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Abstract

We consider the generalized dirty-paper channel Y = X+S+N, E{X?} < Py,
where N is not necessarily Gaussian, and the interference S is known causally or
noncausally to the transmitter. We derive worst-case capacity formulas and strate-
gies for “strong” or arbitrarily varying interference. In the causal side information
case, we develop a capacity formula based on minimum noise entropy strategies.
We then show that strategies associated with entropy-constrained quantizers pro-
vide lower and upper bounds on the capacity. At high SNR conditions, i.e., if
N is weak relative to the power constraint Px, these bounds coincide, the opti-
mum strategies take the form of scalar lattice quantizers, and the capacity loss
due to not having S at the receiver is shown to be exactly the “shaping gain”
s log(%%¢) ~ 0.254 bit. We extend the schemes to obtain achievable rates at any
SNR and to noncausal side information, by incorporating MMSE scaling, and by
using k-dimensional lattices. For Gaussian N, the capacity loss of this scheme is
upper bounded by 1 log 2meG(A), where G(A) is the normalized second moment of
the lattice. With a proper choice of lattice, the loss goes to zero as the dimension k
goes to infinity, in agreement with the results of Costa. These results provide an in-
formation theoretic framework for the study of common communication problems
such as precoding for intersymbol interference channels and broadcast channels.
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*Parts of this work were presented in ISITA 2000, Honolulu, Hawaii, November 2000 and at the Cornell
Summer Workshop on Information Theory, August 2000, Ithaca, NY. This work was supported in part by
the Israel Academy of Science, grant 65/01.



Figure 1: The generalized dirty-paper channel

1 Introduction

We consider power-constrained additive noise channels where part of the noise is known at
the transmitter as side information (SI), as shown in Figure 1. That is, the channel is of the
form

Y=X+S5+N, (1)

where S is known at the encoder and N is a statistically independent random variable (not
necessarily Gaussian) with variance Py, and where the encoder has power Px. We refer to
S, the known part of the noise, as interference. This choice of terminology will be made
clear in the sequel. This channel model has recently received much attention as it has been
demonstrated that it models well various important communication problems, among them
precoding for intersymbol interference (ISI) channels [14, 18], digital watermarking (e.g.,
[12, 4]) and various broadcast schemes (e.g., [3],[37]). The channel model was proposed by
Cover with Gaussian S and N, where he considered an encoder that has unlimited anticipa-
tion, i.e., has knowledge of the entire interference sequence Si, S ..., S, at the beginning of
transmission. In [9], Costa showed that in this case the capacity is equal to % log(1+ Px/Px).
Therefore the interference S does not incur any loss in capacity. We follow [9] and refer to
this channel model as the “dirty-paper” channel.

This result has been extended by several authors. In [14, 18] it was shown that it holds
for arbitrarily varying interference, and also for non-Gaussian noise at high SNR. In [38] and
6], the result was extended to ergodic Gaussian noise . In [7], the case of arbitrarily varying
noise was studied.

A different transmission setting is that of a causal SI encoder. A formal definition is
given in the next section. In this setting the encoder at each time instance prior to the
transmission of x; has knowledge only of the interference terms up to and including the
current instance, i.e., of S1,5,...,5;. We refer to this causal counterpart of the dirty-paper
channel as the dirty-tape channel (where “tape” signifies the sequential (causal) availability
of the side information). This setting, just as the former, corresponds to many applications.

Tt was also shown in [6] that the interference need not be Gaussian. However, this result can in fact be
deduced from the extension to arbitrary interference provided in [14, 18].



These may be communication problems where the nature of the interference is indeed causal,
but may also correspond to dirty-paper coding where we restrict the encoder to be causal in
the interest of lower complexity of encoder implementation.

The general formula for the capacity of channels with causal side information at the
transmitter was found by Shannon [31], while the capacity with noncausal side information
was found by Gelfand and Pinsker [21] (see Section 2). Both formulas are involved in the sense
that they are given in terms of maximization over an auxiliary random variable (or function).
For the Gaussian dirty-paper channel, however, the solution can be found explicitly [9].
This is of course due to the fact that there is no rate loss in this case with respect to the
interference free AWGN channel. Since this does not hold for the dirty-tape channel, finding
explicit solutions is a harder problem in this case. Willems was the first to consider the
dirty-tape channel in [35]. He suggested a causal encoding scheme in which the encoder uses
some of its power to convert the interference S into a discrete random variable whose support
is an equally spaced lattice (..., —3A4,—2A,—A,0,A,2A,3A,...) which effectively leaves us
(when A? is large compared to Py) with a Gaussian noise channel. However, this scheme
entails a power loss due to this “noise concentration” process, equal to A?/12 (assuming A
is much smaller than the amplitude of the interference signal). In [36], Willems refers to
schemes which circumvent the power loss of “noise concentration”.

In this paper we are concerned with both the causal and noncausal settings, as well
as with the case of side-information with finite anticipation. We focus our attention on the
worst interference case, which we show to be equivalent to “strong and smooth” interference,
and to arbitrarily varying interference. We derive capacity formulas and bounds as well as
coding strategies for these settings in a unified approach. This allows to bridge the causal
and the noncausal settings. We also investigate how much is lost in capacity by imposing
the causality constraint. Our coding scheme is based on minimum noise entropy strategy,
a concept proposed earlier for unconstrained modulo-additive noise channels in [15]. We
addressed these issues in a preliminary version of this paper [14, 18]. Schemes similar to
those presented in [14, 18] were independently proposed by Chen and Wornell [4] as well as
by Su, Eggers and Girod [12] in the context of information embedding. The present paper
gives a detailed account of the results reported in [14] for the dirty-tape as well as dirty-paper
channel, where N may or may not be Gaussian.

One of the insights developed in [14] is that the dirty-paper channel model offers a
theoretical framework for precoding techniques, and in particular the link to Tomlinson-
Harashima precoding [32, 23] was established. Since then, considerable work has been done
(and published) by the authors as well as by others, building on this insight. We will thus not
delve into applications in this paper. Instead we refer the reader to [41] and the references
therein for a survey of some of the recent works. A noteworthy implication of this work is
that the capacity of the Gaussian intersymbol interference (ISI) channel may be achieved
using precoding at the transmitter and that there is no inherent precoding loss. Another
important application [3, 34] is to precoding for broadcast over multiple-input multiple-



output (MIMO) antennas, allowing to achieve the capacity region [34]. Finally, the present
work lead in turn to a transmision scheme [17, 19] that allows the capacity of the AWGN
channel to be achieved using lattice encoding and decoding, a problem that was open for
many years.

A distinctive feature of our approach, as proposed in [14], is the introduction of common
randomness at the transmitter and receiver ends which enters in the form of a “dither” that
is added to the interference. This serves a dual purpose. With the exception of Section 4.3,
its primary role is as an analytic tool in the direct part of the capacity formulas: the dither
greatly simplifies the treatment and allows for a rigorous treatment as well as enables us to
relate coding for the dirty-tape channel to well established results in quantization theory.
In this respect, the dither may be regarded as merely a method of proof while the capacity
results do not depend on the availability of common randomness in practice. This is due to
the fact that common randomness does not result in a greater capacity for fixed probabilistic
channels with SI at the transmitter (unlike Arbitrarily Varying Channels (AVC) as will be
noted); see [28, 1]. In Section 4.3, on the other hand, the dither will prove essential where we
discuss the issue of cancellation of arbitrary interference. In this case, common randomness,
(e.g. a randomized codebook known to the receiver) may be in fact advantageous [28]. That
is, the capacity formula we give for this case will assume that common randomness is indeed
available.

The paper is organized as follows. Section 2 summarizes known results for channels
with causal/noncausal side information at the transmitter and the associated (non-explicit)
capacity formulas. Section 3 treats the worst-interference, general noise, dirty-tape channel,
for which a semi-explicit capacity formula is derived in terms of a minimum noise entropy
strategy. Lattice encoding schemes are proposed and are shown to be optimal in the limit of
high SNR. Furthermore, for general SNR, upper bounds for the rate loss of inflated lattice
strategies are given. Section 4 proposes efficient schemes for side information known with
finite anticipation, linking the dirty-tape and dirty-paper settings, and develops techniques
for cancellation of arbitrary interference. Section 5 offers a summary of the results and
discusses some extensions of the results.

2 Channels with side information at the transmitter

The channel model (1) is a special case of a channel with side information at the transmit-
ter. Such channels were introduced by Shannon in [31]. He considered a discrete memoryless
channel whose transition matrix is dependent on the channel “state”, as shown in Figure 2.
The transmitter has knowledge of this state prior to transmission 2. More precisely, let X,
Y and S denote the input, output and state alphabets of the channel, respectively, with
transition probability p(y|z,s) and with state probabilities given by p(s). The transmitter

2The interference term S of the dirty-paper channel corresponds to the channel “state”.
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Figure 2: Channel with side information at transmitter

(but not the receiver) has access to the side information. This problem divides into two
categories, according to whether the encoder observes the state process causally, or antici-
pates future states (corresponding to the dirty-tape/dirty-paper scenarios when the channel
is given by (1)).

In the causal case, considered by Shannon [31], the encoder maps the message w €
{1,2,..., M = 2"%} into X™ using functions

;= fi(w,s})) 1<i<n (2)

where s = s;,...,s; are the states up to time 7. Shannon found the capacity of such channels
as described below.

Shannon’s work remained largely an isolated result for many years (with the notable
exception of [25]). Renewed interest was sparked in the Russian literature by Kuznetsov and
Tsybakov during the 1970’s in the context of coding for memories with defective cells [27].
The study of this problem eventually led to the general formulation of Gelfand and Pinsker
[21] for coding with noncausal side information at the transmitter. In this case, the encoder
observes the entire state sequence before transmitting the code sequence, thus

z; = fi(w,s?) 1<i<n. (3)

In either case (causal or non-causal), the receiver decodes the message w from the whole
received vector as w = g(y7). For the causal scenario, the (average) probability of error is
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Figure 3: Shannon’s associated channel.

given by

P, M Z Z Zp sy H y1|fz(w 31) S,) . (4)

w=1{yP:g(y7)Aw} ST

The probability of error for the noncausal case is similarly defined.

We consider also randomized codes. That is, transmission schemes involving common
randomness. In such cases, the transmitter and receiver operation may depend on the value
of a random variable which is known at both transmission ends. Denote this random variable
by U. For the causal (Shannon) scenario the encoder mapping is then given by functions of
the form

z; = fi(w, sh,u) 1<i<n. (5)

Likewise the decoding function is given by w = g(y}, u). The (average) probability of error
is then defined by

M
PEO= 25 B Y Yol H (1w, 51, (6)
w=1 {yT:9(y7 w)#w} st

The probability of error for the noncausal case is similarly defined. Note that by interchang-
ing the expectation with the outer summation in (6) it follows that there must be some



specific value u, i.e., some deterministic code, with a probability of error no greater than
that of (6). In this sense, randomized codes do not yield better performance than deter-
ministic ones. However, this optimal v depends in general on the state distribution; thus
randomization may be advantageous for arbitrary varying or unknown state sequences as
discussed in the Section 4.3. We note that in the sequel, we will consider transmission (and
hence codebooks) that are subject to a power contraint. In this case, both the probability
of error as well as the codeword power depend on the value of u. Nonetheless, using a
Langrangian formulation, it can be shown that a randomized code does not improve on a
deterministic code in this setting as well.

2.1 Non-explicit expressions for capacity

For a general memoryless channel p(y|z,s), with memoryless states, Shannon [31] showed
that the capacity with causal SI at the transmitter is equal to the regular capacity of an
associated DMC as shown in Figure 3. The input alphabet of the associated channel, denoted
T, is the set of all possible mappings

t:S— X

which we refer to as strategies or strategy functions. The output y of the associated channel
is related to the input ¢ according to the transition probability

p(ult) = Y- pls)p(y]z = 1(s), 5) (7)

and also
n

p(yr[t) = Hp(yi\ti)- (8)

The capacity with side information at the transmitter is given by [31],

c@l — max I(T;Y), 9)

p(t)
where the maximization is taken over the distribution p(¢) of the random variable T € T.
The main feature of Shannon’s capacity formula is that it involves strategy functions that
are functions only of the current state. This in turn means that to achieve capacity it is

sufficient to have an encoder that takes into account only the current state of the channel.
See also [15].

This result can readily be extended to the case where the alphabets X',)),S are the real
line and where the transmitter is subject to an average power constraint Px to yield

cosl(Py) = sup  I(T;Y) (10)
p(t):E{T(S)*}<Px



where the expectation is relative to the product measure p(s,t) = p(s)p(t). The capacity
with noncausal SI at the transmitter is given by ? [21]

Cncausa,l — maX{I(T; Y) _ I(T’ S)} (11)

p(tls)

where T is a random strategy, i.e., a random element of the set of functions {t : § — X'},
and the maximization is taken over all joint distributions satisfying

p(t,s,2,y) = p(s)p(t|s)d(z — t(s))p(ylz, )

where §(-) denotes the Kronecker delta function. Note that unlike in (10) here p(s,t) is
a general joint distribution. This expression coincides with the causal capacity (9) if the
maximization is restricted to distributions satisfying p(¢, s, z, y) = p(s)p(t)d(z—t(s))p(y|z, ),
i.e. when T and S are independent. As in the causal case, the capacity formula may be
extended to the power-constrained /continuous alphabet case (see [2]). The capacity formula
is then given by

creesd(py) = sup  {I(T;Y) = I(T; )}, (12)

p(t|s):E{T(5)*}<Px

3 Results for Causal Side Information

3.1 Capacity formula via minimum noise entropy

Let us turn our attention back to the generalized dirty-paper channel model (1). In this
section, we treat the causal SI scenario (or dirty-tape channel). We use the general capacity
formula of Shannon (10) to find the capacity of this channel for the worst-case interference,
which will turn out to be the asymptotic case of strong and smooth interference. This greatly
simplifies the treatment, while still incurring only a finite penalty relative to the case of S =0
which we shall quantify. We assume that the noise N has a finite differential entropy and
finite first and second moments. We define the worst interference capacity of the dirty-tape
channel as

geausabworst(p oy — inf 0Py S) =inf  sup  I(T;Y), (13)
s S TE{T(S)}><Px

where C°¢%sa(Pyx S) is the capacity expression in (10) with the dependence on S made
explicit. We now present an expression for the worst-case capacity of the dirty-tape channel
which translates the maximization in (10) into noise entropy minimization. In this sense,

3This is a modified form [13, 5] of the Gelfand-Pinsker formula, which better shows the relation to
Shannon’s formula (see 9) for the causal case. We identify the random variable U in the Gelfand-Pinsker
capacity expression with the random function 7T'.



the resulting capacity formula is “semi-explicit”. The result is derived by transforming the
original channel into an effective modulo-additive noise channel, whose noise distribution
depends on a chosen strategy. In the sequel, we propose explicit lattice-strategy encoding
schemes and prove their optimality in the limit of high SNR.

For L > 0, let U ~ Unif([—L/2,L/2)). Let ¢(-) be a strategy function from [=£, £) to R.
Define the minimum effective noise entropy

hmin(L, P) = inf h(t({U)+ U+ N), (14)

teT(L,P)

and the effective noise channel capacity

CL(P) = logL — hmin(L, P), (15)
where h(-) denotes differential entropy, and the class of admissible strategies is defined as
T(L,P) = {t: E[t(U)]* < P}. (16)
Define N
C;(P) = upper convex envelope of Cr,(P), (17)
and let
C*(P) = limsup C} (P). (18)
L—oo

Note that any point in the convex envelope may be obtained by time-sharing of at most two
points [10].

Theorem 1 (causal worst-case capacity) The worst-case (causal) SI capacity of the
channel (1), defined in (13), is given by

Ccausal,worst(PX) =C* (PX) (19)

The theorem is proved in Section 3.3. We next describe a universal interference canceling
scheme that will play a central role in the proof.

3.2 Universal interference cancelling scheme

We present a randomized transmission scheme, which is independent of the statistics of the
interference S and achieves the worst interference capacity C*(P) for any S. We transform in
effect the channel into a modulo additive noise channel over the alphabet A;, = [-L/2,L/2).
The transmission scheme is outlined in Figure 4. The transmitter uses an input alphabet
that consists of strategies belonging to

To.r, = {tv : tu(s) = to(s —v mod Ap), ve AL}, (20)

where %y(S) is some strategy function. That is, all strategies are a shift modulo A;, of a
single strategy. Let U ~ Unif(Ar) be a dither available at both transmission ends.
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Figure 4: Universal interference cancelling scheme for the dirty-tape channel.

e Modulator: For any v € Aj, the encoder sends:

x =ty(s+u) =to(s +u—vmod ApL). (21)

e Demodulator: Computes
y' = [y + u] mod Ap. (22)

We thus arrive at the following channel from v to Y.

Lemma 1 (effective additive-noise channel) The channel from v to Y' defined by (1),
(21) and (22) is equivalent in distribution to the additive noise channel

Y' = [v+ Neg] mod Ag
where the effective noise Nog is independent of v and is given by

Neg = [to(U) + U + N] mod A;.

Note that the effective channel from v to Y’ is independent of the interference S. This
is not only useful for proving Theorem 1, but it also has an important consequence for
arbitrarily varying interference, as discussed in Section 4.3.

Proof:

Y' = [te(U+S—vmod AL) +U + S + N] mod A
to(U+S—vmod Ar) + (U+ S —v) +v+ N] mod A
v+to(U") +U" + N] mod A;,

v+ N"] mod Ag

[
[
[
[

where U” = [U + S — v] mod A, and

N = [to(U") + U" + N] mod Ay. (27)

10



Due to the dither U, for any V = v and S = s the random variable U" is uniformly distributed
over Ay, i.e., U" has the same distribution as U. Consequently, S does not have any effect on
the associated channel and N” is statistically independent of V' and S. Thus, the resulting
channel (26) is a modulo additive noise channel and N" has the same distribution as Neg-.
O

Applying a uniform distribution upon the class of strategies 7o, i.e. V ~ Unif(Ay)

yields for any S
I(V;Y") = h(Y') — h(Y'|V) = log L — h(Neg). (28)

3.3 Proof of Theorem 1

As noted in Section 2, common randomness does not increase capacity for the channel models
we study, i.e., channels with side information at the transmitter, see e.g., [28]. Nonetheless,
it will prove useful in the proof to examine the case where common randomness is available.
Let the random variable U be available at both transmission ends. As noted, allowing the
strategy functions to depend on the dither U does not increase capacity. We may therefore
rewrite the worst-case capacity of (13) as

Ccausal,worst(PX) — Hslf Crandom(PX’ S) (29)

where
grondem(py S) = sup I(T;Y). (30)

UT:B{T(S,U)*<Px}

Theorem 1 is proved using the following two lemmas.

Lemma 2 (Direct) For any interference S
ces(Px, S) > C;(Px) (31)

for every L.

Lemma 3 (Converse) For S ~ Unif(Ap)
cersl(Py, §) < Cp(Px) +or(1) (32)

where or,(1) = 0 as L — oo.

Since the worst interference capacity is defined as an infimum over all interferences S
(see (13)), every S gives an upper bound on C¢eusabworst( Py in particular S ~ Unif(Ayp).
Thus, the two lemmas above imply that

Cz(PX) S Ccausal,worst(PX) S Cz(PX) +0L(]—)

11



for every L, and the desired result follows by taking the limsup in L. * We are left to prove
the two lemmas.

Proof of Lemma 2

We employ the universal interference canceling scheme described in Section 3.2. From (28),
for any choice of basic strategy to(-) we can achieve the mutual information

I(V;Y')=logL — h(to(U) + U + N mod Ayz) . (33)

But
h(to(U)+ U+ N mod Ar) < h(to(U)+ U + N) (34)

since the modulo operation can only reduce the entropy. For any P, we may take a strategy
to(-) that achieves a value arbitrarily close to the minimum effective noise entropy in (14).
Combining with the definition of Cp(P) in (15), we conclude that we can achieve mutual
information

I(V;Y") > Cu(P) —e (35)

for any € > 0. By the definition of Cj(P) in (17), we may achieve mutual information of
C3 (Px) — € by time-sharing (at most two basic strategies), and the lemma follows.

Proof of Lemma 3

The proof is similar to the proof of Theorem 1 of [15]. Let T be any strategy random variable.
We have

IT;Y) = h(S+T(S)+N)—h(S+T(S)+ N|T) (36)
= hMS+X+N)—Er{h(S+T(S)+N)|T =1t(s)} (37)

where X = T(S) and Er{-} denotes expectation over 7. In Appendix 6, we prove the
following lemma.

Lemma 4 If S ~ Unif(A;) and E{X?} < Px then
h(S+X + N) <logL +o.(1) (38)

where (X, S) are independent of N (but X may depend on S) and or,(1) = 0 as L — oc.

Therefore by (37) for S ~ Unif(—L/2, L/2) we have
I(T;Y) <logL—Epr{h(S+T(S)+ N|T =t(s))} + or(1). (39)

Let t(-) be any function participating in the expectation of (39). Denote P, = E{t(5)%} =
E{T(S)*|T =t(s)}. Since by the definition of C7(P) in (15) we have

h(t(S) + S + N) > hpin(L, P,) = log L — C1(P,), (40)

“Note that this implies also that C*(P) = lim, C} (P).

12



it follows that equation (39) reduces to
I(T;Y) —or(1) < Er {OL(PT)} < Er{CL(Pr)} < CL (Er{Pr}) < CL(Px) (41)

where the inequalities follow from the definition of Cp(-) and C(-) and from the convexity
and monotonicity of Cj(-), and since the power constraint implies Er{Pr} < Px. Since this
inequality holds for any 7' satisfying the power constraint, the lemma follows.

Remark: In fact, Lemma 4 holds with respect to any S of the form LSy, where Sy has
a density. Thus the worst-case capacity occurs whenever the interference is “strong and
smooth”.

3.4 Bounds via entropy-constrained quantization

From Theorem 1 we see that the capacity formula involves finding an optimal #(-) that
minimizes h(t(U) + U + N) subject to the power constraint ¢t € T (L, P). The following
theorem links this problem to that of finding the optimal entropy-constrained quantizer of
U~ Unif(—%, %) Let

Homin(U, D) = inf H(Q(U)) (42)
denote the minimum entropy in quantizing U with mean squared distortion D, where H(-)
denotes regular entropy and the infimum is over all quantizers @ satisfying E[Q(U) — U]? <
D.

Lemma 5 Suppose N has a finite differential entropy. Then

CL(PX) Z h(U) - Hmin(U’ PX) - h(N) (43)
> %log 12Px — h(N) — log (1 + 1§PX) . (44)
On the other hand, for any a > 0
Ci(Px) < h(U) = Huin(U, [v/Px + a/2?) = h(N) + I(N; N + Z,) (45)
< %log 12 ( Px + %>2 — R(N)+ I(N; N + Z,) (46)

where Z, is independent of N and is uniformly distributed over (—a/2,+a/2).

The proof of the lemma is given in Appendix 6.

We now restrict our attention to the case of high SNR, i.e, to the limit Px — oco. Define

C*(P) = limy_,o, C(P). From (44), taking I — oo, we have

C*(Px) > C*(Px) > %log 12Px — h(N). (47)

13



From (46), we have

C*(Px) < min B log 12 ( Px + g)2 +I(N;N + Za)} — h(N). (48)

From (47) and (48), we have

0< C*(Py) — B log(12Px) — h(N)} < min [log (1 + \C/LP%) +I(N:N + za)} (49)

Clearly I(N;N + Z,) — 0 as a — oo whenever Py < 00; see [29]. For any € > 0, let a. be

large enough so that I(N; N + Z,) < e. But log (1 + %) — 0 as Py — oco. We thus have,

Corollary 1 If N has a finite second moment and finite differential entropy, then
1
C*(Px) = 3 log(12Px) — h(N) + o(1) (50)

where o(1) — 0 as Px — oc.

3.5 Optimality of lattice strategies at high SNR

From (50), we see that the asymptotic (high SNR) rate loss with respect to the no-interference
case S = 0 (or equivalently, to having S also at the receiver), is equal to the “shaping gain”,
% log % ~ 0.254 bit. The role of the shaping gain here will be made clear in Section 4, where
we discuss the use of multidimensional lattice strategies for coding with finite anticipation
side-information. Note that this result holds for general N, not necessarily Gaussian.

It also follows from (50), that entropy-constrained quantizers generate efficient strategies
for the universal interference cancelling scheme at high SNR. From the well known result
by Gish and Pierce, we know that at “high resolution” conditions the quantizer achieving
the minimum entropy Hpy,in(U, Px) is uniform, see [22]. Thus, at high SNR the dirty-tape
channel capacity may be approached using the error of a uniform quantizer as t(-) in (14).
That is, we choose t5(s) = Qa(s) —s where Qa(-) is a “mid-thread” uniform scalar quantizer

with step size
A = 4/12Px. (51)

The function #y(s) is depicted in Figure 5. We now apply a uniform distribution upon the
class of strategies which are shifts of %

ty(s) = Qa(s—v)+v—s
= [v— s mod A (52)

14



Figure 5: Uniform lattice strategy: to(s) = —s mod A with A = /12Px.

where the modulo operation is to the interval

Aa = (—%né]. (53)

Due to the periodic nature of ¢y, the shift v may be limited to the interval A, and it
is sufficient to take the dither to be U ~ Unif(Aa). Also, due to the dither U being added
at the receiver side, reducing the output (after the dither is added) modulo A produces a
sufficient statistic at the receiver. We therefore use the following transmission scheme:

e Transmitter: For any v € Aa, the encoder sends:
r=t(s+u—v)=Qa(s+u—v)+v—s—u=[v—s—u] mod A. (54)

Note that since U is uniform over Ax, so is the transmitted signal X. It follows from

(51) that the transmitted power is EX? = %2 = Px.

e Recewver: The receiver computes

v = [y+u] mod A (55)
= [v+ N] mod A. (56)

where (56) follows by specializing Lemma 1 to this case, noting that ¢o(u)4+u mod A =
Qa(u) mod A = 0 for all u.

Taking V' ~ Unif(Aa) gives rise to the rate

I(V;Y') = h(V)—h(N mod A) (57)
~ h(V) = h(N) (58)

log A — h(N) (59)

(60)

1
= 5 log 12Px — h(N) 60
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Figure 6: Inflated lattice strategy: to(s) = —as mod A with A = {/12Px.

where the approximation in (58) becomes tight as Px — oo and therefore A — oo. Hence,
in light of (50) this scheme is asymptotically optimal. The scheme (52) is similar to the
technique for information embedding of [4] and is closely linked to Tomlinson-Harashima
prcoding [32, 23].

3.6 Inflated lattice strategies for general SNR

In principle, the optimal noise entropy minimizing strategy function #(-) as defined in (15),
gives us a capacity achieving encoding scheme as depicted in Figure 4. Unfortunately, we
have only been able to determine this optimal function in the case of asymptotically high
SNR. For general SNR, we resort to a judicious choice of a suboptimal strategy function.
The scheme we propose, based on an “inflated” lattice strategy, is motivated by the encoding
scheme of Costa [9].

The development up to this point of the paper did not necessitate that the constraint be
a power constraint, and could be extended to more general constraints. The MMSE scaling
that we next introduce does fit specifically the case of a power constraint.

The scheme uses a scaling coefficient, 0 < a < 1, effectively producing at the receiver
end a lattice with cells of length {/12Px /a2, at the expense of adding an additional noise

2
component with variance (%) Px. The basic strategy takes the form

to(s) = —as mod A (61)

where as before A = 1/12Px, and the modulo operation is to the interval A defined in
(53). Since to(s) is periodic, it is sufficient now to restrict the shift v to the expanded
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interval Axjq = [—
encoder sends:

and the dither to be U ~ Unif(Aa/,). For any v € Aaja, the

2a’ 2a)’

z =[a(v—s—u)] mod A (62)

and the receiver computes:
y' = [y +u] mod A/« (63)
where, as before, reducing the output modulo the period A/« produces sufficient statistics.
Note that the input and output alphabet (after applying the modulo operation) is scaled
or “inflated” by a factor of 1/« relative to the basic lattice transmission scheme of Section 3.5.
Hence, we refer to these strategy functions as “inflated lattice strategies”. See Figure 6.
Alternatively, we may restrict the input alphabet to Aa as in Section 3.5 (defined in (53) and
(51)) and take U ~ Unif(Ax), if we scale instead the interference S prior to subtracting it off

at the transmitter, and scale the receiver input prior to adding the dither. The transmission
scheme then takes the form,

e Transmitter: For any v € Aa, the encoder sends:
z =[v—as—u] mod A. (64)

e Receiver: The receiver computes

= [ay + u] mod A. (65)
This gives rise to an equivalent modulo lattice channel described by the following lemma.

Lemma 6 (Inflated lattice lemma: scalar case) The channel defined by (1),(64) and
(65) is equivalent in distribution to the channel

Y'=v+ N mod A (66)
where N' is independent of v and is given by
N =[(1—a)U+ aN] mod A (67)

and where U ~ Unif(—A/2, A/2) and is statistically independent of N.

Proof: For any v € Ax we get

Y = [aY 4+ U] mod A
= [v—v+aX+aS+aN+U] mod A
v+ aX + (aS+U —v)+aN| mod A
v+ aX + (aS+U —v) mod A+ aN] mod A
v+ aX + (—X) 4+ aN] mod A
— (1 =o)X 4+ aN] mod A.

-
o
e e e e S N

[
[
[
[
[
[v
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Notice that due to the dither U, the channel input X is uniform over A, independently of
v. Since U and —U also have the same distribution the lemma follows. [J

The scaling factor a should be chosen so as to maximize the corresponding mutual informa-
tion (minimize the entropy of N’). Alternatively, we may use an MMSE-scaling factor (as
done by Costa), i.e., take

Px SNR

T Pyt Py 1+SNR (74)

This minimizes the variance of the effective noise prior to the modulo operation, i.e., the
variance of (1 — a)U + aN 5. Thus

Var(N') < Var((1 — «)U + aN) (75)
= (1—a)?*Var(U) + o*Var(N) (76)

PNPX
= Pt Px 7

where (75) follows since the modulo operation may only reduce the variance of a random
variable. The corresponding rate satisfies

I(T;Y) = logA— h(N') (78)
PXPN

> 1l 12P 11 2
—lo —=lo e———
= 5 g X5 gWPX—i-PN

where the inequality follows since a Gaussian random variable has the greatest entropy for
a given variance [10]. We thus have,

Theorem 2 For any noise N and arbitrary interference S, the capacity of the channel (1)
with S known causally to the tranmitter satisfies

1 P
causal > X\ _ 2 —
C (Px) > 5 log(l + PN) log (80)

Notice that this bound may be tighter than the lower bound in (47). To recognize this
consider the case of Gaussian N where (47) would give us the weaker bound

- 1 1 2me
> > = X)) Zlog 2
C(Px) > C(Px) > 5 log < ) 5 log 5 (81)

It is interesting to find a lower bound for the achievable rate at the limit of very low
SNR, i.e. as SNR = % — 0. We do this for the case of Gaussian noise N by numerically
computing

B(SNR) = I(T;Y)/SNR, (82)
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0.25

Figure 7: S(SNR) = I(T;Y)/SNR as a function of SNR = Px/Py for inflated lattice
strategies. The different lines correspond to different values of a.

where I(T;Y) is given in (78), as a function of the SNR. This is shown in Figure 7. Due to
the convex hull in the expression for capacity (17), it follows that

7 =me v ) )

is the slope of the capacity as a function of the SNR at SNR = 0. In effect, this value is the
maximum information per unit power that can be conveyed using an inflated lattice scheme.

From Figure 7 we see that 5* = 0.2. This yields a rate of approximately 0.2Px/Py
nats at low SNR, whereas the capacity with noncausal SI is %PX /Px nats. This indicates
that the rate loss due to causality is bounded by 4dB. This performance can be obtained
by time-sharing the zero power strategy and the optimal operating point, i.e., the SNR that
maximizes S(SNR ), which is approximately at 0dB. We note that the above derivation is
equivalent to applying the result of Verdi on the capacity per unit cost [33] for the class of
inflated lattice strategies. The technique of [33] also relies on “time-sharing” between the
zero strategy (symbol) and an optimal strategy (symbol). The divergenece to SNR ratio in
[33] reduces to the ratio S(SNR). For lower bounds for the achievable transmision rates at
low SNR, when the interference is Gaussian of finite variance, we refer the reader to [24].

Having seen that inflated lattice strategies are preferable to ordinary lattice strategies
(corresponding to a = 1), we may attempt a further generalization by using some nonlinear
characteristic function instead of as. Let g(-) be an antisymmetric function, i.e, g(—z) =
—g(z), as well as satisfying 0 < g(r) < x. Let § > 0 be such that F¢*(U) = Px where

5Tt turns out that the improvement in mutual information possible using an optimal choice of o instead
of ay sk is negligible when time-sharing is taken into account (the convex envelope in (17)).
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Figure 8: Generalized lattice strategy: to(s) = —g(s mod 0) with ; fng g*(s)ds = Px and
A =2g(6/2).

U ~ Unif(—0/2,6/2). The transmision scheme would then take the form:

e Transmitter: For any v € [—§/2,6/2), the encoder sends:

z=—g(s+u+v mod §). (84)
e Receiver: The receiver computes
Yy =y +u mod A, (85)
where A = 2¢(6/2).

Figure 8 depicts such generalized strategies. In effect, we consider general strategies as in
Section 3.2, but restrict attention to periodic functions. The function g(-) therefore allows
us some freedom to “shape” the self noise. Thus far, however, the attempts of the authors

as well as of others [26] have not been successful to improve with such generalized lattice
strategies upon the results obtained using regular inflated lattice strategies.

4 Lattice Strategies for Finite Anticipation Side Infor-
mation

4.1 Rates and capacity

We can link our results for the causal setting to Costa’s noncausal dirty-paper channel by
allowing the encoder to anticipate k states ahead. Thus k£ = 1 corresponds to the dirty-tape
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channel while & — oo corresponds to the dirty-paper channel. We obtain achievable rates
for transmission with anticipation of order k. For Gaussian noise /N, when k goes to infinity
the corresponding rate will equal the no interference capacity, in agreement with the result
of Costa [9]. The results in this section (in their preliminary version [14]) were the basis for
the nested lattice binning schemes which were developed for the dirty-paper channel in [41].

It is important to note that for 1 < £ < oo, we derive achievable rates but without a
converse. The reason for this is two-fold: (i) we restrict attention to lattice strategies, which
as we already saw in the k = 1 case are not necessarily optimal for general SNR and/or
general noise; (ii) optimum coding with finite anticipation may also take advantage of past
interference samples, while we consider schemes that operate only on blocks of length k. As
a consequence, we also do not make use of the Gelfand-Pinsker capacity formula (11), but
rather use k-dimensional Shannon strategies, i.e., functions of the form x = t(s).

We generalize the inflated lattice encoding scheme of Section 3 by employing a lattice
vector quantizer (4 (+) instead of a scalar one and also having a vector dither U ~ Unif (V)
where V), is the basic Voronoi region of the lattice A having a second moment Px. The
transmission scheme is given by:

e Transmitter: For any v € V), the encoder sends:
x =[v—as—u] mod A (86)
where x mod A is defined as x — Q4 (x).
e Recewver: The receiver computes

y' = [ay + u] mod A. (87)
The resulting channel is a modulo-A additive noise channel described by the following lemma:

Lemma 7 (Inflated lattice lemma: vector case) The channel defined by (1),(86) and
(87) satisfies
Y'=V + N mod A. (88)
with
N = [(1 —a)U+ ozN] mod A. (89)
where U is a random variable distributed uniformly over the Voronoi region of A and
x mod A is defined as x — Qx(x).

The proof is the same as that of Lemma 6, replacing all scalars with their vector counterparts.
We refer to this derived channel as a Modulo Lattice Additive Noise (MLAN) channel. The
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capacity of the MLAN channel is achieved by V' ~ Unif(V), and is given by

Chr, = %I(V;Y) (90)
1 , 1 ,

= Zh(Y') = Zh(N) (91)

= L loa(Px/G(A)) — Th(N) (92)

Since U and N are uncorrelated and E{U} = 0, we have
1

B (Il —a)U+aN|?] = (1-a)*Px+a’Py. (93)
The minimizing o (the MMSE or “Wiener” coefficient) is o = PXI?PN and we obtain
1 Py Px
“E[|1-a)U+aN|?] = —- 4
FE[I0—0)U+oN|?] = 5 (04)
= aPy. (95)

Since for a given second moment a Gaussian random vector has the greatest entropy [10] it

follows that
Py Px )

h(N') < _SNX
(N) < Py 4 Px

h((1 = @)U + aN) < log (27re (96)

1
k k
We thus have,

Theorem 3 For any noise N and arbitrary interference S, the capacity of the MLAN chan-
nel (1) satisfies

1 Px 1
> = +=2)—= T _
Ch, 5 log(l ) 5 log 2meG(A) (97)

By taking a sequence of lattices such that G(A;) — 5= (see [39]), we may approach the
interference free capacity arbitrarily closely for Gaussian N. Therefore for Gaussian noise as
k — oo there is no rate loss at all. This agrees with the results of [9]. Note that this result
holds at any SNR. The encoding scheme is shown in Figure 9.

It is interesting to note that while in general, for any dimension £, the input maximizing
the mutual information of the MLAN channel is uniquely the uniform input V ~ Unif(V),
this is not the case as the dimension £ — oc. In fact, for any 14?215}1 < v <1, an input
V ~ Unif(yV), will also be asymptotically capacity achieving. This follows from the fact
that for any such input the output Y’ in (87) will be nearly uniform. A similar result holds
for Gaussian inputs V' ~ N (vyPx). We refer the reader to [19] Section 2.5 for a discussion of

the implications of this fact.
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Figure 9: Encoding and decoding scheme for the dirty-paper channel.

We also note that similarly to the treatment of Section 3, in the limit of high SNR the
capacity for any noise IV, not necessarily Gaussian, is

1
grewsal = - log(2mePx) — h(N) = o(1) (98)

where o(1) — 0 as Px — oc. Thus, in the high SNR regime for general noise N the
interference S does not cause rate loss, irrespective of its severeness.

4.2 Implications for the no interference case

The MLAN channel transformation is oblivious, due to the dither, to the characteristics of
the interference S. Thus, we may apply the transformation even in the interference free
case, i.e., in the case of an AWGN channels. It turns out that this has some nontrivial
implications.

Forney et al. [20] introduced a mod-A channel transformation for the AWGN and showed
that at high SNR, the error exponent of the resulting channel is lower bounded by the
Poltyrev exponent. They also proposed strutured coset coding schemes, allowing to benefit
from the group symmetry of the mod-A channel.

The MLAN transformation as proposed in this work generalizes the approach of [20] by
incorporating MMSE scaling and by introducing dithering. This allows us to transform the
power-constrained AWGN channel into an unconstrained MLAN channel, having asymptoti-
cally (in dimension) the same capacity as the original channel at any SNR. This insight led to
the work in [17] where lattice codes are used for coding for the AWGN channel. Conversely,
since the starting point for the derivation of the results of [17] is the MLAN channel they
equally apply to the dirty-paper channel. In particular, it follows from [17] that the error
exponent of the dirty-paper channel is lower bounded by the Poltyrev exponent ® at any
SNR.

6In fact, a recent result by Liu et al. [30] shows that the random coding error exponent of the MLAN
channel (but with a # ammse) in fact is equal to that of the original AWGN channel. This implies that at
rates sufficiently close to capacity, the error exponent of the dirty-paper channel equals that of an AWGN
channel (at the same SNR).
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4.3 Arbitrarily varying interference

We note that while we assumed that S isi.i.d. in Theorem 1, this assumption is not necessary
for the universal interference cancelling scheme of Figure 4 which is virtually independent of
the statistics of S. However, unlike the results of the previous sections, the dither is essential
now to guarantee the achievability of these rates and cannot be regarded as an analytic tool.
We modify Theorem 1 for the case of arbitrary interference as follows.

Theorem 4 (causal case) Therandomized code capacity of the causal SI channel (1) with
arbitrarily varying interference sequence {s;} is equal to the worst-case capacity C*(Px) of

(18).

Likewise, for the noncausal case we may use the lattice transmission scheme of Sec-
tion 4. Thus, equation (97) holds for any interference sequence, even an arbitrarily varying
one. In particular, for Gaussian N, the effect of any interference known at the transmitter
noncausally can be canceled completely, with no power loss.

Theorem 5 (noncausal case) The randomized code capacity of the noncausal SI channel
(1) with arbitrarily interference sequence {s;} and Gaussian i.i.d. noise N is equal to the

zero-interference capacity %log (1 + % )

We note that the fact that the result of Costa does not depend on the interference being
Gaussian was also recognized by Cohen and Lapidoth [7, 6]. They showed that in the
noncausal case with ergodic Gaussian noise N, no loss in capacity is incurred by any ergodic
interference S known to the transmitter. Although the arbitrarily varying interference case
treated here is more general, it necessitates common randomness which is not necessary in
the ergodic interference case.

5 Summary and Extensions

We have presented a structured transmission scheme for the generalized dirty-paper channel
model. Our treatment encompasses both the causal Shannon setting and the noncausal
Gelfand-Pinsker setting. For the Shannon setting, an explicit capacity formula is given for
the first time, albeit only for the asymptotic case of strong interference. When the intereferece
is not as severe, performance may be improved and this calls for futher research. For the
Gelfand-Pinsker setting, we generalized the results of Costa to arbitrary interference. The
main features of the proposed schemes are lattice strategies, MMSE estimation and dithering.

The results presented may be extended in many directions. We briefly outline two gen-
eralizations. We first present a capacity theorem analogous to Theorem 1 for the noncausal
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case. This is an extension of a result presented in [8] to the case of a continuous alphabet.
Similarly to (13), define the worst interference capacity of the dirty-paper channel as

Cncausal,worst(PX) — Hsl,f C«ncausal(PX’ S) (99)

Let ~
C**(P) = upper convex envelope{ C(P) } (100)

where

C(P) = sup {h(V) — (V) +V + N)},
V,t(v)

and where the supremum is over all continuous random variables V' which are independent,
of N, and all functions ¢(v) such that E{¢t(V)?} < P.

Proposition 1 (noncausal worst-case capacity)

Cncausal,worst(PX) = O** (PX) )

Since the derivation in [8] is for a finite alphabet, for completeness we include the proof in
the Appendix. Note that C**(P) reduces to C}(P) of the causal case in (17) if we substitute
a uniformly distributed V. Achievability of 1/2log(1 4+ Px/Py) for Gaussian N can be seen

by substituting V' ~ N(0, Px/a?) and t(v) = —awv , with o = lezi(PN'

We next extend the results of Section 3.5 to more general additive noise channels with
side information at the transmitter than the channel model (1). Consider an additive noise
channel

YV =X+5"+Zs, (101)

where S’ is independent of the pair (S, Zs). Here S’ is an interference term, and the noise Z
is dependent on S. We assume that the double side-information (S’,.S) is available causally
to the transmitter, so X depends on (S’,S) but is conditionally independent of Zg given S.
In [15], the case of a modulo additive noise channel (with no constraints) and with S’ = 0
was considered.

Let 2(S) be the optimal estimator of Z given S in an entropy sense. That is,
z(-) = arg min h([Z —t(9))]). (102)
t:S—X

We assume worst case interference S’ as above. We furthermore assume high SNR in the
sense that for any s we have Py > F(Z?|S = s). We have the following result.

Proposition 2 (additive interference and state-dependent noise) The (causal) ca-
pacity of the channel (101) under high SNR and strong interference conditions satisfies

Comsal(py) = %log 12Py — h(Z — 5(S)) + o(1) (103)

where o(1) — 0 as Px — oo.
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Finally, an analysis of the error exponent is possible using the results of [16].
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6 Appendix

A. Proof of Lemma 4

We show that
limsuph(S+ X + N) —logL <0, (104)

L—o0

where S ~ Unif(—L/2,L/2), (S, X) are independent of N, and where EX? < Px. Let
S1 ~ Unif(—1/2,1/2). It follows that we may rewrite (104) as

limsuph (S; + (X + N)/L) <0. (105)

L—oo

Denote S;, = S1 + €, with ¢, = (X + N)/L. Now let S} be a Gaussian random variable
having the same variance as that of Sy, i.e., S; ~ N(0,1/12) and let S} be a Gaussian random
variable having the same variance as that of Sy, i.e., S; ~ N(0, Var (S; + £ X 4+ £N)). We
have

h(S1) = h(S7) = D(5:]|57) (106)
and

h(S1) = h(S1) — D(SLlISL) (107)
where D(-||-) denotes Kullback-Leibler divergence (see derivation of maximum entropy prop-
erty in [10]). Combining (106) and (107) we obtain

h(St) = h(S1) = h(St) = h(ST) = D(SL||St) + D(S1[|57)- (108)

Now since EX? and EN? are bounded,we have limy,_,,, E€2 = 0. It follows that S; — S; and
S} — ST as L — oo in the M.S. sense and in distribution. Hence, by the lower semicontinuity
of the Kullback-Leibler divergence [11, 29] we have

lim inf D(S.|[S7) > D(51][S7). (109)
— 00
Clearly, since Var (S}) — Var (S7), we have limy,_,, [h(S}) — h(S7)] = 0. Along with (109)
this implies that

limsup [A(SL) — h(S1)] <0 (110)

L—oo

which since h(S;) = 0 implies (105) and thus the lemma is proved.
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B. Proof of Lemma 5

In this section, we prove that

Cu(Px) > h(U) — Huin(U, Px) — h(N) (111)
> %10g(12PX) — h(N) — log (1 4 1?3 X) . (112)
and also that for any a > 0
Cr(Px) < h(U) = Huw(U,[V/Px + a/2]*) = R(N) + I(N; N + Z,) (113)
< %log 12 ( Px + %)2 — h(N) + I(N;N + Z,) (114)

where Z, is independent of N and is uniformly distributed over (—a/2,+a/2). To that end
we first note that (see [22])

log (%) < Huin(U, D) < log <1 + \/1L2_D) (115)

which justifies the second step in the bounds, i.e., equations (112) and (114).

We now turn to prove (111). Let the quantizer @Q(-) achieve (42) up to €, i.e., E(Q(U) —
U)? < D and H(Q(U)) = Huin(U, D) + ¢. We have

HQU)) > I(QU);QU)+N) (116)
> f:f(rﬁggeTI(f(U);f(U)+N) (117)
= f:f(xqgl_%ETh(f(U)qLN)—h(N) (118)
= Amin(L, Px) — h(N). (119)

Combining (119) and the definition of Cy(-) in (15), we obtain (111).

We next prove (113). Let Q.(-) be a uniform quantizer with step a, and let Z ~
Unif(—%,4%). Since

272

Qu(f(U)+ %)= Z & f(U) < fU)+ N (120)

forms a Markov chain for any value Z = z, by the data processing lemma for mutual
information [10] we have

I(f(U); fU)+N) =z IQa(f(U)+ 2); fU) + N|Z) (121)
= H(Q.(f(U)+ 2)|2) - HQu.(f(U) + 2)|Z, f(U) + N). (122)

For any value of Z, the error Q,(f(U)+ Z) — Z — S of the “dithered” quantizer with respect
to U is at most | f(U) — U| + a/2, thus the distortion is at most (v/Px + a/2)?, so the first
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term above is lower bounded by Hp, (U, (v Px + a/2)?). As for the second term , by the
properties of entropy coded dithered quantization (ECDQ) [40] it can be written as

HQ.(fU)+ 2)|Z, fU)+ N) = I(f(U); f(U) = Z|fU) + N) (123)
= I(N;N+Z|f(U)+ N) (124)
< I(N;N + 2). (125)

Using the L.h.s. of (115) the proof is complete.

6.1 C. Proof of Proposition 1

Note first that the upper convex envelop operation in (100) can be replaced by conditioning
on a “time sharing” variable, while letting the function ¢(-) depend on this variable, i.e.,

C*(P)= sup {h(V\W) — RV, W)+ V + N|W)}, (126)

V,Wiit(v,w)

where the supremum is over all continuous random variables V' and abstract random vari-
ables W such that (V,W) are independent of N, and over all functions ¢(v,w) such that
E{t(V,W)?} < P. We next show that for any random interference S

Cncausal(PX’ S) Z C**(PX) (127)

By the Gelfand-Pinsker formula (11), the capacity of the channel Y = X + S + N with
noncausal side information S at the transmitter is lower bounded by I(T;Y) — I(T; S), for
any pair of random variables X, T such that S, X, T are independent of N, and F{X?} < P.
Let us make the following specific choice”: T = (S—V, W) and X = t(V,W) = t/(S, T), where
V, W, t(v, w) achieve the maximum in (126), and where (V, W) are statistically independent
of (S, N). By the definition of C**(P) above, we have Et'(S,T)? = Et(V,W)? < P. We also
have

I(T;Y)-1(T;S) = I(S=-V,W;t(V,W)+ S+ N)—-I1I(S-V,W;S) (128)
> I(S=V;S+t(V,W)+ N|W)—-I(S—-V;S|W) (129)
—h(S=VI[S+t(V,W)+ N, W)+ h(S - V|S,W) (130)

h(VIW) = h(=V —t(V,W) = N|S +t(V,W)+ N, W) (131)

> h(VIW)—=h(V +t(V,W)+ NW) (132)

= C™(Px). (133)

where the first inequality follows from the nonnegativity of the mutual information, after
using the chain rule and substituting I(W; S) = 0; the second inequality follows since taking

"Here we view T as an abstract random variable.

28



out conditions increases the conditional differential entropy; and the last equality follows
from our specific choice of V, W and ¢. This establishes (127). We turn to prove the converse
part. We shall show that for S uniform over (—L/2, L/2), we have

creensal(py §) < C**(Px) + or(1) (134)

where or,(1) goes to zero as L goes to infinity. We restrict attention to the case where N has
finite differential entropy, otherwise both capacities in Proposition 1 go to infinity. For any
admissible 7', if I(T;Y) — I(T; S) > 0 then we have

I(T,Y) - I(T;S) = {h(S\T) - h(Y\T)} + {h(Y) - h(S)}. (135)

This expansion is possible since h(S|T) must be finite. To see why, note that I(T;Y) is
finite because h(Y|T) > h(N) is finite and A(Y") is finite; thus, if A(S|T) did not exist (or
was minus infinity), then I(7T'; S) would be infinite, and I(T;Y) — I(T’; S) would be negative.
Now, from the alternative definition for C**(P) in (126), we see that the expression in the
first brackets above is upper bounded by C**(Px) (view S and 7T as possible choices for V'
and W, respectively), while by Lemma 4 the second expression in brackets above goes to
zero as L — oo. This establishes (134), and together with (127) completes the proof of the
proposition.
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