, i = 1 . . . n} amounts to transforming the unit
cube (the fundamental region ofZn) by the generator
matrix G. Nevertheless, the volume ofall fundamental
regions ofΛ is the same, and is given by| det(G)| ∆

= VΛ.
The modulo-Λ operation w.r.t. the latticeΛ and some

assumed fundamental regionP0 in (5) is defined as

x modP0
Λ = x−QΛ,P0

(x) (6)

which is also the quantization error ofx with respect to
Λ.

The two most well studied figures of merit of a lattice
are its packing radius and covering radius, illustrated in
Fig. 3. Here we will focus on two other figures of merit
which have more of an engineering flavor: thenormalized
second moment, which is a measure of goodness for
quantization, and thevolume to noise ratio, which is a
measure of goodness for AWGN channel coding.

Mean-squared error (MSE) quantization:The second
momentσ2

Λ of a lattice is defined as the second moment
per dimension of a uniform distribution over the funda-
mental Voronoi regionV0,

σ2
Λ =

1

VΛ
· 1
n

∫

V0

‖x‖2dx. (7)

A dimensionless figure of merit of a lattice quantizer with
respect to the MSE distortion measure is the normalized
second moment (NSM)

G(Λ) =
σ2
Λ

V
2/n
Λ

. (8)

The minimum possible value ofG(Λn) over all lattices in
R

n is denoted byGn. The normalized second moment of
a sphere, denoted byG∗

n, approaches1
2πe as the dimension



n goes to infinity. The isoperimetric inequality implies that
Gn > G∗

n > 1
2πe for all n. We also haveGn ≤ G1 =

G(Z) = 1
12 .

The operational significance of this figure of merit
comes from classical results in high-resolution quantiza-
tion theory. It is also useful in the context ofconstellation
shaping, as we shall see in Sec. V. A result due to
Poltyrev which appeared in [50] states that the sequence
Gn achieves the sphere lower bound, i.e.,

lim
n→∞

Gn =
1

2πe
. (9)

Another result in [50] is that the quantization noise of a
lattice achievingGn is “white”, i.e., the covariance matrix
of a uniform distribution overV0 is given byσ2

Λ ·I, where
I is the identity matrix.

Coding for the unconstrained AWGN Channel:The
AWGN channel is given by the input/output relation

Y = X + Z (10)

whereZ is i.i.d. Gaussian noise of varianceσ2
z . We denote

byZ an i.i.d. vector of lengthn of noise random variables.
The notion of lattices which are good for AWGN

coding may be defined using Poltyrev’s [42] definition
of capacity per unit volume ofunconstrainedchannels,
allowing to separate the “granular” properties of the lattice
as a good channel code from the issue of shaping (to meet
the power constraint). The probability of decoding error
in this setup is the probability that the noise leaves the
Voronoi region of the transmitted lattice point

Pe = Pr{Z /∈ V0}. (11)

The volume-to-noise ratio (VNR) of a lattice at probability
of errorPe is defined as the dimensionless number

µ(Λ, Pe) =
V

2/n
Λ

σ2
z

(12)

where σ2
z is such that (11) is satisfied with equality

[17]. Note that for fixedPe, the VNR is invariant to
scaling of the lattice. The minimum possible value of
µ(Λ, Pe) over all lattices inRn is denoted byµn(Pe).
The VNR of a sphere is denotedµ∗

n(Pe). Since a sphere
supports the isotropic vectorZ better than any shape of
the same volume (see thesphere boundof [17]), we have
µn(Pe) > µ∗

n(Pe) > 2πe, where the second inequality
holds for all sufficiently smallPe, andµ∗

n(Pe) → 2πe as
n → ∞, for all Pe > 0. It follows from Poltyrev (see also
[16], [17]) that the sequence of minimum possible VNRs
asymptotically achieve this lower bound:

lim
n→∞

µn(Pe) = 2πe, for all 0 < Pe < 1. (13)

In fact, simultaneous goodness inboth senses (9) and
(13) above is asymptotically possible.

Theorem 1. [10] There exists a sequenceΛn of lattices
of increasing dimensionn, which satisfies

G(Λn) →
1

2πe
and µ(Λn, Pe) → 2πe.

−Z

S

Fig. 4: Equivalent additive-noise channel of a dithered
lattice quantizer. (Z is independent of the inputS, and
uniform over the fundamental regionP0 of Λ.)

It is also shown in [10] that these lattices achieve the
Minkowski and Rogers bounds for sphere packing and
covering, and the Poltyrev exponent of the unconstrained
AWGN channel.

IV. D ITHERED QUANTIZATION

In quantization theory (as well as in some non-linear
processing systems) the term “dithering” corresponds to
intentional randomization, aimed to improve the percep-
tual effect of the quantization, e.g. to reduce “blocking”
effects in picture coding. Dithered quantization is also an
effective means to guarantee a desired distortion level,
independent of the source statistics.

We say thatU is a “subtractive dither” if it is known
at both the encoder and the decoder (i.e., it is a common
randomness), the encoder adds it to the source vectors

prior to the quantization, while the decoder subtracts it
from the quantized value, so the overall reconstruction is
QΛ(s + U) − U. Addition and subtraction ofu before
and after quantization amounts to shifting the quantizer
by −u. Since the lattice quantizerQΛ(·) is periodic in
space, a random shiftU which is uniform over the lattice
period makes the quantization error uniform as well.

Theorem 2. [50], [55] Let U be uniform over the fun-
damental regionP0 of the lattice quantizer (5). Then, the
quantization errorQΛ,P0

(s+U)−U− s is uniform over
−P0, the reflection ofP0, independent of the source vector
s.2

Equivalently,(s+U)modP0
Λ is uniform overP0 for

any s, a result termed the “Crypto Lemma” by Forney
[18].

As a corollary of Theorem 2 and (7), the mean-squared
distortion of a Voronoi dithered quantizer (4) is equal to
the lattice second moment:

1

n
E‖QΛ(s +U)−U− s‖2 = σ2

Λ (14)

independent of the source vectors.
In high-resolution quantization theory it is common

to approximate the quantization process as adding (inde-
pendent) noise to the source. Theorem 2 shows that for
dithered quantization this model is exact atany resolution.
See Fig. 4.

2Thm. 2 still holds ifU is replaced by a “generalized dither”, i.e.,
any vectorŨ such that(ŨmodΛ) is uniform overP0 [55].



A. Entropy Coded Dithered Quantization

The next theorem makes the connection to an additive-
noise channel even stronger. Assume that for given source
statistics, the lattice quantizer output is losslessly “en-
tropy” coded, conditioned on the dither value. That is,
each lattice point is mapped into a binary word of variable
length, such that the average code length is approximately
equal to the conditional entropy of the quantizer output.
We call such a combination of a lattice quantizer and
optimum lossless encoding an Entropy-Coded Dithered
Quantizer (ECDQ).

Theorem 3. [48]The average code length of the ECDQ,
i.e., the conditional entropy of the dithered lattice quan-
tizer, is equal to the mutual information in the equivalent
additive-noise channel of Fig. 4:

H(QΛ(S+U)|U) = I(S;S−U). (15)

The mutual information formula above resembles the
expression for Shannon’s rate-distortion function [9]:
R(D) = inf Ŝ: E{(S−Ŝ)2}≤D I(S; Ŝ). This formal resem-
blance leads to auniversalbound on the loss of the ECDQ.

Theorem 4. [57], [48]For any sourceS, the redundancy
of the ECDQ above the rate-distortion function under a
squared error distortion measure is at most

H(QΛ(S+U)|U)−R(D) ≤ 1

2
+

1

2
log(2πeG(Λ)) (16)

bits, and it is only12 log(2πeG(Λ)) in the limit asD goes
to zero (i.e., at high-resolution conditions).

Divergence of dither from Gaussianity:The second
term on the right hand side above can be interpreted as the
divergence (or “Kullback-Leibler distance”) of the dither
distribution from AWGN:

1

2
log(2πeG(Λ)) =

1

n
D(U‖U∗) (17)

where U
∗ is a zero-mean i.i.d. Gaussian vector with

Var(Ui) = σ2
Λ for all i, and whereD(·‖·) denotes

divergence [9], [50]. Thus, for lattices which are good for
quantization, i.e.,limn→∞ G(Λn) =

1
2πe , the divergence

of the dither from Gaussianity (17) goes to zero, so the
equivalent channel of Fig. 4 becomes an AWGN channel.

B. Filtered ECDQ

Consider the equivalent additive-noise channel model
in Fig. 4. As discussed earlier, for any finite dimension
the noise of optimal quantization lattices iswhite [50]. If
the second order statistics of the source are also known,
then we can use Wiener linear estimation principles to
reduce the overall MSE in reconstructing the sourceS.
The improvement is most dramatic when the source is
Gaussian.

If the source is white, then the Wiener filter is a
simple scalar coefficientβ at the output of the equivalent
channel. For such a source the reconstruction becomes
Ŝ = β[QΛ(S + U) − U], whereβ =

σ2
S

σ2
S
+σ2

Λ

, and the

overall distortionD = E‖Ŝ− S‖2 decreases fromσ2
Λ to

D =
(

1/σ2
S + 1/σ2

Λ

)−1
. This reduction in distortion of

the “post-filtered” ECDQ allows us to improve the bound
of Thm. 4 in the Gaussian source case.

Theorem 5. [49] For a Gaussian source with variance
σ2
S , the redundancy of the post-filtered ECDQ over the

rate-distortion functionR∗(D) = 1
2 log

(

σ2
S

D

)

is at most

H(QΛ(S
∗ +U)|U) −R∗(D) ≤ 1

2
log(2πeG(Λ)) (18)

for all distortion levels0 < D ≤ σ2
S .

See [49] for the extension of this concept to sources
with memoryusing pre/post-filters.

Note that the output scaling factorβ is smaller than
one for the entire distortion range0 < D ≤ σ2

S . Since
the reconstruction̂S belongs toβΛ (up to a shift due
to the dither), it follows that the decoding latticeβΛ is
a “deflated” version of the encoding latticeΛ. More on
the meaning of this encoding-decoding “mismatch” in the
next section.

V. VORONOI CODEBOOKS

As Information Theory shows us, coding for Gaussian
sources and channels should be done using “Gaussian
codebooks”. That is, the codewords should be selected
from a Gaussian generating distribution. The number of
codewords is determined by the target rate, while the gen-
erating distribution is white, and its variance is equal to the
source variance - in source coding, and to the transmitter
power - in channel coding. The resulting codebook in
R

n (n being the code dimension) has roughly uniformly
distributed codewords over asphere. Can we replace a
Gaussian codebook by a lattice code?

In the ECDQ system discussed above, the codebook
was the whole (unbounded) lattice andnot shapedto fit
the source variance. The lack of shaping is compensated
for by entropy coding, which amounts to “soft” shaping:
the lattice points which fall inside the typical (spherical)
source region get a shorter binary representation, and
dominate the coding rate, while the contribution of the
points outside this region is negligible. A similar situa-
tion occurs in channel coding withprobabilistic shaping
[28], or alternatively, in unconstrained channels [42]. In
fixed-length source coding or power-constrained channel
coding, however, the codebook must be bounded.

In this section we describe a lattice codebook, whose
codewords and shaping region both have a lattice struc-
ture. The construction is based on the notion of nested
lattices, [51], [52], [11], [13], which has its roots in
de Buda’s spherical lattice codes [4], [30] and Forney’s
Voronoi constellations [14], [15], and owe its development
to the search for structured binning schemes for side
information problems; see the next section.
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Fig. 5: Nested lattices: special case of self similar lattices.

A. Nested Lattices

A pair of n-dimensional lattices(Λ1, Λ2) is called
nested ifΛ2 ⊂ Λ1, i.e., there exists corresponding gener-
ator matricesG1 andG2, such that

G2 = G1 · J ,

whereJ is ann× n integer matrix whose determinant is
greater than one. We callΛ1 the fine latticeandΛ2 the
coarse lattice. The cell volumes ofΛ1 andΛ2 satisfy

VΛ2
= | det(J)| · VΛ1

. (19)

We call n

√

| det (J)| = n

√

VΛ2
/VΛ1

the nesting ratio.
Fig. 5 shows nested hexagonal lattices withJ = 3 · I,

whereI is the2×2 identify matrix. This is an example of
the important special case ofself similar lattices, where
Λ2 is a scaled – and possibly reflected or rotated – version
of Λ1.

For some fundamental regionP0,2 of Λ2, the points of
the set

Λ1 modΛ2
△
= Λ1 ∩ P0,2 (20)

are called thecoset leadersof Λ2 relative toΛ1; for each
v ∈ {Λ1 mod Λ2} the shifted latticeΛ2,v = v + Λ2 is
called acosetof Λ2 relative toΛ1. It follows that there
areVΛ2

/VΛ1
= | det(J)| different cosets.

If P0,2 in (20) is the fundamental Voronoi regionV0,2

of Λ2, then we obtain a Voronoi constellation [14], [15]. In
the example of Fig. 5, the Voronoi constellation consists of
the bold points. A parallelepiped regionP0,2 is preferable,
however, if we wish to simplify coset enumeration [56].

Dithered Voronoi codebook:A dithered Voronoi code-
book consists of all shifted fine lattice pointsλ + u, for
λ ∈ Λ1, inside the Voronoi region of the coarse latticeΛ2,
i.e.,

(u+ Λ1)modΛ2 (21)

where the ditheru is an arbitrary vector inRn to be
specified later. (Foru = 0 this is the set of relative coset

leaders in (20).) The size of this codebook isVΛ2
/VΛ1

(independent ofu), so the associated coding rate is

R =
1

n
log2(VΛ2

/VΛ1
)

bits per dimension.
Existence of good nested lattices:The existence of a

sequence of good pairs of nested lattices, where one of
the lattices (the fine one or the coarse one) is good for
AWGN channel coding, while the other lattice is good for
source coding under mean-squared distortion, is addressed
in [10]. See [27] for an extension. The key to proving the
existence of such lattices is to consider an appropriate
random ensembleof lattices. An ensemble based on
generalized construction Awas defined in [32], while the
Minkowski-Hlawka-Siegel ensemble is considered in [42],
[21], [56].

B. Achieving the AWGN Channel Capacity

We now show an efficient coding scheme for the
AWGN channelY = X+Z of (10) using a pair of nested
latticesΛ2 ⊂ Λ1. In this schemeΛ2 (the coarse lattice)
is used forshapingwhile Λ1 (the fine lattice) is used for
coding.

Let the ditherU be uniform over a fundamental region
of Λ2 (or a generalized dither as mentioned earlier), and let
v be any codeword (or coset leader) inΛ1 modP0

Λ2, with
modΛ2 w.r.t. a “convenient” enumeration fundamental
regionP0.

To transmit the messagev, the encoder outputs

X = (v +U)modV0
Λ2

with modΛ2 now performed w.r.t. the fundamental
Voronoi regionV0. By (14) we have thatE{‖X‖2} =
σ2
Λ2

. Thus if we chose a lattice with second moment
σ2
Λ2

= P , then each codeword satisfies the power con-
straint (on the average with respect to the dither).

The decoder first linearly estimates the vectorv by

Ŷ = αY −U (22)

(where 0 < α ≤ 1 is a coefficient to be determined
later). Then, it quantizeŝY to the nearest codeword
modulo the codebook. The decoded message is thusV̂ =
QΛ1

(Ŷ)modP0
Λ2. This is equivalent to

V̂ =
[

α ·QΛ1
α

(

Y − U

α

)

]

modP0
Λ2, (23)

i.e., to decoding with respect to theinflated lattice Λ1

α .
(Note the resemblance to the deflated latticeβΛ in Sec. IV-
B.)

The equivalent channel from the codewordv to the
modulo estimation vector̃Y = ŶmodP0

Λ2 is called a
modulo-lattice transformation[11]. The distributive law
of the modulo operation3 and Thm. 2 imply:

3((amodV0
Λ2) + b)modP0

Λ2 = (a + b)modP0
Λ2.



Theorem 6. (Effective modulo-Λ additive-noise chan-
nel) [11] The channel fromv to Ỹ is equivalent in
distribution to the modulo additive-noise channel

Ỹ =
(

v + Zeff

)

modP0
Λ2

where the effective noise is given by

Zeff = [αZ+ (1− α)U′]modP0
Λ2 (24)

and whereU′ is uniform overV0 and independent ofv
andZ.

Note that the effective (additive) noiseZeff is a
weighted combination of two components: AWGN and
a dither component, where the latter is called “self noise”
because it comes from the coarse lattice.

For a modulo additive-noise channel, a uniform in-
put V ∼ Unif(P0) maximizes the mutual information
I(V; Ỹ), which becomeslog(VΛ2

) − h(Zeff). The op-
timum α is thus the one that minimizes the entropy of
the effective noise.4 As the lattice dimension increases,
the self noiseU′ and therefore the effective noiseZeff

become closer to a Gaussian distribution (in the divergence
sense (17)), in which case minimizing entropy amounts to
minimizing variance. Thus the optimumα becomes the
Wiener coefficientα = σ2

Λ2
/(σ2

Λ2
+N) = P

P+N , and the
resulting noise variance is the MMSE solution

Var(Zeff) =
PN

P +N
. (25)

Due to the dither, the error probability isidentical
for all codewords (as reflected by the equivalent modulo-
additive channel of Thm. 6), and is equal to

Pe = Pr{Zeff 6∈ V0,1}. (26)

Thus, by the definition of the the VNR (12), if we target
some Pe, the volume of the fine lattice cell must be
VΛ1

≈ [µ(Λ1, Pe) · Var(Zeff)]
n/2 or larger, where we

assumed a GaussianZeff .5 On the other hand, the power
constraint implies that the volume of the coarse cell is
VΛ2

= [P/G(Λ2)]
n/2 or smaller. For the MMSE solution

(25), we thus get a coding rate of

R =
1

n
log

(

VΛ2

VΛ1

)

≈ 1

2
log

(

P/G(Λ2)

µ(Λ1, Pe)Var(Zeff)

)

(27)

= C − 1

2
log

(

G(Λ2) · µ(Λ1, Pe)
)

(28)

whereC = 1
2 log

(

1 + P
N

)

is the AWGN channel capacity.
The capacity loss in (28) is approximately the NSM-

VNR cross product of the lattice pair. To reduce this loss,
we need the coarse lattice to be a “good” quantizer, while
the fine lattice should be a “good” AWGN channel code,

4For rates below capacity, a smallerα would give better error
performance [31], [44].

5This assumption is true for high SNR (implyingα = 1), or high
dimension and a “good” coarse lattice (to make the self-noise component
“Gaussian enough”). Furthermore, the effective noiseZeff is in fact more
favorable than Gaussian noise for sufficiently smallPe, so the Gaussian
approximation provides alower boundon the rate of the system.

both in the sense of Sec. III. For such a good pair of
nested latticesG(Λ2) → 1/2πe andµ(Λ1, Pe) → 2πe as
n → ∞, so the system approaches the AWGN channel
capacity. An analysis of the error exponent of Voronoi
codebooks can be found in [31], [44].

C. Achieving the Gaussian RDF

A dual construction of aVoronoi quantizerachieving
the quadratic-Gaussian (QG) rate-distortion function can
be designed along similar lines. Again, the NSM-VNR
cross product of the lattice pair - now with the roles of
Λ1 andΛ2 switched relative to (28) - will determine the
rate loss of the system. The coarse lattice should therefore
be a “good” AWGN channel code, while the fine lattice
should be a “good” quantizer [54].

VI. SIDE-INFORMATION PROBLEMS

Classical Information Theory deals with point-to-point
communication, where a single source is transmitted over
a channel to a single destination. In a distributed situation
there may be more than one (possibly correlated) sources,
hence more than one encoder, and/or more destinations,
hence more than one channel output and decoder. The sim-
plest situation, which captures much of the essence in the
problem, are sources and channels with side information.

In the source version of the problem - solved by
Wyner and Ziv [47] - a sourceS is encoded knowing
that a correlated signalJ is available at the decoder (but
not at the encoder). In the Gaussian case, we assume
that S = J + Q, whereQ is a white Gaussian source
independent ofJ .

The channel version of the problem was solved by
Gelfand and Pinsker in [19]. It assumes that the input to a
state-dependent channel is encoded knowing the channel
states non-casually. The decoding is done solely based on
the channel output, without having access to the channel
states. In the special case known as the “dirty paper”
channel (DPC), or theCosta problem, the input-output
relation isY = X + I + Z, whereI is an interference
signal known at the encoder, andZ (the unknown noise)
is AWGN [8].

Channel

Encoder Decoder

S

p(y|x, s)
Y ŴXW

Fig. 6: A channel with side-information at the transmitter.
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Fig. 7: Lattice-strategies for the dirty-paper channel.

An interesting feature of Gaussian side-information
problems is that their information-theoretic solutions



amount to complete elimination of the effect of the
partially known signalsJ andI.

For the DPC problem, a simple variation on the
Voronoi modulation and decoding system of Sec. V-B
achieves the same coding rate as in (28), where now
C = 1

2 log
(

1 + P
N

)

denotes the “clean” AWGN channel
capacity [11], [39]. The main change is the subtraction of
the scaled interferenceαI modulo the coarse lattice - see
Fig. 7. (For a scalar-lattice solution for thecausalDPC
problem - see [11], [45].) The Gaussian Wyner-Ziv (WZ)
problem is solved by a similar variation on the Voronoi
quantization scheme of Sec. V-C [52]. In both DPC and
WZ variations, the cosets ofΛ2 relative toΛ1 (20) replace
the random binsof the classical solutions of [19], [47].

A nice benefit of the dithered lattice approach is that
the known parts (J and I) can be arbitrary signals, i.e.,
they do not even need to have a stochastic model. Yet, if
J and I are random, then they can play the role of the
dither, so common randomness becomes unnecessary.

See [22] for a modulo lattice modulation(MLM)
scheme for joint source-channel coding with side-
information using asingleshaping lattice.

VII. G AUSSIAN NETWORKS

There are many ways in which side-information
paradigms can enter general multi-terminal networks. The
obvious cases are the broadcast channel, in which the
(joint) encoder may view the transmission to one terminal
as side-information for the transmission to the other ter-
minals. Similarly, in multi-terminal coding of correlated
sources, the (joint) decoder may view the reconstruction
of one source as side information for the reconstruction of
the other sources. In both these cases, the side-information
is concentrated in the “relevant” terminal in the network.
Indeed, in the QG case, it is easy to figure out how to re-
place the standard information-theoretic “random binning”
technique by a lattice-based solution. This solution uses
the the lattice-WZ and lattice-DPC schemes of Sec. VI as
building blocks [52]. As in section VI, the main motivation
for such a lattice scheme is the complexity reduction (and
perhaps the intuition) gained by a structured solution.

A more interesting situation, however, occurs when side
information isdistributedamong more than one terminal.
Surprisingly, it turns out that in some distributed linear
network topologies, the lattice-based systemoutperforms
the random-binning solution. Moreover, in some cases it is
in fact optimal! Apparently, the linearity of the network in
these scenarios favors linear (rather than random) binning,
as we already saw in the binary Körner-Marton problem.

A. The Gaussian K̈orner-Marton Problem

Krithivasan and Pradhan [26] extended the Körner-
Marton problem of Fig. 2 to the QG case. SupposeX
and Y are positively correlated Gaussian sources, say,
Y = X + N where N is independent ofX , and the
decoder wants to reconstruct their differenceN with some
mean-squared distortionD. As they show, near-optimal

performance can be achieved if each source islattice-WZ
encoded, where the coarse lattice - tuned to match the
variance of the differenceN - is identicalat both encoders.
The decoder subtracts the two encodings, modulo the
coarse lattice, to isolate the desired (quantized) difference
signal.

Unlike the original “lossless” KM setup, however, the
lattice scheme does not match the “genie aided” outer
bound; forσ2

x ≫ σ2
n, it loses 3dB in distortion (one bit in

the sum rate) due to the accumulation of two independent
quantization noises. Yet, at least for high rates this is still
better than a “standard” random binning solutiona la
Berger-Tung [3], which (implicitly) encodes both sources
X andY just to transmit their difference.

B. The Dirty Multiple Access Channel

We next consider what seems to be the “dual” of the
Körner-Marton problem: a generalization of the Gaus-
sian dirty-paper problem to a multiple access setup, as
illustrated in Fig. 8. There are two additive-interference
signals, one known to each transmitter but none to the
receiver.

Enc. 1

Enc. 2

Dec.

S1

X1

X2

W1

W2

S2

Z

Y Ŵ1

Ŵ2

Fig. 8: Doubly dirty MAC.

It is shown in [40] that the rates achievable using
Costa’s binning scheme (induced by his auxiliary random
variables) vanish in the limit when the interference signals
are strong. In contrast, if both encoders apply lattice-DPC
using thesameshaping (coarse) latticeΛs, then the sum
interference is concentrated onΛs. The equivalent channel
seen by the receiver is thus a MAC version of the modulo-
additive channel of Thm. 6, and the sum rate is positive
independentof the interferences.

Furthermore, [40] gives an outer bound for the ca-
pacity region of the dirty MAC for arbitrarily strong
interferences, which is strictly smaller than the clean
MAC capacity region. Lattice-DPC of large dimension
meets this outer bound for some cases, in particular for
imbalancedpower constraints, as well as in the limit of
high SNR [40].6

C. The Loss of Single-Letter Characterization

Costa’s binning scheme is derived from a Gaussian
single-letter formula. It fails on the dirty-MAC because,

6The loss w.r.t. the outer bound in thebalancedcase is similar to the
3dB loss in the Gaussian KM; it amounts to doubling the “self noise”
component in (24), hence the “1” in the AWGN channel capacityformula
reduces to some number1 > γ > 1/2 [40], [37].



unlike for lattice-binning, the sum of two independent
bins (from the two users) results in a “bad” codebook. A
similar phenomena occurs in the Gaussian Körner-Marton
problem: thedifferenceof two independent bins, each one
generated by a Gaussian single-letter expression, resultsin
a “bad” codebook. Are there better single-letter formulas
for these two problems?

We conjecture that the best single-letter formula for
the dirty MAC in the limit of strong interference and high
SNR is given in terms of a one-dimensional lattice [40],
[41]. The resulting rate loss is thus the “shaping gain”
1
2 log(2πe/12) ≈ 0.254 bits, i.e., the divergence from
Gaussianity of a scalar dither (17). For a binary version
of the dirty MAC, it is shown in [41] that the capacity
loss of the best known single-letter formula is∼ 0.2 bits.

D. Lattice Network Coding

In a standard packet switching network, nodes act as
routers - they wish to find the best route for a packet under
the current conditions. If the inflow to a node is higher
than its output capacity, then some of the packets need to
be discarded. The idea of network coding is that a bot-
tleneck node can “combine” together packets rather than
choose which one to pass on and which one to discard.
If the final destination gets enough such “combinations”
(from different routes), then it can resolve the ambiguity
and decode all the transmitted packets reliably.

The focus of most research on network coding has
been onlinear coding schemes [29]. In theory, though,
any mapping at the nodes which is overall information
preserving would work, as long as the network is lossless.
In particular, random binning at the nodes is information
preserving with high probability [20]. However, when
extending the network coding idea tonoisy networks,
the structure of the code is essential to avoidnoise
accumulationand loss of capacity.

relay 1

relay 2

relay 3

relay M

central 

decoder

bit pipes

user 1

user 2

user N

Z1

Z2

Z3

ZM

m1

m2

mN

m̂1
m̂2

m̂N

Fig. 9: A multi-relay multi-user network scenario.

Specifically, consider the Gaussian relay network pro-
posed in [36], depicted in Fig. 9, whereN users wish to
communicate with a destination (central decoder) through
a layer of M ≥ N relays. Each relay receives some
weighted (by the fading coefficients) linear combination
of the transmitted signals corrupted by AWGN. Thus, the
different signals at the relay input are already “combined”

by the network. Relaying this combination as is (say, in
some analog or compressed form) means that the noise
will be forwarded to the final receiver as well. On the other
hand, requiring the relay to decode all its input signals
separately(as a MAC receiver) means a waste of capacity.
See, e.g., [2].

It has been shown recently how to use lattice codes
for (“physical-layer”) network coding in the presence of
Gaussian noise [35], [34], [36], [37]. If all the users use
the samecoding (fine) lattice, then the relay can decode
an integer linear combination of the codewords (a lattice
point which is close to the received signal), thus removing
the channel noise before forwarding the decoded point
to the final receiver. A particularly insightful example is
that of thetwo-way relay, where each user computes its
intended message from its own message and the message-
sum it gets from the relay [35], [34].

A framework for treating non-Gaussian noise and non-
additive channels is proposed in [12].

E. Interference Alignment

A similar idea applies for the suppression of interfer-
ence in a multi-node interference channel (IC). One of the
interesting observations of the recent years is the idea of
interference alignment [5]: a channel aware transmission
system can make the effective number of interferers seen
by each receiver equal to one. Thus, effectively, the multi-
node IC is no worse than the classic double-node IC!

The original idea was to align the interference in the
time domain, and it used linear transformations [33]. An
alternative approach, based on alignment in the amplitude
domain, was proposed in [38]. This approach fits very
naturally into the lattice framework.
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Fig. 10: Many-to-one interference alignment.

Consider the many-to-one interference channel of
Fig. 10. Assuming the interference path gains of users 2 to
L are identical, and that these users use thesamecoding
(fine) latticeΛI , the equivalent channel seen by user 1
is similar to that seen in the dirty MAC of Sec. VII-B:
the interference signals are allconcentratedon the points
of a single lattice ΛI . Thus, in effect, user 1 experiences
a single interferer. Furthermore, using an “estimate-and-
modulo” receiver as in Thm. 6, user 1 sees an equivalent



modulo-ΛI channel. Thus, it can achieve a rate of

R1 =
1

2
log

(

min

{

σ2
ΛI

N
,
P +N

N

})

for large lattice dimension, corresponding to a full capac-
ity in the strong interference regime.

VIII. O PEN QUESTIONS

On the practical side, lattice (or alternatively, linear
trellis) codes with good performance and low encoding
and decoding complexity are essential to make this theory
attractive. New design approaches, e.g., [43], may be of
interest.

The linear structure of the lattice plays a crucial role
in the distributed lattice coding schemes presented in
Sec. VII. For a proper operation, we need to align the
lattice codes both in time and in amplitude. Yet in all the
examples we considered, only one of the component codes
of the system - either the shaping or the coding lattice -
must be aligned. The other code does not even need to be
a lattice! Other examples are of interest.

Shaping (coarse) Coding (fine)
lattice lattice

Gaussian Korner Marton aligned –
dirty MAC aligned –

Lattice network coding – aligned
Interference alignment – aligned

Random coding schemes - based on traditional single-
letter (i.i.d.) solutions - seem to fail in these setups. For
example, as discussed in Sec. VII-C, the loss of single-
letter characterization in the Gaussian dirty MAC setup is
conjectured to be12 log(2πe/12) ≈ 0.254 bits.

Does structure really beat random? Note that proving
the existence of good lattices also requires random coding
arguments [4], [42], [32], [10], [21], [56]. Also, our
analysis of the lattice coding schemes assumes common
randomness in the form of a dither. A question thus
remains, if the failure of the traditional random coding
approach is due to inappropriate single-letter solutions,or
to its inherent weakness. We believe the latter to be true.7

The success of lattices in these setups hinges upon a
good match between the linearity of the code and the
linearity of the source or channel network. Can we go
beyond the linear case?
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