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Abstract

Costa’s celebrated “writing on dirty paper” (WDP) shows that the power-
constrained channel Y = X + S + Z, with Gaussian Z, has the same capacity
as the standard AWGN channel Y = X + Z, provided that the “interference” S
(no matter how strong it is) is known at the transmitter. While this ability for
perfect interference cancellation is very appealing, it relies heavily on the Gaus-
sianity of the (unknown) noise Z. We construct an example of “bad” noise for
writing on dirty paper, namely, “difference set noise” (DSN). If the interference S
is strong, then DSN limits the WDP capacity to at most 2 bits. At the same time,
the capacity of the zero-interference channel Y = X + Z, where Z is DSN, grows
without bound as the input constraint grows. Thus almost 100% of the available
capacity is lost in WDP in the presence of DSN. These results are based on the
“entropy amplification property” of DSN, and they shed light on the potentials and
limitations of writing on dirty paper.

1 Introduction

In Costa’s writing on dirty paper (WDP) [1], a channel encounters two independent
sources of additive white Gaussian noise. One source, Sn, is known to the transmitter
non-causally and will be referred to as interference. The other source, Zn, is not directly
known to any part of the system and will be called simply noise. The input, xn, can
depend on the interference sequence Sn and nR independent information bits and must
satisfy a power constraint,

∑
x2

i ≤ nP . Finally, the output is Y n = xn + Sn + Zn.
Costa showed that the capacity (highest achievable R) of WDP is the same as if there
was no interference, i.e., 1

2
log
(
1 + P

N

)
bits/channel use,1 where N is the variance of each

unknown noise sample Zi.
An important property of WDP is that the capacity does not depend on the variance

of the interference. Thus, the capacity would be the same if there were no interference,
or, equivalently, if the interference were also known at the receiver. This “interference
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cancellation property” is particularly interesting as unlike the receiver, the power con-
strained transmitter cannot simply subtract the interference. Extensions of Costa’s result
show that the interference cancellation property also holds more generally, in that the
capacity of WDP does not depend on the distribution of the interference (i.e., it can be
non-Gaussian or even arbitrarily varying) if [2, 3] and only if2 [5] the noise is Gaussian.
Furthermore, the difference between WDP capacity and the zero-interference capacity is
at most 1/2 bit/channel use provided only that E[Z2

i ] ≤ P (i.e., the noise can be general
but must be less powerful than the input) [6]. In the general framework, we refer to
the difference between WDP capacity and zero-interference capacity as the loss resulting
from the interference.

These results may give the impression that having side information (the interference)
at the transmitter can be (almost) as efficient as having it at the receiver. In fact,
the recent popularity of coding techniques for WDP, the related Gaussian Wyner-Ziv
problem, and general algebraic binning for network communications settings heavily rely
on small loss. However, in the general setting of channels with side information (SI), there
may be a large gap between the transmitter-SI capacity [7, 8] and the receiver-SI capacity
(e.g., [9]). Examples of a large gap can be generated using a discrete modulo-additive
noise channel with state-dependent noise, i.e., Y = X + ZS, where ZS is conditionally
independent of X given S [10]. Note that in such channels the gap can be positive (and
large) even without an input constraint.

The objective of this work is to show that in the basic input-constrained additive
state setting, Y = X +S +Z, the encoder is sometimes unable to use the SI efficiently if
the receiver does not have access to it, i.e., the loss can be very large. In contrast to the
conditions for zero or small loss, the noise must be non-Gaussian and more “powerful”
than the input. Furthermore, the noise cannot be periodic, since periodicities can be
overcome using the lattice-strategies that are successful in the Gaussian case. Thus, we
consider strong interference (so that its knowledge at the receiver has the most benefit)
and irregular noise (i.e., its distribution is spread in a highly non-uniform and non-
periodic manner over the space). In a previous paper [11], we constructed such a noise
distribution and demonstrated that the loss in causal WDP (also known as “writing on
dirty tape”) is at least one-half of the zero-interference capacity.

In this paper, we strengthen the results of [11] in two ways. First, we extend the
analysis to non-causal WDP. Second, we find a family of noise distributions for which
the WDP capacity is bounded by a small constant (2 bits/channel use), while the zero-
interference capacity can be arbitrarily large.

Our main tool in the new results is the identification of structured irregular noise,
namely, difference set noise. A difference set is an algebraic notion, describing a subset
D of a group G for which D∩ (D+g) has the same number of elements for all g 6= 0. We
focus on planar difference sets, i.e., those with |D ∩ (D + g)| = 1, and refer to a uniform
distribution over such a set as difference set noise (DSN). In Section 3, we identify the
“entropy amplification property” of additive DSN. In Section 4, we use this property to
separate the effects of the different set noise and the input distribution, which allows us
to derive our main results. We begin in Section 2 by precisely defining the problem and
giving a general formula for WDP capacity with strong interference.

2For a large class of transmitter strategies that includes nested lattices [3] and quantization index
modulation [4].



2 Capacity with Strong Interference

We consider a discrete version of WDP in which addition is done modulo some given
integer L, with results in the alphabet AL = {1, . . . , L}.3 The interference Sn and the
noise Zn are both independent, identically distributed (i.i.d.) sequences with respective
marginal distributions, PS and PZ . We focus on the case of strong interference in which
the distribution PS is uniform on AL. Instead of a power constraint, we require that each
input symbol xi be drawn from some constraint set C ⊂ AL.

A WDP system consists of two components. The first is a rate-R blocklength-n
encoder,

fn : {1, . . . , 2nR} × An
L 7→ Cn, (1)

which takes a message M consisting of nR bits and the interference sequence Sn and
creates the constrained input sequence as Xn = fn(M, Sn). The other component is a
decoder,

gn : An
L 7→ {1, . . . , 2nR}, (2)

which estimates the message from the output sequence, M̂ = gn(Y n). The probability of
error is measured by

Pe = Pr {gn (fn(M, Sn) + Sn + Zn) 6= M} , (3)

where the message M is uniformly distributed on {1, . . . , 2nR} and is independent of Sn

and Zn. A rate R is achievable if there exists a sequence of rate-R encoders and decoders
such that the probability of error can be made as small as desired. The capacity is the
supremum of all achievable rates and is written CWDP, with implicit dependence on L,
C, PZ and PS.

A comparison zero-interference (ZI) system uses the same noise distribution PZ and
input constraint set C, but the interference does not play a role. That is, given the
(constrained) output sequence xn, the output is given by Y n = xn + Zn. Thus, for this
system, the encoder is of the form Xn = fn(M) and the probability of error is measured
as Pe = Pr{gn(fn(M) + Zn) 6= M}. The capacity is defined as above and is written CZI,
with implicit dependence on L, C, and PZ .

The general formula for CWDP is given in [8], but the assumption of strong interference
allows us to derive a simpler expression. The proof of this lemma will be given in
upcoming work [12].

Lemma 1. For S uniformly distributed on AL, i.e., strong interference,

CWDP = sup
PV ,Q(·)

H(V )−H(Q(V ) + Z), (4)

where the maximization is over distributions PV on AL and over quantizers with Q(v)−
v ∈ C for all v ∈ AL.

If the side information can only be used causally, then the capacity is the same as (4),
except that PV is constrained to be uniform over AL [3]. The zero-interference capacity
is given by (see, e.g., [13]),

CZI = sup
PX

H(X + Z)−H(Z), (5)

where the maximization is over distributions PX on C.

3Addition throughout the rest of the paper will be done mod L with results in AL.



3 Difference Set Noise

In this section, we first define different sets and show that arbitrarily large ones exist.
We next consider noise uniformly distributed on difference sets and show that adding
such noise amplifies entropy as much as possible for a large class of input distributions.

A planar difference set D on the group AL under addition modulo L satisfies

|D ∩ (D + g)| = 1, (6)

for all non-zero g in AL, where D +g = {d+g : d ∈ D}. In order to use difference sets in
a non-trivial way, it is important that arbitrarily large ones exists. Indeed, the following
lemma demonstrates that this is the case; see, e.g., [14] for a proof.

Lemma 2. For any prime p and integer m, let α = pm + 1 and L = α(α − 1) + 1. A
planar difference set D with |D| = α exists on the group AL under addition modulo L.

Not only do difference sets of size pm +1 exist, but such a D can be easily constructed
from any primitive cubic polynomial in the Galois field F(pm).

We refer to the noise distribution PZ that is uniform over a planar difference set as
difference set noise (DSN). This noise is certainly non-periodic from the main property (6)
of difference sets. Furthermore, we can make DSN “powerful” relative to the constraint
set C since arbitrarily large difference sets exist. Thus, DSN is a good prospect for
creating a large loss. In order to prove that the loss is large, we shall first show that
additive DSN amplifies entropy as much as possible as long as the input support is smaller
than the support of the DSN. The following lemma is proved in Appendix A.

Lemma 3 (Entropy Amplification Property). Consider difference set noise Z of
size α. For any random variable X with support β ≤ α,

H(X) + H(Z)− β − 1

α
≤ H(X + Z) ≤ H(X) + H(Z). (7)

4 Capacity with Difference Set Noise

In this section, we bound the WDP and ZI capacities in the presence of strong interference
and DSN. We use the general capacity formulas introduced in Section 2 and the entropy
amplification property of DSN given in Section 3.

Theorem 1. Let PS be uniformly distributed on AL (i.e., S is strong interference) and
let PZ be uniformly distributed on a difference set D over AL (i.e., Z is difference set
noise). Then, for any constraint set C with β = |C| ≤ α = |D|,

CWDP ≤
α− 1

α
+ log

(
1 +

β

α

)
≤ 2 bits, (8)

while

CZI ≥ log β − β − 1

α
≥ log β − 1 bits. (9)

By Lemma 2, we can choose α, and hence β, arbitrarily large. Thus, the loss can
be arbitrarily large. Furthermore, since log β is an upper bound on any capacity with
a constraint set C of size β, we see that the loss can approach 100% of the available
capacity.



Proof. The bound on the ZI capacity follows directly from (5) and Lemma 3, by making
the input distribution PX uniform over the constraint set. In this case,

H(X + Z)−H(Z) ≥ H(X) + H(Z)− β − 1

α
−H(Z) (10)

= log β − β − 1

α
. (11)

We now turn to the WDP capacity with strong interference (4) and provide a bound
on H(V ) − H(Q(V ) + Z) for any allowable distribution PV and quantizer Q(·). We
write the outputs of the quantizer as Q = {q1, . . . , qm}. In order to use the entropy
amplification property, we consider a further quantization K(·) of the space Q. This
quantizer groups α points of Q together according to

K(qi) =

⌊
π(i)

α

⌋
, (12)

where π(·) is a permutation of {1, . . . ,m} that we specify below. We refer to the groupings
formed by K(·) as K-bins, e.g., the set K−1(1) is the first K-bin. If we write Q for Q(V )
and K for K(Q(V )), we see that

H(Q + Z) = H(Q + Z|K) + H(K)−H(K|Q + Z)

≥ H(Q|K) + H(Z)− α− 1

α
+ H(K)−H(K|Q + Z)

= H(Q) + H(Z)−H(K|Q + Z)− α− 1

α
. (13)

Here, the inequality follows by Lemma 3 since given K = k the support of Q is at most
α. The final equality follows since K is a deterministic function of Q. Combining (13)
with the fact that H(K|Q + Z) ≤ H(K), we observe that

H(V )−H(Q(V ) + Z) ≤ H(V |Q(V )) + H(K(Q(V )))−H(Z) +
α− 1

α
. (14)

In order to upper bound (14), let us write the probability of each quantizer output as

pi = Pr(Q = qi) (15)

and let us also define

ri =
|Q−1(qi)|

L
, (16)

which is the probability of quantizer output i if PV were uniform over AL. Consider a
permutation π(·) so that rπ(i) is a non-increasing sequence. In the sequel, we will use this
permutation in the definition of K (12). Although this choice of π(·) does not minimize
the RHS of (14),4 it will allow us to prove the desired results. With this permutation,
the first K-bin has the α largest quantization points according to the sequence r, the
second K-bin has the second α largest points according to r, and so forth. Notice that
rπ(1) (and hence each ri) is at most β

L
. This follows from the constraint that Q(v)−v ∈ C

4The minimizing choice of π(·) makes pπ(i) a non-increasing sequence. The resulting distribution on
K majorizes all other possible PK , and hence H(K) is minimized [15].



for all v, and thus each v ∈ Q−1(q) corresponds to exactly one of the β c’s in C. Let us
next define

pK-mean
i =

1

α

∑
i′:K(qi′ )=K(qi)

pi (17)

and
rK-max
i = max

i′:K(qi′ )=K(qi)
ri. (18)

That is, pK-mean
i is the average of the probabilities of the quantization points in the same

K-bin as qi. Similarly, rK-max
i is the maximum of the r-values in the same K-bin as qi.

We can compute the distribution of K(Q(V )) as

Pr(K(Q(V )) = k) =
∑

i:qi∈K−1(k)

pi (19)

=
∑

i:qi∈K−1(k)

pK-mean
i (20)

= αpK-mean
i , ∀i : qi ∈ K−1(k), (21)

where the last equality follows since pK-mean
i is constant for all qi in the same K-bin. It

follows that

H(K(Q(V ))) =
∑

i

pK-mean
i log

1

αpK-mean
i

. (22)

We can also upper bound H(V |Q(V )) using

H(V |Q(V )) ≤
∑

i

pi log Lri (23)

≤
∑

i

pi log LrK-max
i (24)

=
∑

i

pK-mean
i log LrK-max

i . (25)

The first bound follows since given Q(V ) = qi, the conditional distribution that maxi-
mizes the entropy is uniform over the Lri values in Q−1(qi). The second bound follows
since ri ≤ rK-max

i for all i. The equality follows as in (20) since rK-max
i is constant over

any K-bin. Combining the previous two results, we see that

H(V |Q(V )) + H(K(Q(V )))− log α

≤
∑

i

pK-mean
i log

rK-max
i

pK-mean
i

+ log
L

α2
(26)

= log
∑

i

rK-max
i −D(pK-mean||rK-max/

∑
i

rK-max
i ) + log

L

α2
(27)

≤ log
∑

i

rK-max
i + log

L

α2
(28)

≤ log

(
αβ

L
+ 1

)
+ log

L

α2
(29)

≤ log

(
1 +

α

β

)
. (30)



Here, (28) follows since the relative entropy term is non-negative and (29) follows since

rK-max
π(i) ≤

{
β
L

if 1 ≤ i ≤ α

rπ(i−α) i > α
(31)

and since
∑

i ri = 1. The bound on the WDP capacity follows by combining (4), (14)
and (30).

5 Discussion

In this paper, we introduced difference set noise (DSN), and we demonstrated that it
contains the necessary irregularity to produce large loss for writing on dirty paper (WDP).
There are several other interesting applications of difference sets and DSN. The first is to
consider the role of DSN in the source coding with side information (Wyner-Ziv) problem,
which is often considered the dual of WDP. In this problem, DSN can also be used to
produce arbitrarily large loss. Another use of difference sets is in constructing expander
graphs. For example, consider the graph G ⊂ AL ×AL, in which (x, y) ∈ G if y− x ∈ D.
Then, every input is connected to α outputs and every set of β ≤ α inputs is connected
to at least βα/2 outputs. Finally, the entropy amplification property of DSN given in
Lemma 3 (or a generalized version to larger input support) could be used to guarantee
output entropy in a variety of situations.

Our main result concerned a discrete version of WDP with a hard input constraint.
We would like to extend these results to continuous alphabets and average input con-
straints. One analogous situation with continuous alphabets (but still with a hard input
constraint) would be to let the interference S be a Unif([0, 1]) random variable and let
the noise Z be DSN divided by L plus a Unif([0, 1/L]) random variable. Then, for a peak
input constraint, x ≤ β/L, the capacities should behave similarly to those in Theorem 1.
Since β ≤ α and L ≈ α2, we see explicitly that the “signal to noise ratio” must be small
in order for the loss to be large, which agrees with the results of [6].

A Proof of Entropy Amplification Property

In this section, we prove the entropy amplification property of difference set noise (DSN).
Recall that DSN consists of a random variable Z that is uniformly distributed over a
planar difference set D over AL with addition modulo L. We also consider an arbitrary
set Ax = {x1, . . . , xβ} ⊂ AL with the only constraint that β ≤ α = |D|. We develop a
lower bound on the entropy of the output of the additive DSN channel, H(X + Z), for
any input distribution PX with support only on Ax. This lower bound will be within a
constant of the upper bound

H(X + Z) ≤ H(X) + H(Z), (32)

which is achieved only if x + z 6= x′ + z′ for all x 6= x′ ∈ Ax and z 6= z′ ∈ D.
Let us consider an arbitrary distribution on X, which we write p = (p1, . . . , pβ) so

that Pr(X = xi) = pi. To describe the distribution of Y = X + Z, let us define the sets

Bi = xi + D, ∀1 ≤ i ≤ m. (33)



y α Pr(Y = y) α Pr(Y ′ = y)

y0 p1 + p2 + · · ·+ pn0 p2 + · · ·+ pn0

yj for 1 ≤ j ≤ n0 − 2 p1 0
zj for 2 ≤ j ≤ n0 pj p1 + pj

Table 1: Comparison of the distributions of Y and Y ′ in the proof of the entropy ampli-
fication property.

Given that X = xi, the conditional distribution of Y is uniform over the set Bi. The
unconditional distribution of Y is given by

Pr(Y = y) =

β∑
i=1

Pr(X = xi) Pr(Y = y|X = xi) =

β∑
i=1

pi

α
1{y∈Bi}. (34)

Due to the properties of difference sets and the definition of Bi in (33), these sets must
satisfy

|Bi| = α, (35)

|Bi ∩Bj| = 1, ∀i 6= j, and (36)

|∪Bi| ≤ L. (37)

Let us now minimize H(Y ) where Y has the distribution (34) and the collection of sets
{Bi} must satisfy (35), (36) and (37). This will provide a lower bound on the entropy of
Y when Z is difference set noise.

First, find a point y0 such that y0 is in at least three of the Bi’s. If there is no such
y0, then the distribution of Y already has the form (40) and we can proceed from there.
Otherwise, we can reduce the entropy of Y by changing the Bi’s as follows. Without loss
of generality, let us say that that y0 is in B1, . . . , Bn0 (but not in Bn0−1, . . . , Bβ). There
exists y1, . . . , yn0−2 ∈ B1 such that yi /∈ Bi for i 6= 1. To see this, note that at most β−n0

of the α points in B1 intersect with any other set. There also exists z2 ∈ B2, . . . , zn0 ∈ Bn0

such that zj /∈ Bi for i 6= j. Again, this follows since at most β − n0 of the α points in
the relevant Bj’s intersect with any other set. Create a set B′

1 from B1 by changing yj

to zj+2 for 0 ≤ j ≤ n0 − 2. Create sets B′
j for j ≥ 2 by copying Bj. Let Y ′ have the

distribution (34) with the sets {B′
j} instead of {Bj}. Table 1 summarizes the resulting

differences in the distributions of Y and Y ′.
In order to compare H(Y ) and H(Y ′) let us define cj = Pj/P1 for 2 ≤ j ≤ n0. With

this definition,

H(Y )−H(Y ′) =
P1

α

[
log

∏n0

j=2(1 + cj)

1 +
∑n0

j=2 cj

+

n0∑
j=2

cj log

(
1 + cj

cj

·
∑n0

j′=2 cj′

1 +
∑n0

j′=2 cj′

)]
(38)

> 0. (39)

The inequality follows since the terms in the logs are greater than 1 for positive cj. The
term in the first log of (38) is greater than 1 since the denominator contains just 2 of
the n0 positive terms in the expansion of the numerator. The term in the second log is
greater than 1 since (1 + x)/x > (1 + x + y)/(x + y) for positive x and y. Thus, every
iteration of this procedure reduces the entropy of Y .



After a finite number of iterations of the above process there will be no y0 which is in
more than two Bi’s. Notice that there must be at least one y in at least two Bi’s and that
the resulting distribution on Y is unique up to permutation. We have thus created sets
{B∗

i } under the constraints (35), (36), and (37) that minimize H(Y ). The main property
of these sets is that each y appears in at most two B∗

i ’s. The optimal distribution is thus
of the form

Pr(Y ∗ = y) =

{
pj

α
for α− β + 1 values of y for each 1 ≤ j ≤ β,

pj+pj′

α
for one y for each 1 ≤ j < j′ ≤ β.

(40)

In order to study the entropy of Y ∗, let us consider a random variable Y ∗
2 that only

contains the points y that are in two B∗
i ’s. That is,

Pr(Y ∗
2 = y) =

pj + pj′

β − 1
for one y for each 1 ≤ j < j′ ≤ β. (41)

The entropy of this random variable satisfies

H(Y ∗
2 ) ≥ H(X) + log(β − 1)− 1. (42)

To see this, we can take the convex combination of two reorderings of copies of the
distribution of X. In particular, let

a =
1

β − 1
[p1 p1 . . . p1 p2 p2 . . . p2 . . . pβ pβ . . . pβ], and (43)

b =
1

β − 1
[p2 p3 . . . pβ p1 p3 . . . pβ . . . p1 p2 . . . pβ−1]. (44)

That is, a has β−1 copies of p1, then β−1 copies of p2 and so forth. On the other hand,
b has every value pj except p1 in the first β − 1 places, then every value pj except p2 in
the second β − 1 places, and so forth. We see that H(a) = H(b) = H(X) + log(β − 1).
On the other hand, H((a + b)/2) = H(Y ∗

2 ) + 1. The inequality (42) can be seen by
combining these equalities with the inequality H((a + b)/2) ≥ (H(a) + H(b))/2 by the
concavity of entropy.

We conclude the proof of Lemma 3 by computing

H(X + Z) ≥ H(Y ∗) (45)

= log α +
α− β + 1

α
H(X) +

β − 1

α
(H(Y ∗

2 )− log(β − 1)) (46)

≥ H(Z) + H(X) +
β − 1

α
1. (47)
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