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Abstract

We define an ensemble of lattices, and show that for asymptotically high di-
mension most of its members are simultaneously good as sphere packings, sphere
coverings, AWGN channel codes and MSE quantization codes. These lattices are
generated by applying Construction A to a random linear code over a prime field
of growing size, i.e., by “lifting” the code to R".

Keywords: sphere packing, sphere covering, MSE quantization, coding for unconstrained
AWGN channel, lattice codes, Minkowski bound, Poltyrev exponent.

1 Introduction

In this work we consider the problem of existence of lattices in Euclidean space that are
simultaneously asymptotically good in several coding related contexts. We begin with a
description of the binary counterpart which motivated our study.

In n-dimensional binary Hamming space the problems of sphere packing, sphere covering,
channel coding, and quantization are well known. The first two are of a combinatorial nature.
In the packing problem we are interested in packing the greatest possible number of non-
intersecting Hamming spheres of a given radius. This is equivalent to maximizing the number
of codewords for a given minimum distance of the code. For a comprehensive survey see e.g.,
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[25, 28]. The covering problem asks for a minimum size collection of spheres of a given radius,
such that every point of space belongs to at least one sphere. This corresponds to covering
codes, see e.g., [6]. The other two problems are of a probabilistic or information theoretical
nature. The channel coding problem asks for the best arrangement of points in Hamming
space such that for a given number of codewords and noise statistics, the probability of error
of the maximum likelihood decoder is minimized. Of particular importance is the question
of the greatest possible rate of the code that still enables this error probability to vanish
asymptotically as the dimension n (length of the code) goes to infinity. This leads to the
concept of channel capacity and error exponent. For a survey see e.g., [16]. The quantization
problem seeks to minimize the required number of codewords such that the average distance
of the points in Hamming space from their nearest codeword is not greater than a specified
target distortion, see e.g., [2]. In what follows we deal with the asymptotic case of high
dimension n. The bounds on the parameters are usually exponential in the dimension. For
our purposes all bounds with the same exponent are considered equivalent.

All these problems are typically treated in information theory by random coding argu-
ments. Basically all that is needed is to draw at random n-tuples according to a uniform
distribution. The best known bounds, asymptotic in n, are obtained in this manner. For
the packing problem it is the Gilbert bound [19], for the covering problem it is the Goblick-
Cohen bound [20, 7]. For the channel coding problem the bound is given by the Shannon
capacity [33] and the Elias-Gallager exponent [12]. For the quantization problem the bound
is the Shannon rate-distortion bound [2].

The obtained codes however lack structure. It turns out that even if we impose a re-
quirement that the code be linear, it is still possible to achieve the same asymptotic bounds.
Indeed, for the packing problem this was shown by Varshamov [37], for the covering problem
(from which the claim for quantization also follows) by Cohen [7], and for the channel coding
problem by Gallager and Dobrushin [15, 11].

Moreover, the mentioned bounds hold true in a stronger sense, namely, for almost all
linear codes. This was shown for the packing problem by Pierce [27], for the covering problem
(from which the claim for quantization also follows) by Blinovskii [3] (for the nonlinear case
see [10]), and for the channel coding problem by Gallager and Dobrushin [15, 11]. In fact, as
a code for the BSC channel the random linear ensemble is in a sense better than the totally
random ensemble for channel coding. A typical code of the linear ensemble achieves the
expurgated bound. This is not the case for a typical code of the totally random ensemble
where expurgation of a relatively small number of codewords is necessary, see e.g., [1, 4].

A random linear ensemble is produced by a randomly chosen generator matrix with
independent equiprobable binary entries. Since the same ensemble of linear codes generates
a solution to all four problems, it follows (by a union bound argument) that there ezist binary
linear codes that are good in all four senses simultaneously.

In this paper we prove a similar result for analogous problems in Euclidean space, namely,



that there exist lattices that are simultaneously good for sphere packing and covering, chan-
nel coding and quantization. While the sphere packing/covering problems carry over in a
straightforward manner from the Hamming to the Euclidean space, the corresponding ex-
tensions of the transmission/quantization problems require a word of caution. The standard
scenarios of channel/source coding in Euclidean space are based on bounded codebooks [33].
In channel coding this is due to a transmitter power constraint, while in source coding this
is the result of a fixed (or a limited) codeword length assumption. Nevertheless, for our
discussion of lattice codes it is more convenient to assume unbounded codebooks. Poltyrev’s
notion of “unconstrained channels” provides a meaningful definition for the capacity of such
codebooks in the channel coding context [29] (see also [14]), while “entropy constrained
quantization” provides a corresponding notion of coding rate in the quantization framework
[17, 42, 40]. Similarly to the binary Hamming case, we address here only asymptotic, in the
space dimension, bounds. The bounds are again exponential in the dimension and are the
best known bounds also for non lattice constellations (though sub-exponential terms may
vary). We show that asymptotically there are lattices that achieve these bounds simultane-
ously.

For the Euclidean packing problem the best known bound is the Minkowski bound [26],
for the covering problem it is the Rogers bound [30, 31], for the channel coding and Mean
Squared Error (MSE) quantization problems the bounds are due to Poltyrev [29, 39] (which
are related to Shannon’s bounds for the power constrained channel and rate distortion of
Gaussian sources, see [34, 33]). We say that a sequence of lattices is good for packing if
it asymptotically achieves the Minkowski bound. A similar terminology is used when the
Rogers and Poltyrev bounds are used.

It is well known that a lattice that is good according to any of the four criteria has a
Voronoi region (see definition below) that in some sense is “close” to spherical. However,
for a fixed dimension, an optimal lattice in one sense need not necessarily be optimal in
another. For example, in three dimensional Euclidean space R*, the optimal lattice for
packing is the FCC lattice while the optimal lattice for covering is the BCC lattice, see, e.g.,
[8]. Nonetheless, in this work we prove that asymptotically (in dimension) a lattice may be
optimal in all four senses.

In order to prove that there exists a sequence of lattices simultaneously satisfying the
four bounds, we adopt the approach used in the binary case. Namely, we attempt to define
a random ensemble of lattices such that for almost all its members, the bounds are achieved.
Moreover, we try to find a small and simply described ensemble.

Loeliger has previously taken this approach of defining an ensemble of lattices in [24].
Using this technique he proved that lattices achieve the Minkowski bound as well as achieve
the Poltyrev capacity of the AWGN channel. We extend here the analysis to error exponents
as well as treat also the covering and quantization problems.

In [5] Butler proved that there indeed exist lattices that are simultaneously good for



packing and covering. His proof utilizes the techniques of Rogers [32]. In the current work,
we re-derive this claim as well as extend it to the channel coding and quantization settings.
Moreover, our proof is significantly simpler.

The paper is organized as follows. Section 2 introduces the necessary notation and defines
the four problems of interest. In Section 3 the random ensemble of lattices is introduced.
Sections 4 to 7 each contains the proof that the defined ensemble is good for one of the
four problems; simultaneous goodness is proved in Section 8. The work is summarized in
Section 9. Technical proofs are relegated to the Appendix.

2 Lattice Properties

In order to give precise definitions of the problems we use the following notation:

GRID : cubic grid (lattice) of step size 1/p.
A: n dimensional lattice nested in GRID, i.e., A C GRID.
noo21

|| - ||: Euclidean norm, i.e., ||x||* =Y | 2

A+ B: set sum. If A and B are sets in R” then
A+B={z+y:x€ Ay€ B}
V: Voronoi region of A, i.e,
V={xeR":|x|]|<|[x—c|]|VceA} (1)

and
R*"=A+V. (2)

Vol(-): volume of a closed set in R".

(x4+y)*=cz+y modZ = (r+y)— |z +y] where z,y € R and |-| means rounding
to the nearest non greater integer.

CUBE=]0, 1)"

A* = A mod CUBE, where A is any set in R”.

GRID* = GRID N CUBE.

rB: n dimensional closed ball of radius r centered at the origin, 1-B = B = unit ball.
Vi(r): volume of ball of radius r, i.e., Vz(r) = Vol(rB) = r"Vol(B).

[-],: rounding to the nearest greater prime.

IExtension to other norms is considered in the discussion.



2.1 Packing problem

Consider a lattice A with Voronoi region V. For a given radius r the set A + 7B is a packing
in Euclidean space if for all lattice points x,y € A (x # y) we have

(x+rB)N(y+rB)=0.
That is, the balls do not intersect. Define the packing radius r5** of the lattice by
pack

riv " =sup{r: A+rBis a packing}. (3)

Denote by r§fc the “effective radius” of the Voronoi region, meaning the radius of a ball
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Figure 1: Geometric picture
having the same volume, so that r§¥¢ is defined by
Vs(ri™) = Vol(V) (4)



or equivalently

- (i)

where V(1) (the volume of a unit sphere) is given by (see e.g., [8])

Vol = =~ L ()7 ©)

TTn/2+1) " nm \2e

Figure 1 gives the geometric picture of rp,q and r$¥ with respect to the Voronoi region, as

well as the other radii to be defined below. Define the packing efficiency ppack of a lattice A
by

k
rpac

ppack(A) = ﬁ- (7)
A

We note that the packing efficiency ppack(A) is by definition not greater than one. We wish
Ppack(A) to be as large as possible. The density of the packing, i.e., the proportion of space
taken up by the spheres is (ppack(A))™.

Let A,, denote an n-dimensional lattice. Define the optimal asymptotic packing efficiency
by
Ppack = lim sup sup ppack (An)-

n An

The best known lower bound for 7, is given by the Minkowski-Hlawka theorem [32]

p;ack Z % (8)

Since pp, < 1 from volume arguments, the bound implies a radius half as large as we could

hope for. In fact, it is known that no efficient packing exists, in the sense that pf . is strictly

less than one. The best known upper bound was found by Kabatiansky and Levenshtein [21]
and is given by (see [8])

Phack < 0.6603. (9)

Therefore, it is not known whether the Minkowski bound is tight. We say that a sequence
of lattices is asymptotically good for packing if it achieves the Minkowski bound.

We note that for small dimension the optimal packing efficiency is a rather irregular
(non monotonic) function of n. Indeed for n = 1 we have ppack(A1) = 1. Therefore packing
is efficient in the one dimensional case but degrades as the dimension grows. A similar
irregular behavior at small dimensions is also true in the covering problem but as we shall
see, as n — oo the optimal covering is efficient. On the other hand the performance of lattices
as a function of the dimension n for the quantization problem and AWGN channel coding
problem is more well behaved. It seems that the performance in these problems improves
monotonically with dimension.



2.2 Covering problem

The associated notions for the covering problem are defined similarly to their packing coun-
terparts. The set A + rB is a covering of Euclidean space if

R* C A+ rB.

That is, each point in space is covered by at least one ball. Define the covering radius of the
lattice r{°¥ by

& =inf{r: A+ rBis a covering}.

Define the covering efficiency peo, (A) of a lattice by

/rj)\OV

Pcov (A) = —effec”
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We note that the covering efficiency peov(A) is by definition not less than one. We wish

Peov(/A) to be as small as possible. The density of the covering, i.e., the average number of
n

balls covering a point is (peov (A))™.
Define the optimal asymptotic covering efficiency by

Paoy = liminf inf peoy (Ay).
n A
It is a result of Rogers [31] that pf,, satisfies

Peov = 1.

This means that covering (in contrast to packing) may be asymptotically efficient, i.e., every
point in space can be covered by at most a sub-exponential number of balls. See standard
textbooks on packing and covering such as Rogers [32] and Conway and Sloane [8].

It will be shown later (see also [5]) that the following is also true:

A
lim sup sup Prack (An) >

1
n—00 An pcov(An) o 2,

i.e., that simultaneously good packings and coverings exist, as previously shown by Butler

[5]. We say that a sequence of lattices is good for covering if it satisfies Rogers’ bound, i.e.,
if it allows for efficient covering.

2.3 MSE quantization

In MSE quantization we associate to A a nearest neighbor quantizer Q4 (-) such that

RQx)=y,yeA, if |x—y[|<|x—-Y| Vy €A (10)



where ties are broken in a systematic manner. Equivalently
Qx)=y,yeA, if xey+V. (11)

The second moment, o2 = g%(A), of A is defined as the second moment per dimension of a
uniform distribution over V,

1 1
2 = - 2dx. 12
o ) 7 /v ||x||“dx (12)

A figure of merit of a lattice quantizer with respect to MSE distortion measure is the nor-
malized second moment

0.2

1 1
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The minimum possible value of G(A,) over all lattices in R” is denoted G,,. The normalized

second moment of a sphere, denoted by G, approaches ﬁ as the dimension n goes to
infinity. The isoperimetric inequality implies that G, > G} > ﬁ for all n. We also have

The operational significance of this figure of merit comes from a result due to Gersho [17]
(see also [38]) that states that under quite general conditions for high variable rate lattice
quantization of a source X the distortion satisfies

D ~ G(A)e2hnX)=F) (14)

where D denotes the distortion, R is the quantization rate in nats and h,(X) = th(X) is
the dimension-normalized differential entropy of the source (also in nats).

From rate distortion theory we have that the ultimate performance of a random code,
defined by the Shannon lower bound, would yield the same formula for the distortion with
G(A) replaced by 5, see [23]. Thus we refer to a sequence of lattices as good for MSE
quantization if G(A,) tends to 3. A result of Zamir, Feder and Poltyrev [39] states that

1

limG, = — 15
1£n 2me ( )

i.e., that there exist good lattice quantizers.

We note that unlike in the AWGN channel coding problem, here it is not interesting to
investigate the rate distortion error exponent for rates R > R(D). As we shall see below,
in the AWGN problem, when working below capacity R < C, the error probability decays
exponentially with n. In rate distortion theory a similar analysis is done. For rates above the
minimum possible to achieve a specified distortion D (see (14)), one may analyze probability
that a point exceeds distortion D. However, as a consequence of the fact that we have a
good covering lattice, this probability may be made zero for sufficiently large dimension,
corresponding to an infinite exponent. Thus, we observe that the quantization problem
differs greatly from the “dual” AWGN channel coding problem.



2.4 Coding for the unrestricted AWGN

Of the four applications of lattices considered in this work the precise notion of good lattices
for coding over the AWGN channel was the most recently introduced. It appears in a 1994
paper by Poltyrev [29].

The AWGN channel model is given by the input/output relation
Y=X+N (16)

where N is i.i.d. Gaussian noise of variance Py . We define the “effective radius” of the

noise vector by
™ =V nPN. (]_7)

Note that by the Law of Large Numbers 2||N||? — Py as n — oo, so ||N|| ~ ry. Tradition-
ally the scenario is such that the transmitter is subject to a power constraint, i.e., the input
must satisfy % >~ z* < Px. This means that only a finite subset of the lattice points is used
as a codebook, typically the intersection of the lattice with a ball (or a thin spherical shell)
of radius yv/nPx. This approach originated in the work of De Buda [9] and was subsequently
refined in [22, 24, 36]. When such an approach is taken, the Maximum Likelihood (ML)
decoding regions are not the Voronoi regions of the lattice due to the boundedness of the
codebook. Moreover, the decoding regions are not identical (up to translation), and in fact
some are not bounded. This breaks the symmetry of the lattice structure in the decoding
process and makes the definition of goodness of a lattice highly dependent on the precise
mode of transmission.

An alternative approach was taken by Poltyrev [29]. He considered the problem of cod-
ing for the unconstrained AWGN channel. In this scenario any point of a lattice may be
transmitted, corresponding to infinite power and transmission rate. For a given lattice the
ML decoder will search for the lattice point that is nearest to the received vector. Therefore
the probability of decoding error is the probability that the noise leave the Voronoi region
of the transmitted lattice point

P.(A,ry) =Pr{N ¢ V}. (18)

Since the rate of transmission is infinite, performance is measured with respect to the ratio
of the radius of the Voronoi region and the “radius” of the noise. More precisely, define

,r.iﬁ”ec
pawan (A, Tv) = (19)
N
Using the relation G = ————— (see e.g., [39]) we have r§f = \/(n + 2)G* [Vol(V)]/™.

- () [Vs()P"

Recalling that lim, o G}, = 5 [8] we therefore have

T.effec Vol(V 1/n
pawen (A, rN) = ;}N = [\/2;67)1]3]\[ +0o(1) (20)




where o(1) — 0 as n — oo. We ask for a lattice with minimal probability of error for
a given ratio pawan(A,7n). Poltyrev showed that reliable transmission is possible for
pawen (A, 7y) > 1 and that the probability of error may be exponentially bounded, just
as is done for the constrained AWGN channel [16], by the random coding bound and ex-
purgated bound. He showed that the random coding error exponent for the unconstrained
AWGN channel is given by

[(piWGN —1)—1In piWGN] (21)

N | =

Eb(pawen) =
for 1 < pawen < 2, and the expurgated exponent is given by

EY’ (PAWGN) = piWGN/ 8 (22)

for piwen > 4. Connecting EJ(pawenx) and Ef(pawen) by a straight line the Poltyrev
exponent is given by

% [(pi\gVGN - 1) —In P?AWGN] ) 1< P?AWGN <2
Ep(pawen) = {3 In Awen, 2 < pawen < 4 (23)
pingN’ IO?&WGN >4

More specifically, there exist lattices for which the probability of error satisfies the following

exponential bound
PE(Aa TN) < e_n(EP(pAWGN)—o(l)).

We note that this bound is exponentially tight in the random coding part. Note also that
Ep(pawcn) vanishes at pawgn = 1 meaning that asymptotic reliable communication is
possible as long as pawgn > 1 (and not below it), so that pawgn = 1 or rf\ﬁec = ry has
the significance of capacity in this scenario. As in the other problems, the performance of

general non lattice codes is not superior to lattice codes (w.r.t. to the bounds) [29].

In [14] Poltyrev’s unconstrained coding notion was linked to that of coding for the power
constrained AWGN channel (via the notions of modulo-lattice transformation and Voronoi
constellations), thereby giving it an operational significance.

Here, we re-derive Poltyrev’s error exponent in a simplified way and show that the lattice
ensemble is good for AWGN coding in the sense that, for any given ratio pawgn, it achieves
the Poltyrev error exponent. In the next section we introduce the ensemble of lattices
used. A nice property we obtain is that a lattice drawn from the ensemble attains the
expurgated bound with high probability. This is in contrast to a totally random code for
which expurgation is necessary. In a sense the expurgation is performed here on codebooks
instead of codewords. This is similar to the behavior of random binary linear codes, as
opposed to totally random binary codes [1].

10



3 A Random Ensemble of Lattices

Let k, n and p be integers such that £ < n and let G be a k x n (generating) matrix with
elements in Z, = {0,...,p — 1}. We do not assume that G is necessarily full rank. The
generation of an n-dimensional lattice by Construction A consists of the following steps:

1) Define the discrete codebook, C = {x =y - G : y € ZF}, where all the operations are
over Z, (that is, modulo-p). Thus x € Z.

2) Map the code C into the unit cube by dividing all the components by p. Thus we define
the finite set A* =p ! -C C GRID.

3) Replicate A* over the entire Euclidean space R™ by integer tessellations, to form the
lattice A = A* + Z™. Tt is well known [8] (and elementary to prove) that A is indeed
a lattice.

Example:
Set n = 2, k = 1 and p = 11. The underlying code is given by the generating matrix
G = [2, 3] so that

C={x-[2,3] mod1l : z € Zy}

We embed the code “as is” in Euclidean space as depicted in Figure 2. Using this code we
tessellate the whole of R? resulting in the lattice

pA =C + 1172

This is depicted in Fig 3. The lower left quadrant corresponds to the p - CUBE region.

We note that x in Step 2 runs through p* = M vectors (not necessarily distinct, as G
might not be full rank), M being the number of codewords. Let us index them as y;, i =
0,...,p" — 1. We assume that y, = 0" = 0, other than that the ordering is arbitrary. We

correspondingly index the M 2 p* points of A* so that

A::pil-yi'G , 7;:0,]_’...’M_1-
The random ensemble of lattices we consider is generated as follows.

e Take p to be prime.

e Draw a k x n generator matrix G according to a uniform i.i.d. distribution over Z,,
GiﬂjNUnif(O"")p_l); ’i:l"'_’k;j:]_"”’n'

e Apply Construction A, i.e., steps 1-3 as described above, to obtain the lattice A.

11
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The random ensemble is determined by n, £ and p and in the sequel we refer to it as
an (n, k,p) lattice ensemble. This ensemble was considered by Loeliger in [24] and has the
following important properties.

1) A} = 0 deterministically.
2) A; is distributed uniformly over GRID* fori =1,..., M — 1.

3) The difference A7 — A is uniformly distributed over GRID* for all 7 # j.

The last two properties hold since p is prime (otherwise A might be restricted to some
sub-grid ).

By construction, the lattices we consider are periodic modulo the unit cube. All the
problems we consider may thus be restated in equivalent terms in the realm of A* in CUBE.
Let r, r < %, designate the radius of a ball. We call (rB)* a (radius r) mod-sphere. We say
that (A* 4+ rB)* is a mod-packing if

x+mB)'N(y+rB)"=0. Ve,yeA" z#y

That is, the mod-spheres do not intersect. Similarly we say that (A*4+7B)* is a mod-covering
if CUBE C (A* + rB)*. It is easy to see that the condition r < 3 ensures that A+ rB is a
packing (covering) iff (A*+rB)* is a mod-packing (mod-covering). Therefore we use the two
viewpoints interchangeably in the proofs below. Figure 4 demonstrates the relation between
the mod-packing and the packing in R” for p = 3 and n = 2. The lower left quadrant is
CUBE and the three black points are A*. The four disjoint full quarter circles form the set
(rB)*.

Note that if G' is non-singular then there are M = p* codewords in GRID and the volume
of a Voronoi region is p *. The probability that G is indeed non singular goes to one as

n — o0. To see this, denote the rows of G by G;, i = 1,..., k. Consider any specific non
trivial linear combination x = Zle ¢; - G; determined by the coefficient vector ¢ # 0. For
each component j = 1,...,n we have Pr{x; = 0} = p~'. Since the columns are statistically

independent we get Pr{x = 0} = p~". Thus, applying the union bound over all possible
linear combinations, i.e., all coefficient vectors ¢, we have

Pr{rank(G) < k} < ZPr {i G = 0} — p (k)1 (24)

c#0 =1

We restrict our attention to ensembles such that £ < fn for some 0 < 8 < 1 so that the
latter probability goes to zero at least (p may also grow with n) exponentially. In the sequel
we assume that G is full rank. If it is not, we treat that as a failure, adding a vanishing term
to the probability that a lattice from the ensemble is not good.

13
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Figure 4: Modulo packing

In our analysis, we will hold 7§ (the effective radius of the Voronoi region) (approxi-
mately) constant while taking n — oo. Using (5) and (6), this in turn dictates that p and k
grow with n such that

n/2
o1 _F(n/?-l—l)%\/%( n )2> | (25)

VB(TRﬂeC) o ﬂ-n/Q(riﬁ"ec)n ot (Tjg\ffec

To be more precise, since p has to be prime and & is an integer we cannot keep r$¥° strictly
constant. Rather, it suffices to choose p and k (as a function of n) such that 7% as defined
by (25) satisfies for all n

Pmin < T59(n) < 2+ Pimin (26)

where 0 < rmin < 1 (in Section 7 we further restrict 7).

Note that (25) and (26) imply that if we hold & constant, then p must grow super-
exponentially; if k£ grows linearly with n, then p grows polynomially with n. Furthermore,
for k linear in n, i.e., k = fn with 8 < 1, it follows from (25) that

nh_)rrolo n/p=0. (27)

That is, p goes to infinity “faster” than n. We will eventually require (needed for the covering
problem) that & grow faster than log®n. Note that this implies that

logp = O(n/logn). (28)

14



We thus restrict the growth of p as a function of n. This is actually not a necessary condition
for the theorems to hold but is imposed for convenience of proof (through equation (26)).
Also note that even though p has to be prime equation (26) may be satisfied for every large
enough n. To see that, define p* to be the real number satisfying (25) for a radius of 27y,

ie., pf = VB(21"min)' From (25) and (26) we get that p must satisfy

p* < p< 2MEp*, (29)

Since we assume that k£ < fn with 5 < 1 it follows that (29) may be satisfied as it is known
(Bertrand’s postulate, see e.g., [18]) that there is a prime number between n and 2n for any
integer n.

The number of lattice points per unit volume grows super-exponentially with the di-
mension n. For more physical applications (power constrained transmission, quantization
subject to a fixed distortion per dimension) it is more natural to have the lattice density
grow exponentially with n. However, this is undesirable as we have seen that in order to be
able to cast the two first problems in terms of mod-packing and mod-covering, we need to
impose r§fec < % Furthermore, to obtain the results for the AWGN channel coding problem
we need the further restriction that r§¥¢ be “small” as captured by 7min in (26); see (74).
In the sequel we assume that 7y, is an arbitrary number such that ryni, € (0, i) unless
otherwise stated (in Section 7). Thus, in order to use a lattice as a code we would in practice
need to appropriately scale it.

4 Goodness for Packing

Actually, Loeliger [24] used the lattice ensemble defined above to prove that there exist
lattices that are good for packing. We provide here a proof for completeness and uniformity
of presentation.

Theorem 1 A lattice A drawn from an (n,k,p) ensemble, where k is sub-linear in n and
p,k satisfy (25),(26), is good for packing, i.e.,

Prpack (A) >

DN | —

in probability as n — oo.

Note that Theorem 1 holds even for £ = 1.
Proof: Denote the diagonal of an elementary cube of GRID* by 2d,

g=1vn (30)
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Let r < — 4. Consider the mod sphere (rB)*. We show that for large enough dimension,
with high probability no other sphere intersects it, i.e.,

lim Pr{(rB)* N ((A*\ {0}) +rB)* =0} = 1. (31)

n—oo

Consider (x 4+ rB)*, a mod-sphere centered at x € GRID*, It intersects the mod-sphere
centered at the origin, (rB)*, iff x € (2rB)* (see Fig 4). Let S; denote the set of grid points
that are within a (modulo) radius of 2r from the origin

S, = (GRID* \ {0}) N (2rB)".

Therefore, the probability that a mod-sphere centered at A} (i # 0) intersects the mod-sphere
at the origin satisfies

Pr{(rB)* N (A +rB)*} #0} =Pr{A; € §;}

Let S, stand for the set of grid points such their fine cubic cells of side 1/p are fully contained
in a sphere of radius 2r + d from the origin

S, ={x € GRID*: (x+p ' - CUBE)* C ((2r +d)B)"}.
Notice that §; C S;. We may therefore bound the cardinality of S; as follows
|S1| < [Ss| < |Vs(2r +d)/Vol(p~™ - CUBE)| = |p"Vi(2r + d)]. (32)

Consider some arbitrary index i (¢ # 0). Since A is uniformly distributed over the p" points
of GRID*, using (32) we get

Pr{(Af +rB)* N (rB)* # 0} = Pr{[A} e & ]} (33)
_ &
~ |GRID| (34)
LanB(QT + d)J (35)
< o
< Vs(2r+d). (36)

Thus by the union bound we have

Pr{(A+r-B)is a packing} > 1— (M —1)-Pr{A] € S} (37)
> 1— M- Vg(2r +d). (38)

Now the number of codewords M and the effective radius are related by

M — Vol(CUBE) 1 1
O Vol(V)  Vol(V)  Vp(r§Te)
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so that

Ve(2r +d
Pr{(A+r-B) is a packing} > 1-— % (39)
Vi (ri™)
2r +d\"
= 1- (%) . (40)
A
Recall that d = %? so by (27), d — 0 as n — co. Therefore as long as we have —f < 3
A
we have
lim Pr{(A+r- B) is a packing} = 1. (41)
n—00

Recalling the definition of o}, (7), we conclude that the theorem is proved. [

We note again that p and & are required to satisfy (25). This leaves us with a wide range
of possible values for £ and p. We could even take £ = 1. As we shall see next, however,
such a choice would not allow us to prove that the ensemble is good for covering. We will
ultimately find a sequence of pairs (k,, p,) such that the ensemble is good in all four senses.

5 Goodness for Covering

Theorem 2 A lattice A drawn from an (n,k,p) ensemble, where k is sub-linear in n but
grows faster than log®n and k,p satisfy (25),(26), is good for covering, i.e.,

Peov(A) — 1

wn probability as n — oo.

Proof: 'The proof is a variation on its binary counterpart as given in [3]; see also Chapter
12 of [6]. Consider the set A* of the ensemble. Let ki, ko be such that k; + ks = k. Denote
the lattice obtained from the first ki rows of G by A*[k;] and let A*[k; + 7] denote the lattice
obtained from the first k; + ¢ rows of G. Consider an arbitrary point x € CUBE. For an
7 < 1, to be chosen later, let S;(x) denote the set of grid points within a (modulo) distance
r — d from x,

S1(x) =GRIDN (x + (r — d)B)* (42)

where d is half the diagonal of an elementary cube of GRID* as defined in (30). Let S,
denote the set of grid points such that their fine cubic cells intersect a sphere of radius r — 2d
centered at x

So(x) = {y € GRID : (y + p'CUBE)* N (x + (r — 2d)B)* # 0} .
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Notice that S; C &;. We may therefore bound the cardinality of S; as follows
S1| > |Sa| > [Vs(r — 2d)/Vol(p~'CUBE)] = [p"Vs(r — 2d)]. (43)

Therefore the probability that x is covered by a sphere of radius (r — d) centered at any
specific point of A*[k,] is at least Vz(r — 2d)/CUBE = Vi(r — 2d), i.e.,

Prix € (Ai[ky] + (r — d)B)*} > Vs(r —2d) i=1,..., M, — 1. (44)

For any x € CUBE", x is covered by (A*[k;] + (r — d)B)* if and only if at least one codeword
is contained in (x + (r — d)B)*. For every x € GRID* define the indicator random variable
n; fori=1,..., M, — 1, where M, = p*1,

(45)

1, i xe (Af[ki] + (r—d)B)*
= 0, otherwise.

Note, that we do not consider i = 0 since Aj[k1] = 0 deterministically. Excluding i = 0 from
our consideration, ensures that 7; is independent of both 7 and x. Let

M;—-1

X = Z Ty (46)

so that x is equal to the number of nonzero codewords (r — d)-covering x. Taking the
expectation of x and using (44) we get

Myp—1

E{x}= Z E{ni} > (M — 1)Vp(r — 2d). (47)

=1

Using the pairwise independence of the 7;’s (which implies that they are uncorrelated), we
have

M;—-1

Var (x) = 2_: Var (1;) (48)
- ATZ_II{E<n§>—E<m)2} (49)
< 1\211*7(77?) (50)
S By (51)
- B (52
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Using (52), by Chebyshev’s inequality, for any g > 0,

Var () _
Pr{jx - E()| > 2VE() } < 22'3Ex)<22ﬂ (53)

Let 4, = E(x) and denote

W(B) = iy — 2 /. (54)
Then from (53) we have
Pr{x<nu(p)} <2 (55)

We restrict are attention now to points of GRID*. We call a point x € GRID* remote with
respect to a set A if it is (r — d)-covered less than p(3) “times” by (A + (r — d)B)*. Let
Q(A) stand for the set of remote points with respect to A. Denote @Q; = Q(Aj[k1 + i]) and
¢; = |Q;]|/|GRID*| = |Q;|/p™. Equation (55) then reads

E(q) <277 (56)
Using Markov’s inequality, we estimate the deviation of this fraction of points from the mean,
Pr{qo > 25E(q0)} <27P, (57)

Therefore, using (56),
Pr{g >27%} < 277 (58)

Thus, in words, the probability that the fraction of remote points of GRID* be greater than
27 is smaller than 27%. By taking 8 — oo (but still keeping () > 0) this probability
can be seen to be arbitrarily small as n — co. We note that this may be achieved with
k = ky = 1. Therefore, we can obtain an “almost complete” (r — d) covering of GRID*.

From this we may conclude that we obtain with high probability an almost complete covering
of CUBE with spheres of radius r.

We next show that taking k& ~ log?n we may obtain a perfect covering. Choose k; and p
such that (25) and (26) are satisfied (k; playing the role of k) with k; growing faster than
log*n. Set

B = 2log(logn + loglog p). (59)
Note that 277 goes to zero as n — co. We would like to have u(S) > 0. It is sufficient that
p > n* with A > 0. By (47), this in turn will be satisfied if we choose a radius r that satisfies

A
k1 n

T2 .

p

Thus we may conclude that with this choice of parameters, for most lattices almost all points
are covered by spheres of radius 7.
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However, we wish to have all points of CUBE covered. We next show that A*[k; + ko]
allows a complete covering with k; ~ logn. Consider the set S = A*[ki]U(A*[k1]+g;,1/p)"

Notice that
p—1

Nk +1] = Wk + 2 - ghi1/p) (61)

=0

Since the rows of GG are statistically independent, we have

E(qilq) < E {% QO} = g5 (62)
Applying Markov’s inequality, we have that given qq,
Pr{g: > 2"E(q:)} < 277, (63)
so that given ¢y < 277
Pr{g <27 %} >1-27". (64)

Therefore the probability over the whole ensemble that (64) is satisfied for A[k; + 1] is at
least (1 —27)(1 — 277). Continuing this procedure we get

gr, < 227079 (65)
with probability (1 —27%)(1 — 277)¥2. We would like to choose k; such that
Gy < p—n — 2—nlogp (66)

as this would imply that g, = 0 since there are p” points in GRID. It suffices that v =3 —1
and
ke = [logn + loglogp]. (67)

Recalling that k = k; + k2 we conclude that A} with probability at least equal to
(1 _ 2—/3’)(1 _ 2—,3+1)(10gn+10g10gp) (68)

satisfies qx, < p™", i.e., that every x € GRID" is covered by at least p(53) balls of radius
(r — d). This implies that the probability that there be any u(/3)-remote point x € GRID*
is arbitrarily small as n — oo. Now, if every point of GRID* is covered by a sphere of radius
(r — d) this implies that CUBE is completely covered by M spheres of radius r. Therefore
the probability of a complete covering with spheres of radius r goes to one with

A
M = pkitke — n k2 69
p Vit —20)” (69)
77,)‘ p(logn-Hoglogp)-H (70)
VB(T - 2d)
A
_ n 210gp[(logn+loglogp)+1]. (71)
VB(T — 2d)
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We have

r Vs(r) 'y
= pf_—2V/ 72
p§fiec \/VB(T - 2d)n p (72)
_ r A/n (log plog n+log plog log p+logp) /n
SR (L, .
(7" — 2d) n (73)

By (27) and (30) we have d — 0 as n — oo and thus also

li LN |
nggo r—2od)

Also since by (28) p = O(n/logn) as k grows faster than log” n, we have

lim 210gp(10gn+loglogp)/n - 1.
n—00

Thus we have that —r= — 1 as n — oco. This completes the proof. [
A

6 Goodness for MSE Quantization

As was shown in [39], specifically in equation (27) therein, a lattice that is good for covering
is necessarily good for quantization. More specifically,

Proposition 1 For any lattice A

G(A) S G:L . n+2 ' (pcov(A))2

n

where G — 5= is the normalized second moment of an n-dimensional sphere.
Combining this theorem and Theorem 2 we get:

Theorem 3 A lattice A drawn from an (n,k,p) ensemble, where k is sub-linear in n but
grows faster than log®n, and p,k satisfy (25),(26), is good for quantization, i.e.,

1
2re

G(A) —

in probability as n — oo.
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7 Goodness for AWGN channel coding

In this section we show that this ensemble achieves the Poltyrev random coding error expo-
nent for any noise. In particular, we present a simple derivation for the Poltyrev exponent.
We note that Loeliger [24] showed that the ensemble defined in Theorem 1 indeed achieves
capacity, but did not point out that the ensemble also achieves the Poltyrev exponent. In
this section we need to restrict ry;,, requiring it to satisfy

2 pZAWGN (7 4)

rmin - .
32Ep(pawen)

We have the following theorem.

Theorem 4 A lattice A drawn from an (n,k,p) ensemble, where k is sub-linear in n and
p,k satisfy (25),(26) with rmin given by (74) is good for coding for the AWGN channel, i.e.,

P.(A,ry) < e”Prlpawan)=o1)

with probability tending to one as n — oo. Here o(1) — 0 as n — oo, but may depend on
PAWGN -

Note that using the definition of pawan (19) and of 7y (17) we have

Teﬂecz

Py =4 ) (75)
npiWGN

Thus, holding ry fixed means that the variance of the noise decreases inversely with n. We
also note that in this theorem we may take k£ = 1.

Proof: For a particular value of pawan we wish to show that with high probability (w.r.t.

the ensemble of lattices)
P{N ¢ V} < ~(En(pawan)—o(1). (76)

We prove the theorem through a number of lemmas. Define an auxiliary “truncated” Gaus-
sian noise Nr so that its density is

where
er =Pr{N ¢ [-1/2,1/2)} (78)

is the probability of truncation. Consider the modulo additive noise channel

Y =X+ Nr. (79)
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Since fn,(x) is proportional to fn(x) for any x € CUBE it follows that for the noise Nr
the decoding regions of A* are the Voronoi regions, just as for the original noise N. Thus
the probability of error when transmitting a point of A* over this channel is indeed

P.(A,N7) £ Pr{Ny ¢ V}. (80)

Denote also the random coding and expurgated exponents of this channel by E"(A, Nr) and
E*(A, Nr) respectively.

Lemma 1 For almost all lattices in the considered ensemble P,(A, Np) < e ™Erpawan)=o(1)),

The proof is given in Appendix A.

We now bound the error probability of the original AWGN channel for Euclidean decoding
with this noise by the error probability corresponding to the mod-/Ny channel. For those
lattices satisfying Lemma 1 we have

Pr(NeV) = Pr(N e CUBE)-Pr(N ¢ V|N € CUBE)
1 —er]"Pr(Ngp € V)

[1 —2- Pr{N > 1/2}]” . [1 _ e*n(EP(PAWGN)fo(l))}
[1—2n-Pr{N > 1/2}] [1 — e_n(EP(PAWGN)—o(l))} .

|

(
(
(
(

>
>

So it is sufficient to show that Pr{N > 1/2} decays exponentially in n with an exponent
greater that E,(pawen). But for small enough Py we have

2

_a/) 2
Pr{N >1/2} <e v = exp{—pAWGN -n}.

87ﬂ1exﬂfec2
Therefore, we would like to have
PAWGN” Ep( )
87“%&“2 P\PAWGN )-

This in turn is satisfied by (74). This completes the proof of the theorem. O

8 Simultaneous Goodness

Verifying that there exists a non-empty intersection of the admissible (n, k, p) sets of Theo-
rems 1-4, the result now follows by the union bound.
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Theorem 5 A lattice A, drawn from an (n,k,p) ensemble, where k is sub-linear in n but
grows faster than log®n and k,p satisfy (25),(26) with ryw given by (74), is good in all four
senses with probability tending to one as n — 00, i.e.,

1 1 1
ppack(An) Z 55 pcov(An) — 15 G(An) — ﬁaand ;log Pe(Ana'rN) 2 Ep(pAWGN)

in probability as n — oo.

To carry the analogies farther we may note the following. Let & denote the surface of an
n-dimensional sphere of radius one and let © be a random direction uniformly distributed
over §. For a given lattice, define the radius of the basic Voronoi region in direction 6 is
defined as the intersection of a ray emanating from the origin in direction 6,

) = . )

Thus 74(©) is a random variable taking values in the interval [r5** r$]. The above results
yield that for the defined lattice ensemble as n — oo,

TA(@) _ ’I‘A(@)

maxg 75 () oY

— 1 in probability

and i
ming rp () R

= > — in probability.
maxgra(6)  r” T 2 P Y

Figure 1 depicts the various radii relevant to the different problems.

9 Summary and Extensions

We considered the problems of packing and covering with Euclidean spheres, MSE quanti-
zation and AWGN channel coding. Using random coding techniques we demonstrated that
there exist lattices that are good for these four problems simultaneously. We saw that for
the channel coding problem as well as for the packing problem we had a large freedom in
the choice of the behavior of p, the cardinality of the prime field used, and k, the dimension
of the underlying linear code, as a function of n. In fact for these problems it is sufficient
to take £ = 1, meaning that a good lattice may be generated by choosing a single point. It
seems that the same may be true for the quantization problem. The covering problem on
the other hand appears to be the most demanding. In order to obtain a good lattice for
this problem we were forced to take k growing faster than log®n. It remains to be studied
whether this condition is indeed necessary or may be relaxed.

As discussed in Section 2, one way to use a lattice for transmission over a power con-
strained AWGN channel is to use a codebook which is the intersection of the lattice with a
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sphere of radius vnPx. For the considered ensemble of lattices, we saw that for a constant
PAWGN, the corresponding noise variance decreases inversely with n. Thus, in such a scheme
one would appropriately scale the lattice obtained from the ensemble according to the vari-
ance of the channel noise. The results are also directly applicable to the lattice coding scheme
of [14] that allows to achieve the AWGN capacity using lattice encoding and decoding. Such
a scheme incorporates a pair of nested lattices, the Voronoi region of a the coarse lattice
serving as a shaping region, the fine lattice serving as a channel code. It turns out that it is
important that the coarse lattice be also good for channel coding. Thus, a lattice obtained
from the ensemble proposed in this work may serve as the coarse (shaping) region. The
generation of the fine lattice code is described in [14]. Applications where the necessity for
lattices which are simultaneously good for channel coding and MSE quantization also arises
are in lattice based schemes in various multi-terminal problems. Among them are in the
nested code approach for the Costa problem and the Wyner-Ziv problem, see [41].

These quadratic/Euclidean-norm/Gaussian problems are natural in R”. However, it may
be readily verified that Theorem 1 and 2 equally hold for spheres corresponding to any norm.
Specifically, consider the case of an r-th power norm:

1/r
Ixll- = (Zx:) r>1 (86)

From the result for covering we get as a corollary, as done in the Euclidean case in Chapter 5,
the existence of good quantizers for the single letter distortion measure d(z,y) = (z — y)".
Likewise, the results for channel coding can be extended to more general noise distributions
including the exponential family. By a union bound argument, this multi-norm /multi-metric
optimality implies an even stronger notion of simultaneous goodness, namely, that there exist
lattices which are not only good for the four criteria of sphere arrangements, but also for
any finite collection of distortion measures and/or additive noise channels from the family
above.

10 Appendix

A Proof of Lemma 1

The difference between any two codewords in the considered ensemble, i.e., (A; — Aj)*,
is uniformly distributed over GRID*. Therefore it has the same distribution as that of
an ensemble obtained by drawing each codeword according to a uniform distribution over
GRID*. Thus, the ensemble has the same random coding and expurgated exponent as the
totally random one (see [16, 35]). Denote the corresponding random coding exponent of (79)
by Eflgmp(R; Nr) where the bar denotes averaging over the ensemble. Similarly, denote the
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expurgated error exponent of (79) corresponding to a uniform distribution over GRID* by

Egrip(R; Nr) = max [EGgp (R; Nr), B¢k (B; Nr)| (87)

Earlier we concluded in Theorem 1 that for almost all lattices from the considered ensemble,
the minimum distance between lattice points satisfies the Minkowski bound. This means
that the expurgated exponent is achieved for almost all lattices in the ensemble. Thus, the
following applies to this subset (the averaging is only over this subset).

P.(A,N7) < e~ Farm(#Nr)—o(1) (88)

In Appendix B we show that El s (R; Nr) approaches, as n — 0o, the exponent of a uniform
distribution over CUBE, which we denote by E"(R; Nr). That is

EGrip (B; Nr) > E"(R; Nr) — o(1). (89)

The claim for the expurgated exponent may be similarly proved. In Appendix C we show
that
E"(R; Nr) = Ep(pawan — o(1)) (90)

and
E*(R; Nr) = Ep(pawax — o(1)) (91)

for the corresponding values of pawgn. Thus the lemma is proved.

B Proof of (89): Sensitivity of Error Exponent w.r.t.
an input on GRID

Consider the random coding error exponent corresponding to the random code restricted to
GRID*. Tt is given by

EaRID(R; Nr) = max s [EgRID(S; Nr) — SR} (92)

0<s<1

where

p—1 1+s
E?}RID(S; Nr) = — log/ (% Z fur([y —i/p] mod Z)ﬁ> dy. (93)
i=0

y€[0,1)
Compare this to the random coding exponent corresponding to a uniform input, which is
given by

E"(R; Nr) = max s [E°(s; Nr) — sR| (94)

0<s<1
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where

1+s
E%s;Ny) = —log / ( / Fye(ly — 2] mod Z)lisdx> dy
y€[0,1) x€[0,1)

p—1 1

1
yel0,1) (p Z

1=0 2= 2p

1 1

We next show that for any z € [0,1) and z € [—%, 5),

1

p [ o =2 modZ)= (14 0,(1)) v (o)

T2
For any x € [0, 1),

1 1 a2 g

T) = . -e?PN x e?Pn
fNT( ) 1—6T \/27TPN
Since
2 = 2lz||z| + 2% < (x4 2)? < 2% + 2|7||2| + 2
we have

—22_ 9oz +22 42| |2|

far(@)e v < fyp(z+ 2 mod Z) < far(z)e 2w
Taking into account (75) and that |z| < 1, |2| < 1/p and r§ > r ;. we have

2° + 2|z || < 2+ 22 < 3/192 <3 Pawen M
2PN 2PN 9 Tiﬂec 2 2

2 Tmin p
NPAwGN

Thus, since limn_m% =0 by (27), we have that

fny(x+2 mod Z) = (1+0,(1))fn, ().
Consequently we obtain (97). Substituting (97) into (96), it follows that
Erp (83 Nr) — E°(s; Nr) = 0,(1)

This proves the lemma.

C Calculation of Exponents

(95)

1+s
/2,, Lp-fNT([y —1i/p—2z] mod Z)l}rsda:> dy (96)

(97)

(98)

(99)

(100)

(101)

(102)

(103)

The derivation below (as well as Appendix B) is a special case of a calculation carried out

in the Appendix of [14]. We include it for completeness.
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For any modulo additive noise channel over the basic interval [0, 1)
Y=X+Z7Z modZ (104)

the random coding exponent is given by (see, e.g., [13])

E'5:2) = ggéig}(ls[ln 0,1)]—h o (2) - R] (105)
R
> max s[lne —h (Z)} (106)
(107)
= Joax sl—Ind — hﬁ(Z)] (108)
= max shs(62) (109)
where h,(-) denotes Rényi entropy, defined for any v, 0 < v < 1,
1
v o\
h\(Z) = T In wa(x) dx
and )
§=efl= —— (110)

~ Vol "

is the normalized density of the lattice points per dimension, i.e., the normalized number of
lattice points per unit volume.

Thus, the random coding exponent of the Nr-modulo additive noise channel channel is
given by

E"(R;Np) = Orgsa;(ls[log 0,1)| — hs(Nr) — R] (111)

We further have

h,(Nr) = ﬁlog/j(ﬁv(m))adx (112)

1—er
< s ifleg/(: ({11(92)7(& (113)
= 1__77 log(1 — e7) + : i 5 log _(: In(z)'dz. (114)
Taking vy =5 = ﬁ we get
shs(Zr) < shs(N) + log — p (115)
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We therefore have

E'(R;Nr) = max s[log|[0,1)| = hs(N) — R] — o(1). (116)

For a Gaussian random variable N ~ N (0, Py) the Rényi entropy is

ho(N) = ﬁln (/z (\/;_PNe‘%dey (117)

1 1
= iln 2mePy — ilne’yﬁ (118)
The maximization in (116) is carried out explicitly in Appendix C.1 to yield
1 0,1)| = hs(N) — R| = 1 2 —1) —1np? 119
012?‘2(18[ 0g|[ ) )| s( ) } ~ 9 [(IOAWGN ) npAWGN} . ( )

This yields (90) for pawgn in the random coding region, i.e., corresponding to the first line
of (23).

We next treat the expurgated exponent. Define the following generalized Bhattacharyya
distances, for s > 1:

D2tz =~ [ [ Vil (s x)*)dy)l (120)

and

DP(N;s) = ~In [ ( / VIR x)dy) 4o (121)

z€R

For a modulo additive noise channel the expurgated exponent is achieved by a uniform
input [16], giving

E“(RiZ) — sups |-ln / 1 / 1 ( /0 1 \/f(y\fvl)f(y\-’rz)dy);dmlde—R

s>1

s>1

N / 1 / 1 (/ N PR R T TErSD ) ’ derdo— R

= sups |—In / 1 ( / 1 \/fz(y)fz((erw)*)dy)ida: ~R

s>1
= sups [Dira"(Z;s) — R] (122)
s>1

Similarly to (115) we have

1
sDBh“tt(NT; 5) < sDBh“tt(N; s) + log 1

(123)
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Thus
sup s [DEM"(Nr; s) — R] = sup s [DEMU(N; s) — R| + o(1). (124)

mod mod
s>1 s>1

In Appendix C.2 the maximization of (124) is explicitly carried out to yield

sup s [DP"*(N; s) — R] = Ep(pawcn) (125)

s>1

for pawan > 4.

C.1 Maximization of (116)

For Gaussian X we have

1 1
= inomery - 151 (127)
= 5 |In2mePx — ;—Ins
1 1
= 3 [111 2mePyx + — > In(1 + 5) — 1] (128)
We therefore have
1
shs(X) = gln 2mePx + ki In(1+s)— g (129)
Taking the derivative of shs(X) with respect to s we get
d 1
7 [shs(X)] = 3 [In2mePx + In(1 + s)] (130)
s
Thus an extremum occurs when
In(1+s) = —1In27wePx (131)

or equivalently when

1
s = -
27T€PX

(132)

It is easy to verify that this extremum is indeed a maximum. Substituting (131) and (132)
into (129) we get

1 1
2 27T6PX

max shz(X) = —In27mePx +1|. (133)
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From the definition of 6 (110) we get

Py Py 1
Py = §’Py = = = .
XTUIN T VoW T wan2mePy  2menfan
Substituting (134) for Px in (133) we get
E"(R) = msaxsh,—,(X)
1
= 9 [‘P?AWGN —In P,QAWGN + 1]

1
= 5(1 - piWGN) —In pZAWGN'

C.2 Maximization of (124)

We use the following property of Gaussian distributions

Iny+a)fn(z) = fyey+2/2)fman()
Let 0 = Var(N). Then the above relation holds since

In@In(y+2) =

Using (139) we obtain,

DJ"*(N;s) =

1 _ 32 1 _(+a)?
—e 22 - e 202
V2mo 2ro
2
1 224 2yata?
é 202
< 2%0)
1 1 _ (Vyte/vD2 (/D)2
e 202 ‘e 27
V21 (a/v/2) V27 (V20)
1 _ (y+a/2)? 1 _ g2
e 2(a/V2)2 . _— ¢ 2(\/50')2.
V2r(a/\/?2) V2r(V/20)

1
z/2)% z? B
_ln/ (/ (7!+U/2) 6_2(20')2 dy) de‘
27r0

—ln/e 2(2f0)2 dz
1

g —
V27 2y/so

1
——In8mo?s.
21171'0'8
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(135)
(136)

(137)

(138)

(139)

(140)

(141)

(142)

(143)

(144)
(145)
(146)

(147)



Thus, it is left to show that

1
sup s[lnd — 5 In87s0?] = Ep(pawan) (148)
s>1

for pawan > 4. Differentiating the left hand side of (148) we get

d 1 1 1 8mo?
758 [lné ~3 In 8%302] = [lné ~3 In 87TSO'2:| - 85% (149)
1 1
= Ind— 3 In 870%s — 3 (150)
Equating to zero we obtain
52
1 =1 151
" 8rots (151)
or equivalently
52
= —7. 152
* = 8reo? (152)
Taking into account that o? = Py, we get
1 52 [Vol(W)]/"™ 2
Ind — - In8rso?| = = = [AWGN 153
supsiind = 5 In8mso™} = 1502 = onepy 8 (153)

Finally note that from (152) we have that s = 1 indeed corresponds to a rate satisfying

Pawex = 4. (154)

Finally, the straight line part of Ep(pawan) is obtained by combining the results for the
random coding exponent and the expurgated exponent.
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