Can Structure Beat Shannon?

Lattice Codes Tell Their Story

Rami Zamir

Plenary Talk ISIT 2010 Austin, Texas

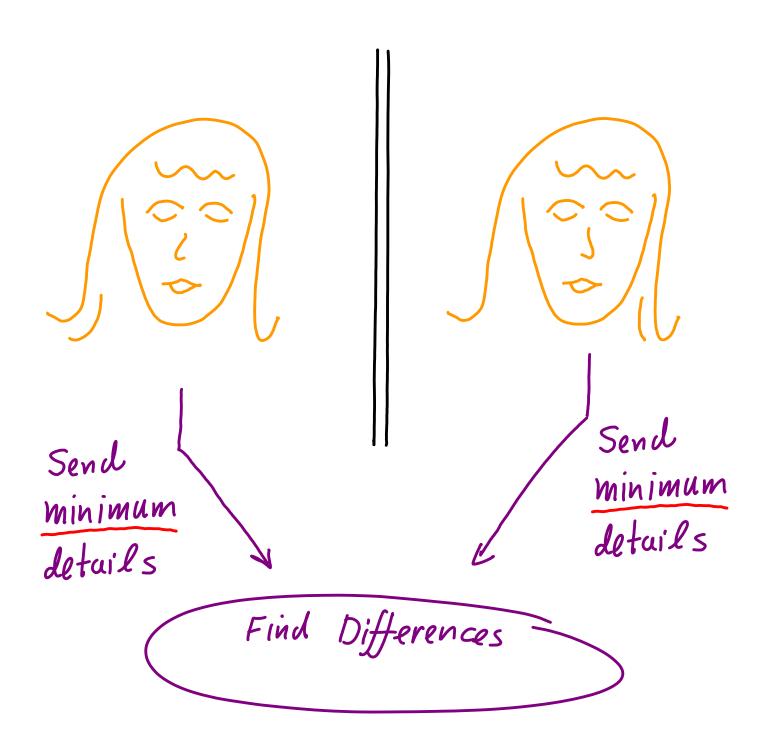
Can Structure Beat Random?

Lattice Codes Tell
Their Story

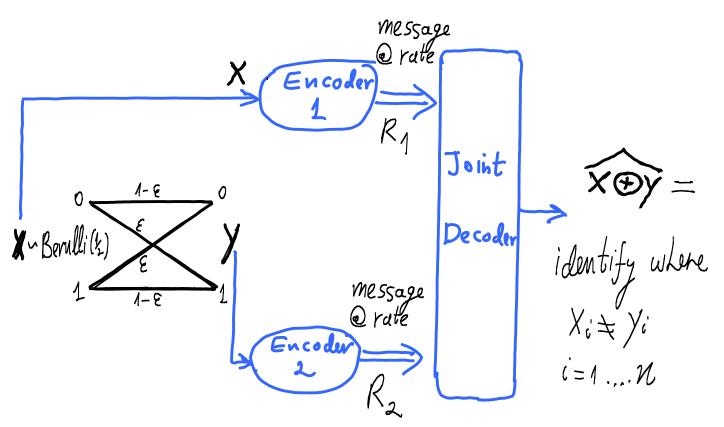
Rami Zamir

Plenary Talk ISIT 2010 Austin, Texas Find the Differences

Communicate the Differences



The Korner-Marton Problem

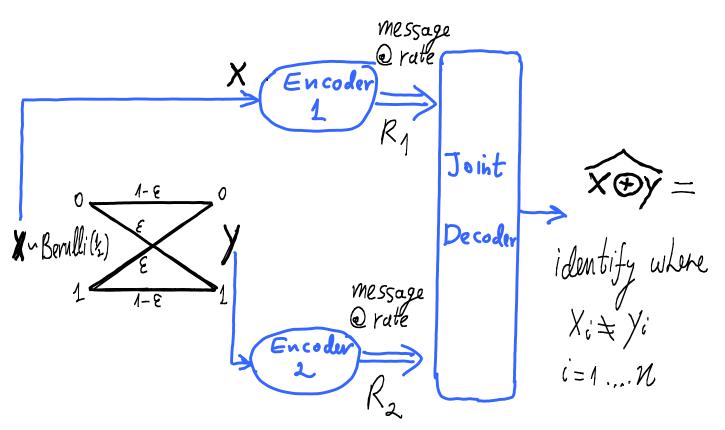


$$Z = X + y$$

compress & estimate:

$$Rate = \begin{cases} 2 & H(x) + H(y) = 1 + 1 = 2 \text{ Bit} \end{cases}$$

Korner-Marton Problem



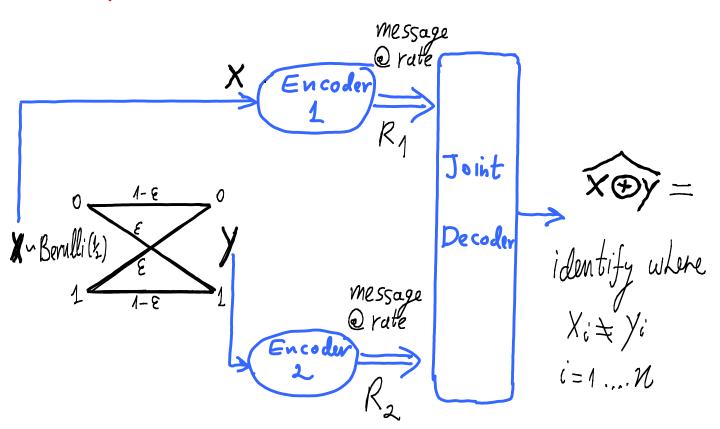
$$Z = X + Y$$

compress & estimate:

Compress & estimate:

$$H(X) + H(Y) = 1 + 1 = 2$$
 Bit
Rate = Compress well & estimate:
 $H(X, Y) = H(X) + H(Z) = 1 + H_B(E) = 1.1$ Bit

The Korner-Marton Problem



$$Z = X + y$$

compress & estimate:

The Slepian-Wolf Problem

$$R = H(X|Y) = H(Z) = H_B(\varepsilon) = 0.1 Bit$$

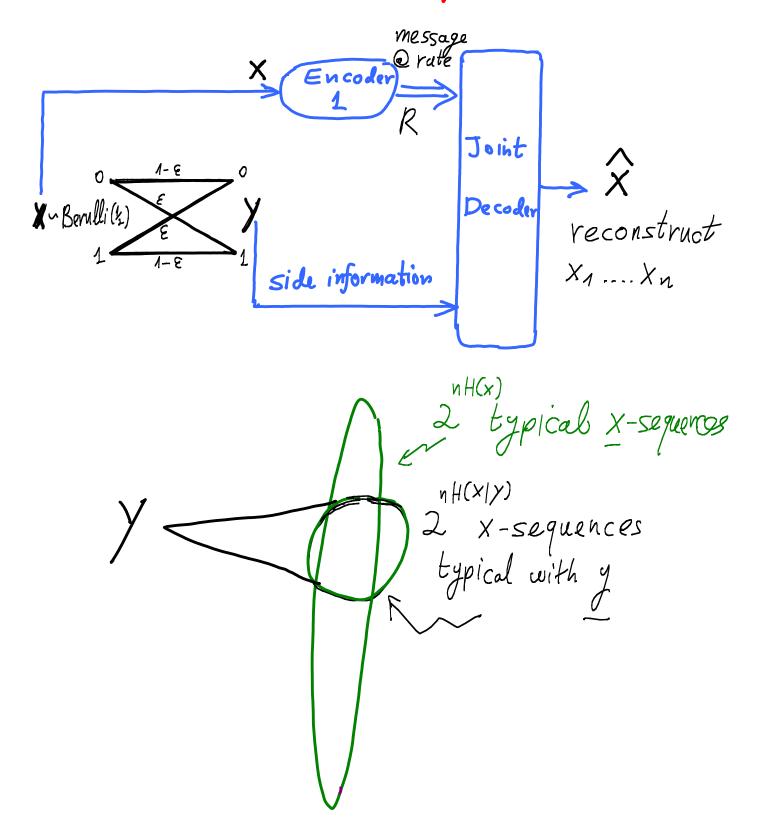
The Slepian-Wolf Problem Temprature X

Tomorrow

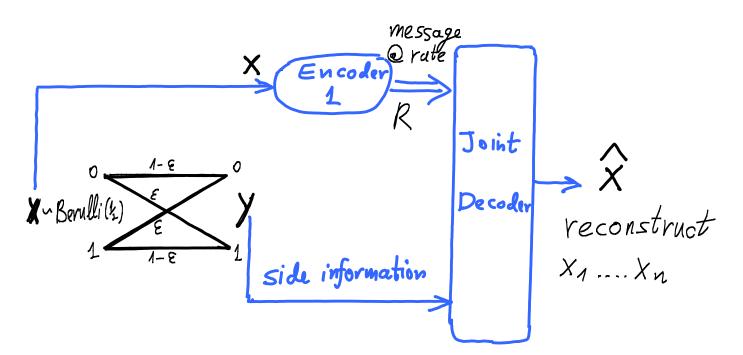
R Temprature side information
Today 170 Ttomorrow = Ttoday + 1°c

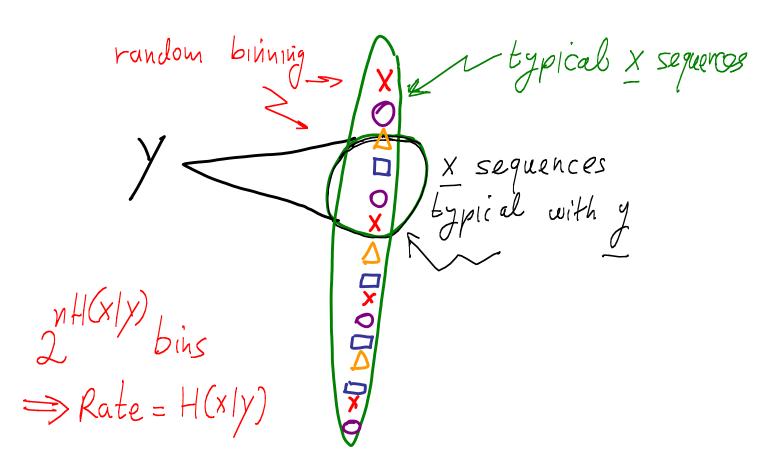
Can we send Ttomorrow Using only one bit?

The Slepian-Wolf Problem



The Slepian-Wolf Problem





Back to Korner-Marton: Solution

general properties:

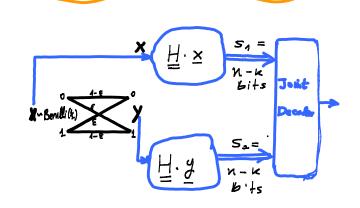
generator matrix

parity-check
$$H \cdot X = 0 \quad \text{for} \quad X \in \mathbb{C}$$

If y=XOZ, where z ~ Bernullice), then

$$Pe = Pr\{\hat{z} \neq 2\}$$

$$= tle same \ \forall \ x \in C$$



Back to Korner-Marton: Solution

general properties: K/n =

$$\begin{array}{c|c}
X & H \cdot X \\
H \cdot X & J \cdot M \cdot K \\
bits & J \cdot M \cdot K \\
 & = \int (S_1 \oplus S_2) \\
 & = \int (H \cdot (X \oplus Y)) \\
 & = \int (H \cdot Z) \\
 & = Z \quad \omega. \text{ high prob.}
\end{array}$$

Total
$$Rate = 2 \times \frac{N - K}{N} = 2 \times H_R(E) = 0.2 \text{ bits}$$

A comment by KM: best known "single letter" = SW = 1.1 bit

* Do we really need structured Codes?

How do we extend to real signals?

* How do we measure code goodness? { rate, error prob., distortion...}



Nature Knows his Way...

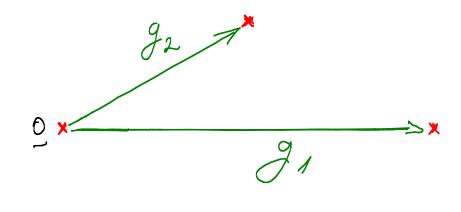
* Picture editing by Kessem Zamir

Lattice: Definition

$$\Lambda = \begin{cases}
G \cdot i & i = \text{vector of integers} \\
0, \pm 1, \pm 2, ...
\end{cases}$$
Lattice Generator Mutrix

in IR W XXK

linearity:
$$C_1, l_1 \in \Lambda$$
 \Rightarrow $l_1 + l_2 \in \Lambda$ $i \cdot l \in \Lambda$



Lattice: Definition

$$\Lambda = \begin{cases}
G \cdot i & i = \text{vector of integers} \\
0, \pm 1, \pm 2, ...
\end{cases}$$
Lattice Generator Mutrix

in IR W XXK

linearity: Cn, l, el => little 1

$$G = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

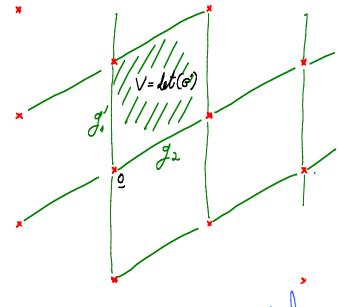
$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

$$G = \begin{pmatrix} 2 & 3 & 1 & 1 \\ 0 & 1 & 1 \end{pmatrix}$$

Lattice Partition: Quantization / Decision Regions Volume = | det (G) | paralle lopipeds $P_0 = \left\{ \propto_1 f_1 + \propto_2 f_2 : 0 \leq \propto_1, \propto_2 \leq 1 \right\}$ $(\Lambda + P_0 = \mathbb{R}^k)$

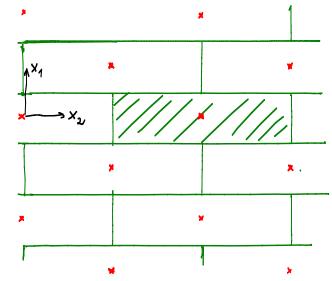
Lattice Partitions

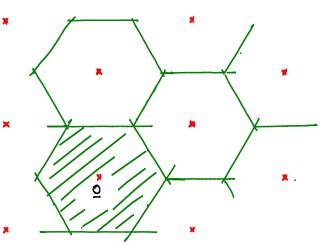


Other Basis =>
other Parallelepiped

=> Cell Volume to is
invariant of partition

Sequential tion





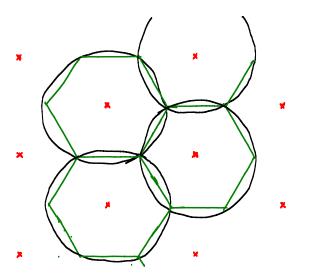
Voronoi Partition

Po={x: ||x|| = ||x-li|| } +lies

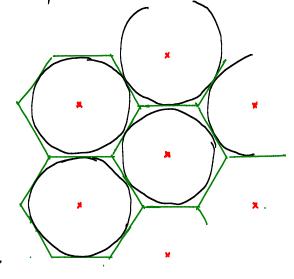
Covering, Packing, Kissing Number Alone...

Covering 12 with (few)

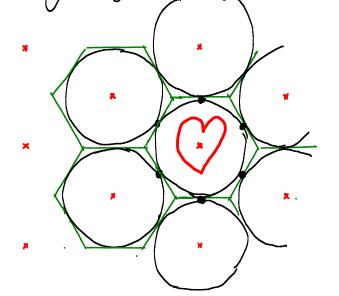
Spheres



Packing (mang) Spheres in 12k



Kissing by (Mang) Spheres



good arrangements
for quantization
and AWGN channel

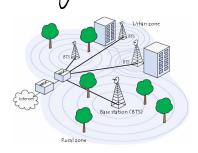
<u>Coding</u>

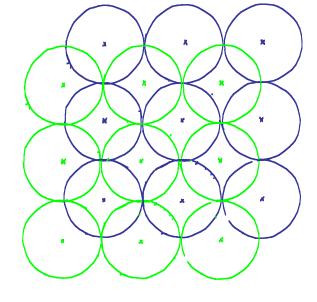
Not an All-Purpose Lattice! *Best 3-dim Packing: F.C.C.

each layer = hexagonal 1 layers are staggered

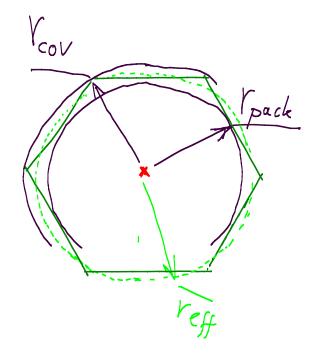
* Best 3-din Covering: B.C.C.

each layer = cubic 1 layers are staggered





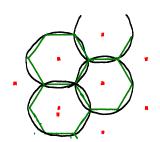
Figures of Merit



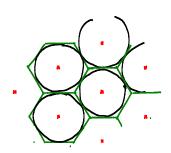
Radiuses:

· Covering efficiency:

$$P_{cov}(\Lambda) = \frac{V_{cov}}{V_{eff}} > 1$$



· packing efficiency:



Figures of Merit (Continued)

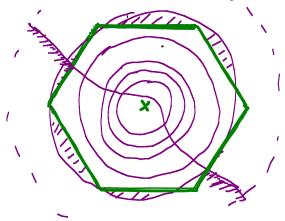
· Quantization efficience:

$$C(A) \triangleq \frac{1}{k} E||X||^2$$

$$G(\Lambda) \triangleq \frac{C^2(\Lambda)}{V^{2/k}}$$

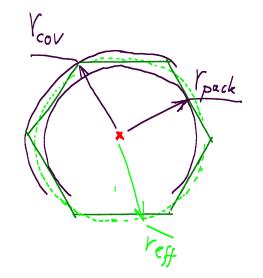
= normalized Second moment

· AWGN coding efficiency: Z~AWGN N(0, 02)



$$\mu(\Lambda, \rho_e) \triangleq \frac{V^{2/K}}{C^2} / _{@\rho_e} = \frac{Volume - to - Noise Ratio}{}$$

Iso-perimetric Inequalities (Sphere bounds)



Ball minimizes

* * * *

Over all bodies

of a fixed volume?

C(L) > C (ball with radius reff) $Pe(-L) \geq Pe(""")$

 \Rightarrow

 $G(\Lambda) \geq N.S.M.$ of K-dim boll $\mu(\Lambda, pe) \geq V.N.R.$ "

Gras a function of k...

[Conway & Sloane Book 1988]

n.

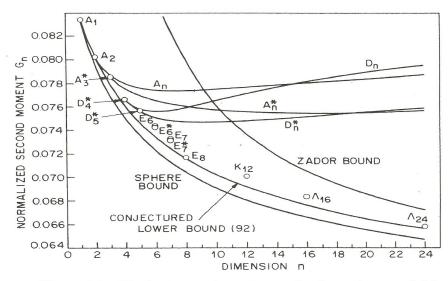


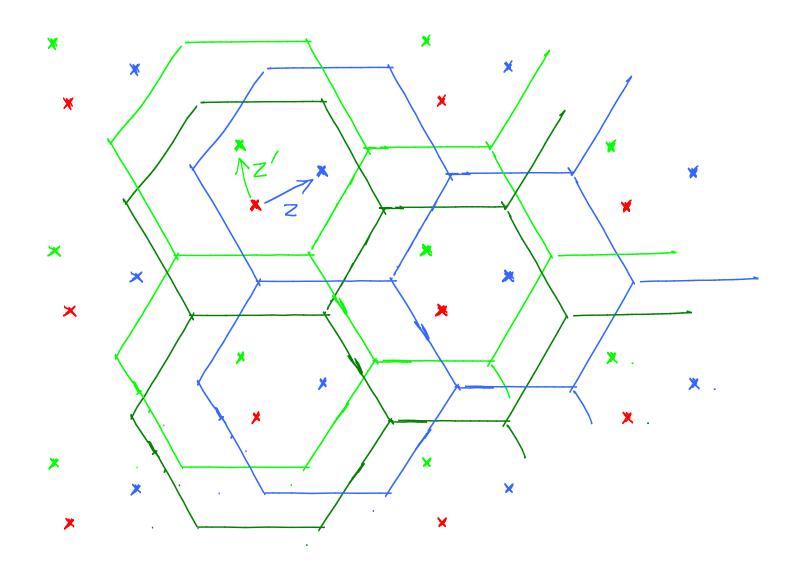
Figure 2.9. The best quantizers known in dimensions $n \leq 24$.

Why Lattices in Communication?

1) a bridge from N=1 to N=
= non-asymptotic analysis per dimension

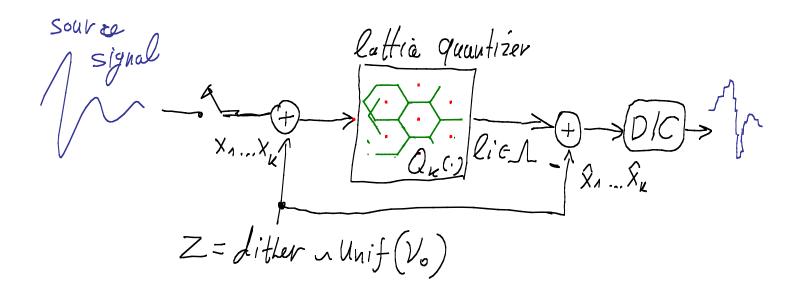
Dithered Quantization · ditler for perceptual reasons: -> Quantization)-> · dither for analytical reasons:

$$Q_{k}(x+Z)-Z$$



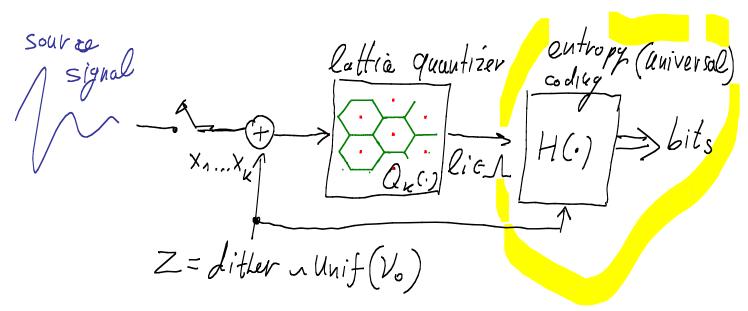
>> Random shift of the lattice quantizer

Dithered Quantizations Error



- · Subtractive Dither (Pseudo Random Noise) =>
 - error: $Q_{k}(x+Z)-Z \sim Unif(-V_{o})$
 - -distortion: $E/|Q_{\kappa}(x+Z)-Z|/2 = C^{2}(\Lambda)$ invaviant of x

Entropy Coded Dithered Quantization [ziv85]



Rate Redundancy @ High Resolution (D >0):
$$H(Q_{k}(X+Z)|Z) - R(D) = \frac{1}{2}(2\pi eG(\Lambda))$$

$$Rate - Distortion = D(Z||N(0,c^{2}(\Lambda)))$$
Function

Divergence of dither Z From AWGN

Gersho's Conjecture
The best space-filling-polytope in 12 satisfies
$G(C) \longrightarrow \frac{1}{277e}$ $k \to \infty$
Note that
$(1) G_{\mathbb{R}}^* \triangleq G(O) \xrightarrow{2ne} 2ne$
(2) Iso-perimetric inequality: Bell has the minimum diameter & second momentary and shapes of given volume!
Can "good" lattice cells approximate Balls (as k -> 00) ?

Rogers & Minkowski Meet Shannon Rogers (1957):

for a sequence of "good" lattices Λ_{k}^{*} $\frac{V_{cov}}{V_{eff}}(\Lambda_{k}^{*}) \longrightarrow 1 \quad \text{as} \quad k \to \infty$ $\Rightarrow G(\Lambda_{k}^{*}) \longrightarrow G(k-ball) \xrightarrow[k \to \infty]{} \frac{1}{2-11-e}$

→ Voronoi all → Ball / Dither → AWGN 0

Minkowski (1904):

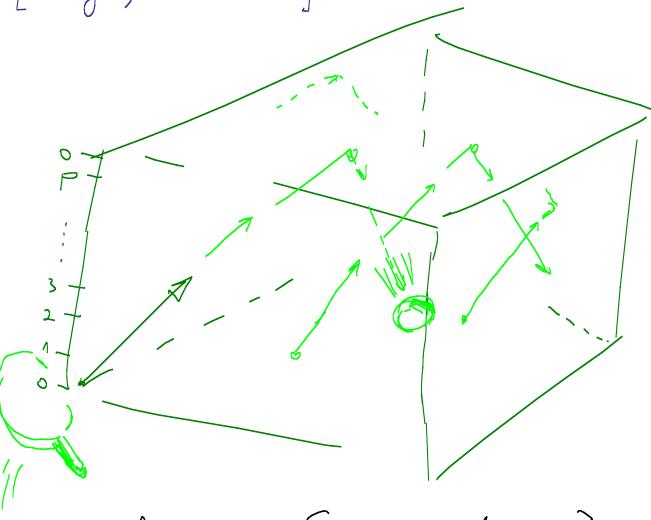
for a sequence of "good" lattices 1k

Voack

Veff (1k) -> 1/2 as k -> 00

> Voronoi cell ~ packs AWGN ?

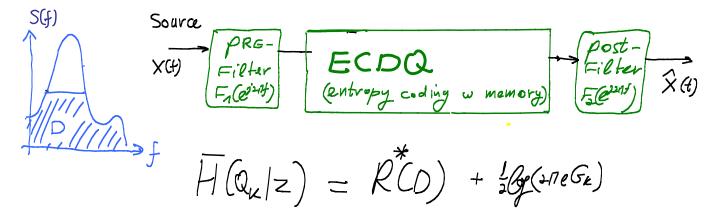
How to get Structure (10) from Random
Linear 9-ary Code > random matrix > construction-A
[Loeliger, Erez et al]



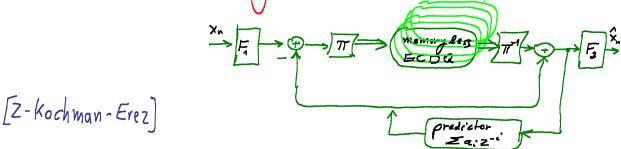
ECDQ Applications

1. pre/post-filterel ECDQ:

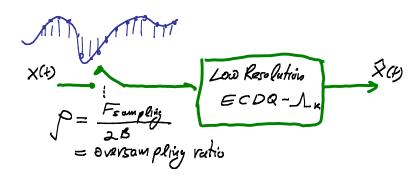
[Zamir - Feder]

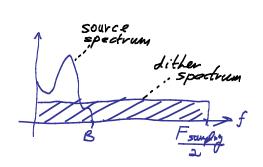


2. Predictive Coding (DPCM)

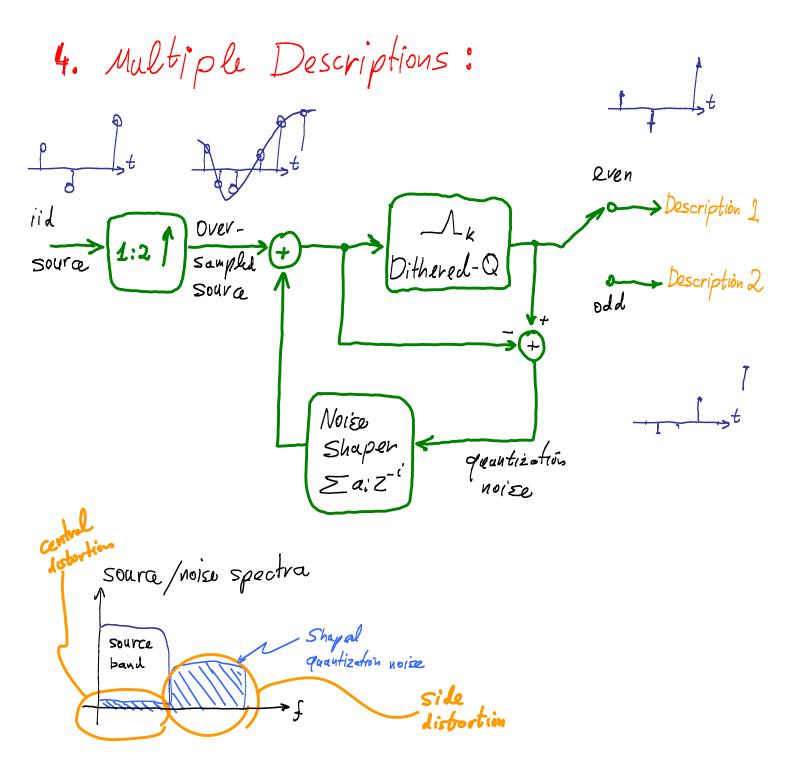


3. Oversampled ECDQ:





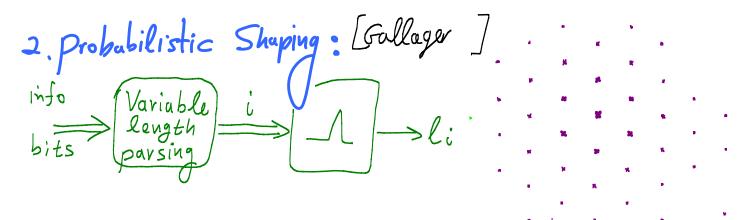
ECDQ Applications (cont.)



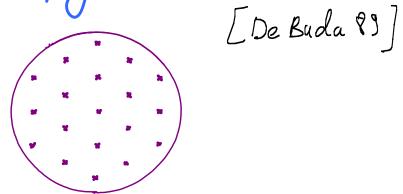
[Ostergaged-Z]

The Channel-Dual of ECDQ

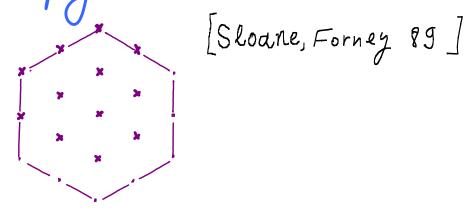
1. Un bounded lattice: capacity per unit volume [poltyrev 93]



3. Deterministic Shaping - Spherical:



4. Deterministic Shaping - Veronoi Code:



Why Lattices in Communication?

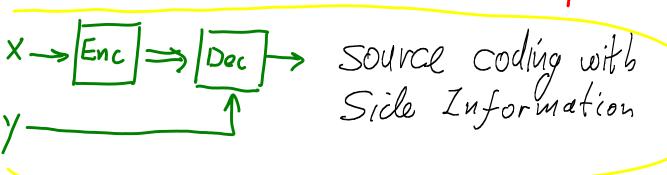
1) a briedgle from N=1 to $N=\infty$ = non-asymptotic analysis per dimension

2) Algebraic (low complexity) Binning = Structured coding schemes for networks

3

4

Lattices in Multi-Terminal Problems



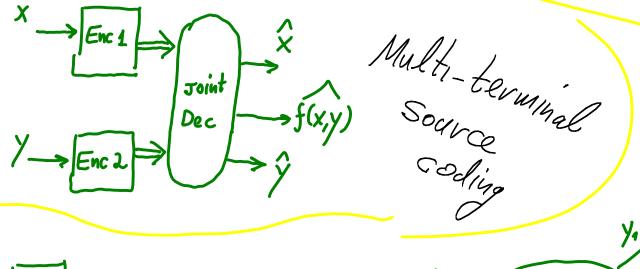
channel Coding
with

Side Information

Enc

p(y/x,s)

Dec >



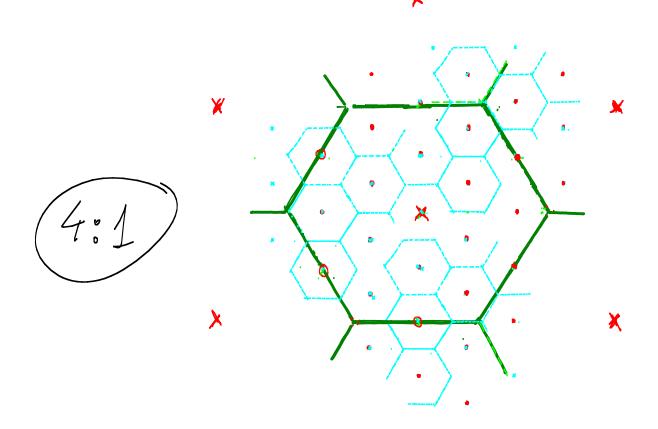
Encl x, Multiple Access Enc P(y, y, 1x) y, occ 2 P(y|x, x, x, x, x, y) Dec & Broadcast Channels

Nested Lattices

$$\int_{2} C \int_{1} \implies G_{2} = G_{1} \cdot J$$
Cource fine lattice matrix

Patrice lattice matrix

Nesting Ratio =
$$\left(\frac{\sqrt{a}}{\sqrt{I}}\right)^{1/k}$$
 = $\left|\int_{-\infty}^{\infty} |\int_{-\infty}^{\infty} |\int_{-\infty}$



Not necessarily Self Similar 17 $\Rightarrow V_{02}$ \downarrow V_{01} Nested & Self Similar Relatively Periodic (non Mested)

$$\mathcal{A}_2 \subset \mathcal{A}_1 \Rightarrow \mathcal{G}_2 = \mathcal{G}_1 \cdot \mathcal{J}$$

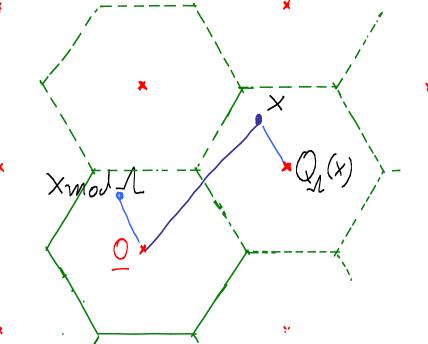
Relative Cosets = 12/1

Coset
$$\triangleq l_1 + \Lambda_2$$
, for some $l_1 \in \Lambda_1$

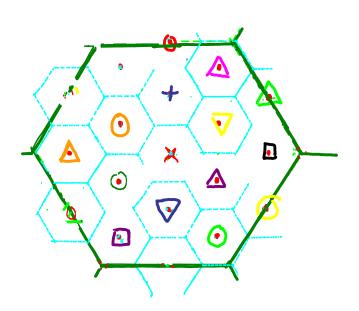
$$\left| \Lambda_2 / \Lambda_1 \right| = V_2 / V_1 = \left| \det(J) \right|$$

Modulo-Lattice Arithmetic

 $\times \mod \Lambda \triangleq \times - Q_{\Lambda}(x)$



Coset Leader = λ_1 mod Λ_2 , for $\lambda_1 \in Coset$



Modulo-Lattice Arithmetic

$$X + Y \mod \Lambda \in V_0$$

$$X(t) \longrightarrow (+) \longrightarrow (mod \Lambda) \in V_0$$

$$filter$$

The Wyner-Ziv Problem (Source coding with S.I. @ Decooler)

$$X \rightarrow Enc \rightarrow Dec$$

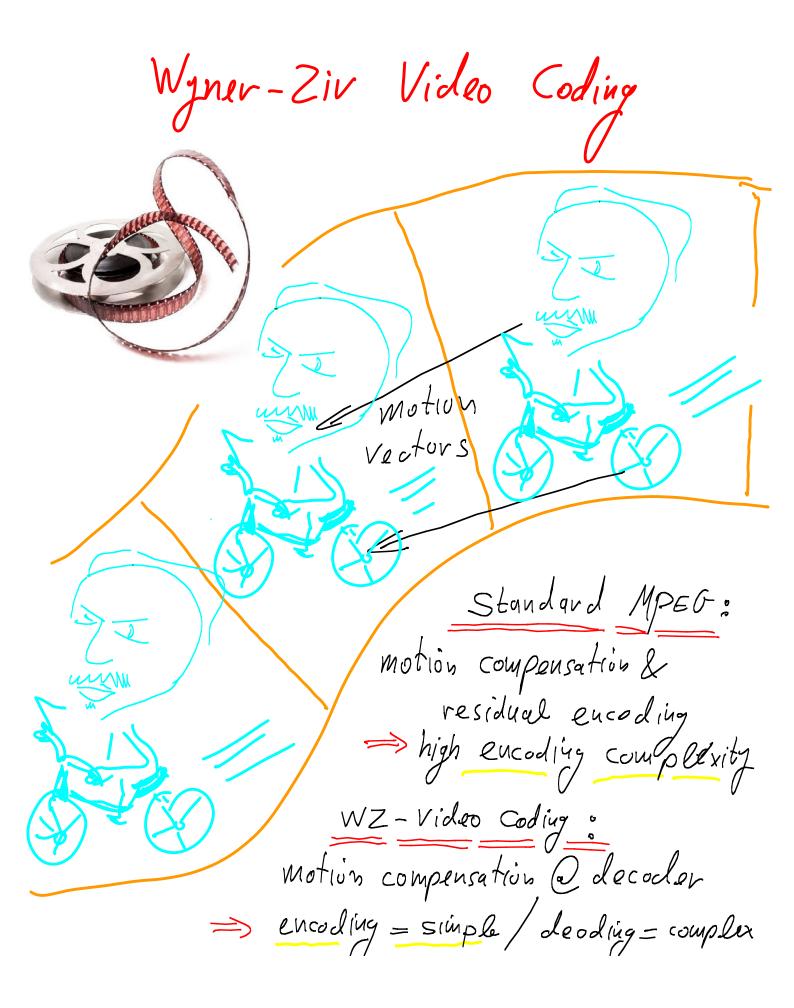
$$X \rightarrow Z \sim N(0, CZ^{2})$$

$$X \rightarrow Z \sim N(0, CZ^{2})$$

$$R_{x/y}^{WZ}(D) = R_{Z}(D) = \int \int \int \int \frac{dz}{D} \int \frac{dz}{D} dz$$

Source Sample

Wyner-Ziv 1976 Wyner 1978



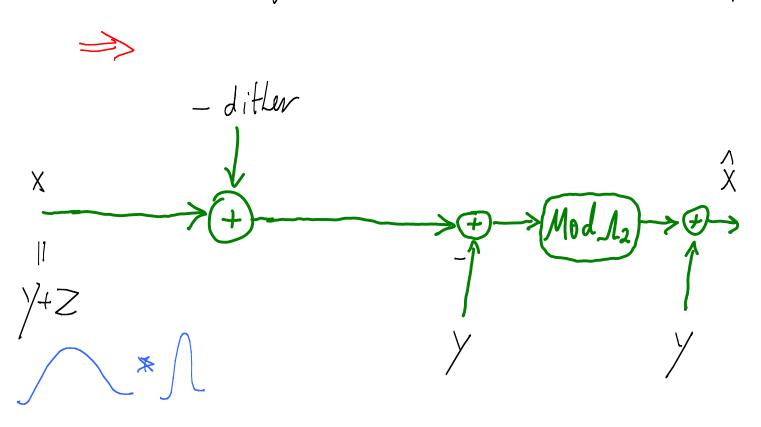
Lattice Wyner-Ziv Coding [28 Shamai Verdu]

dither difler Good quantizer for Lesired Good channel coole distortion ; for the noise 20 $C(\tilde{\Lambda}_1) = D$ Pe(12, 522) < E

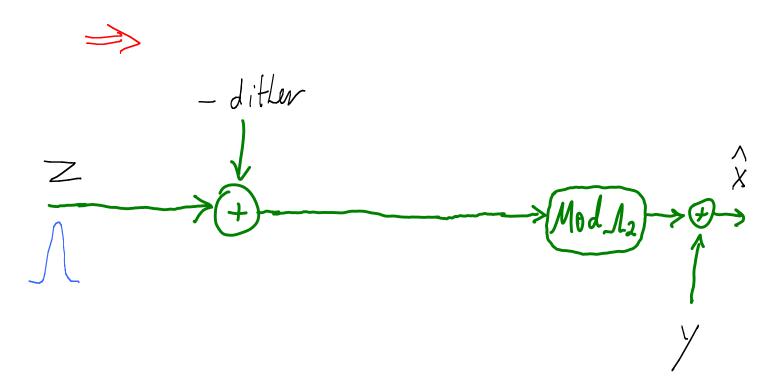
(A mod A + B) mod A = (A+B) mod A

$$\Rightarrow$$

dithered quantization = additive noise



dithered quantization = additive noise



Lattice Wyner-Ziv Coding $\Lambda_2 = good$ channel code for $Z \sim N(o_1 c_2^2)$. > with prob. >1-E, - ditter $\hat{X} = X - dither$, $\omega.p. > 1-E$ distortion = $C(\Lambda_1) = D$

Nesting Ratio;

$$C(\Lambda_1) = D$$

$$Pe(\Lambda_2, C_2^2) < \varepsilon$$

 \Rightarrow

Rate =
$$\frac{1}{k} log(\frac{V_2}{V_1}) bit/sample$$

 $R_{z}(D)$

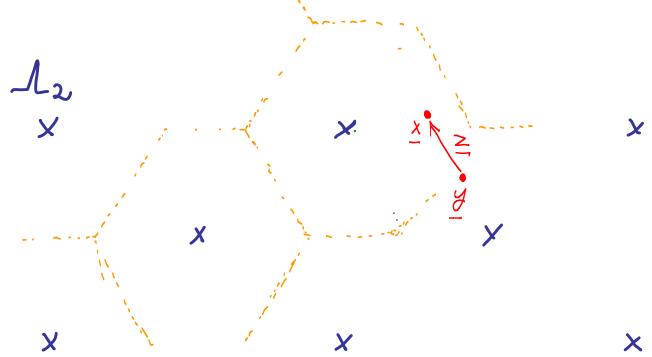
$$=\frac{1}{2}\log\left(\frac{\sigma_{z}^{2}}{10}\right)+\frac{1}{2}\log\left(G(\Lambda_{1})\cdot\mathcal{M}(\Lambda_{2},\mathcal{E})\right)$$

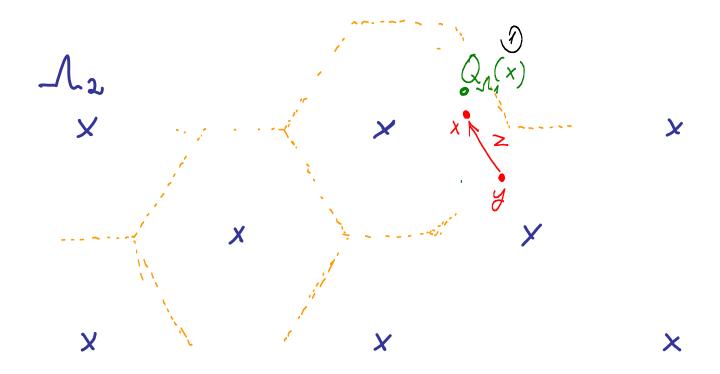
NSM (ILA)

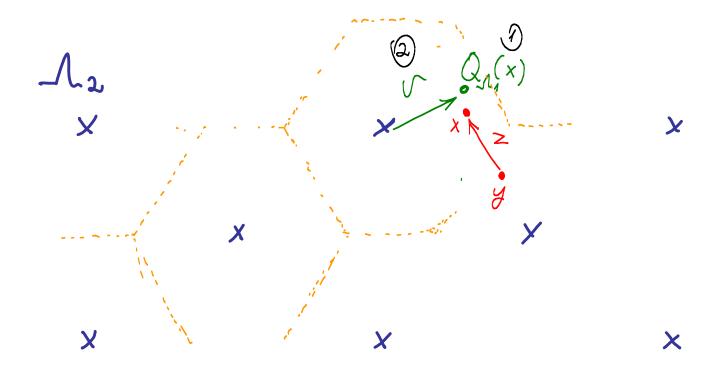
VNR (La)

Redundancy -> 0

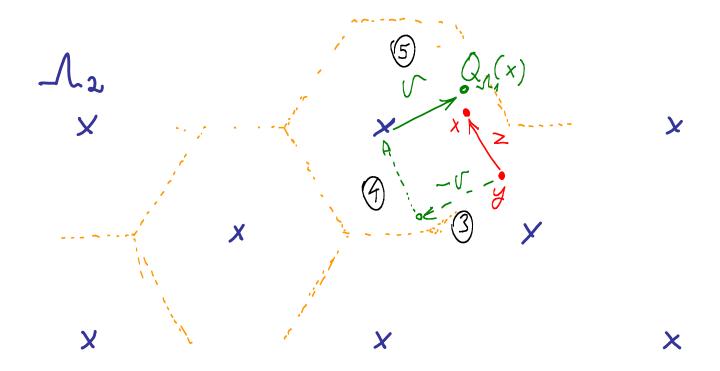
for good lattices



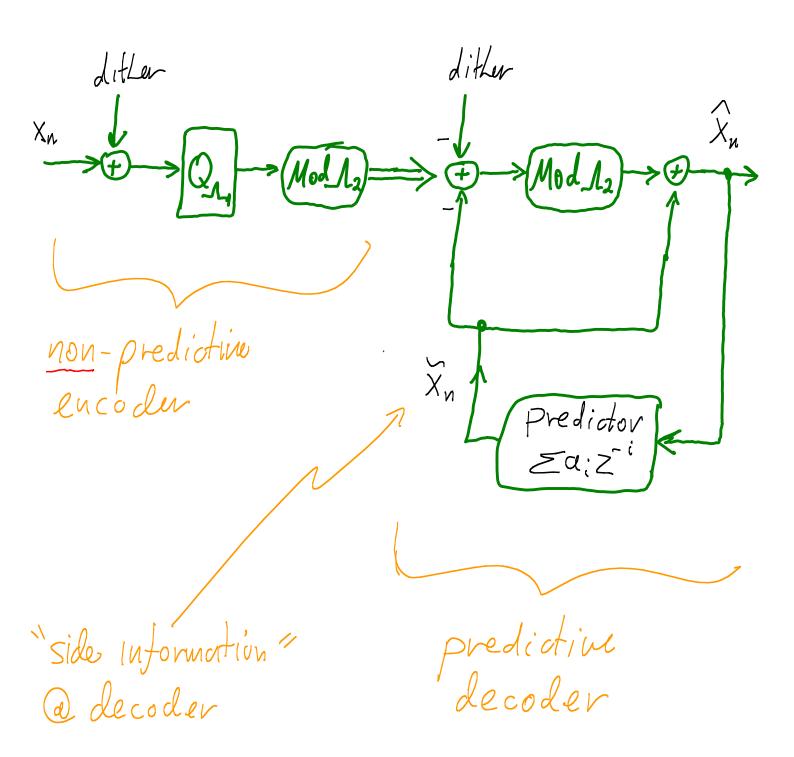




v=relative coset ("syndrome")



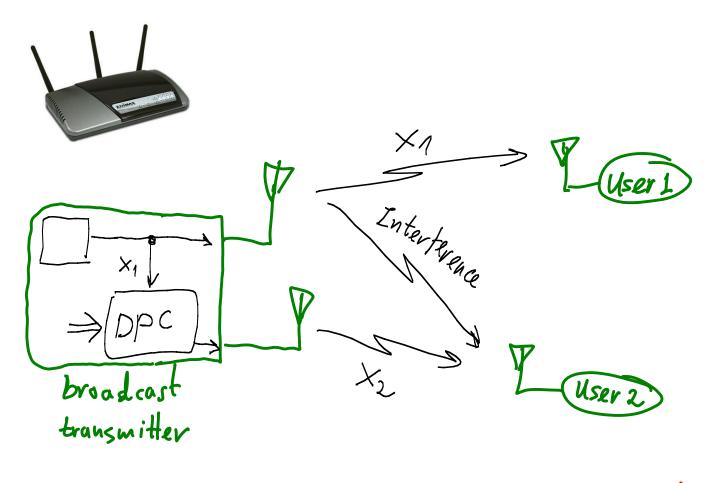
Wyner-Ziv-D.P.C.M.



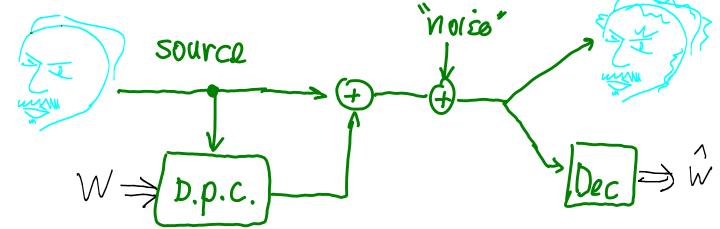
"Writing on Dirty Paper"

(channel coding with Interference known @ trunsmiter) bits Enc XX Dec > $C_{SL@T_{x}} = \frac{1}{2} \log \left(1 + \frac{P}{Z_{x}} \right) = C_{AWGN}$ Felfand-Pinsker 1980 Costa 1983 Surprising: interference concellation with no

Mimo-Broadcast using D.p.C



Information Embedding (Watermarking



Lattice Dirty Paper Coding
[Tomlinson-Harashina / Erez-Shamai-Zamir]

dither 1/1/1 12= Good quantizer Voronoi O(A2)=P Constellation -1 = good chunnel

code for N(0,622)

Lattice Dirty Paper Coding

Lattice Dirty Paper Coding

A, = good for $N(0, (2^2)) \Rightarrow P_e < \varepsilon + V$ bit / drawnel use Rate = $\frac{1}{k} \log \left(\frac{\sqrt{2}}{\sqrt{1}} \right)$ NSM(LL2) VNR(M) $- G_{\mathcal{F}}(G(\Lambda_2) \cdot \mathcal{M}(\Lambda_1, \mathcal{E}))$ Redundancy -> 0 AWGN capucity for good lattices @ High SNR

Costa (Random Binning) => Lattice Coding

1. Code design

2. Transmission

message => Coset

typicality encoding => quantization @ MSE = P

3. Reception

typicality decoding = lattice decoding

Achieving $\frac{1}{2}log(1+SNR)$ @ goneral SNR (SNR=P/Gz²) Where a good choice for & is: = MMSE (Wiener) Coefficient = P+GZ \$ 1 @ HSNR

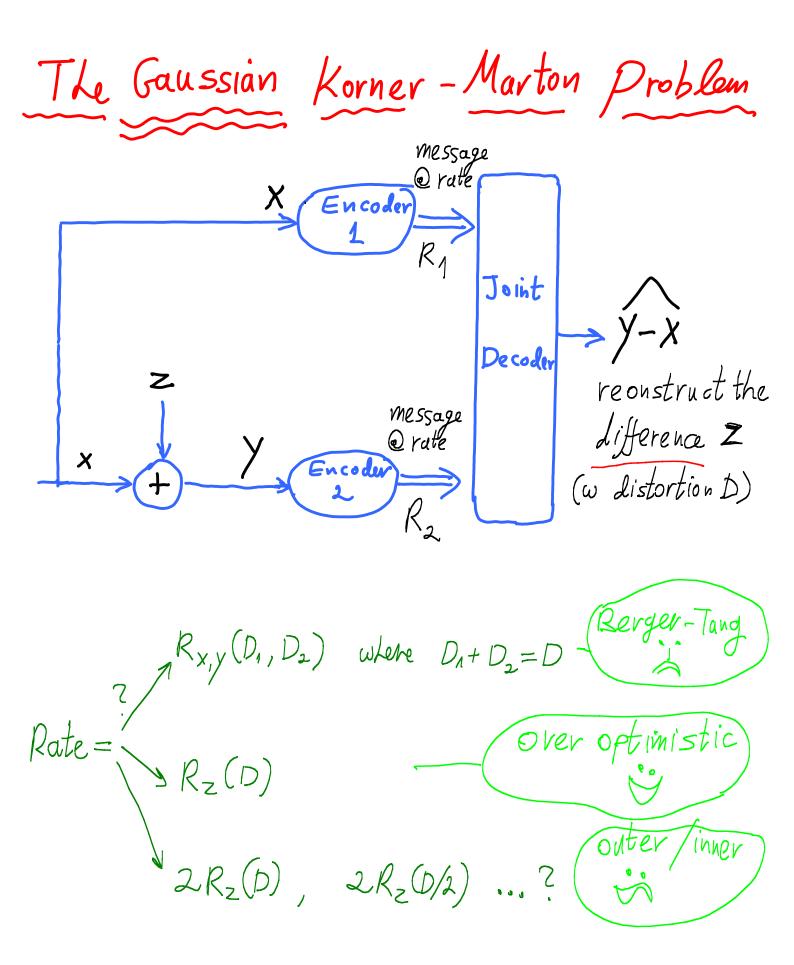
Why Lattices in Communication?

1) a briedgle from N=1 to $N=\infty$ = non-asymptotic analysis per dimension

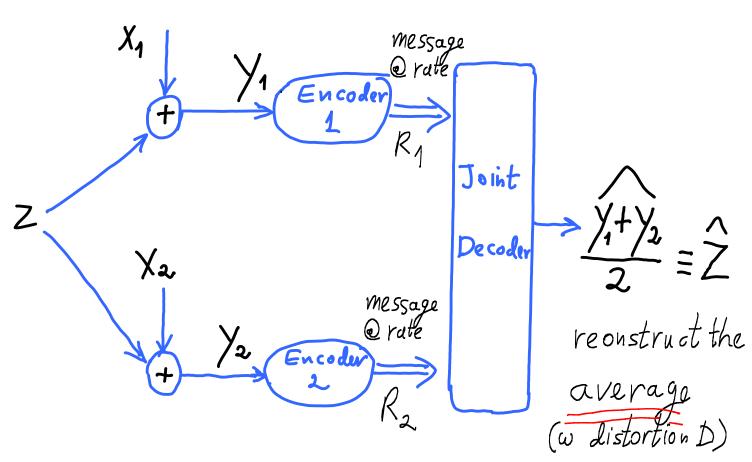
2) Algebraic (low complexity) Binning = Structured coding schemes for networks

Better than Random-Coding of in distributed side-information problems

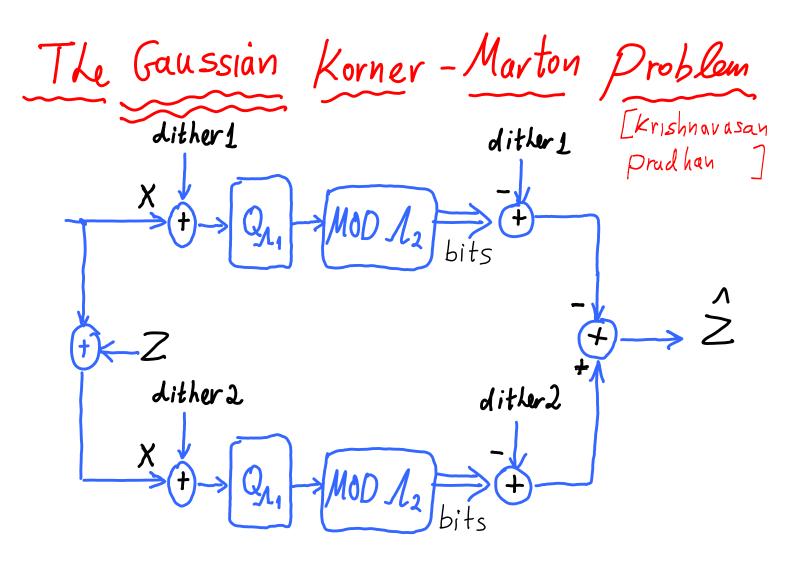
4



Compare: The CEO Problem



optimum rate:



* modulo distributive law =>

$$\Rightarrow R_1 = R_2 = R_2(D/2) + \frac{1}{2} \log(NSM_1 * VNR_2)$$

$$\text{gap of } 1/2 \text{ bit} \qquad \text{redundancy} \rightarrow \infty$$

$$\text{from outer bound} \qquad \text{@ dim} \rightarrow \infty$$

Why Random Loses?

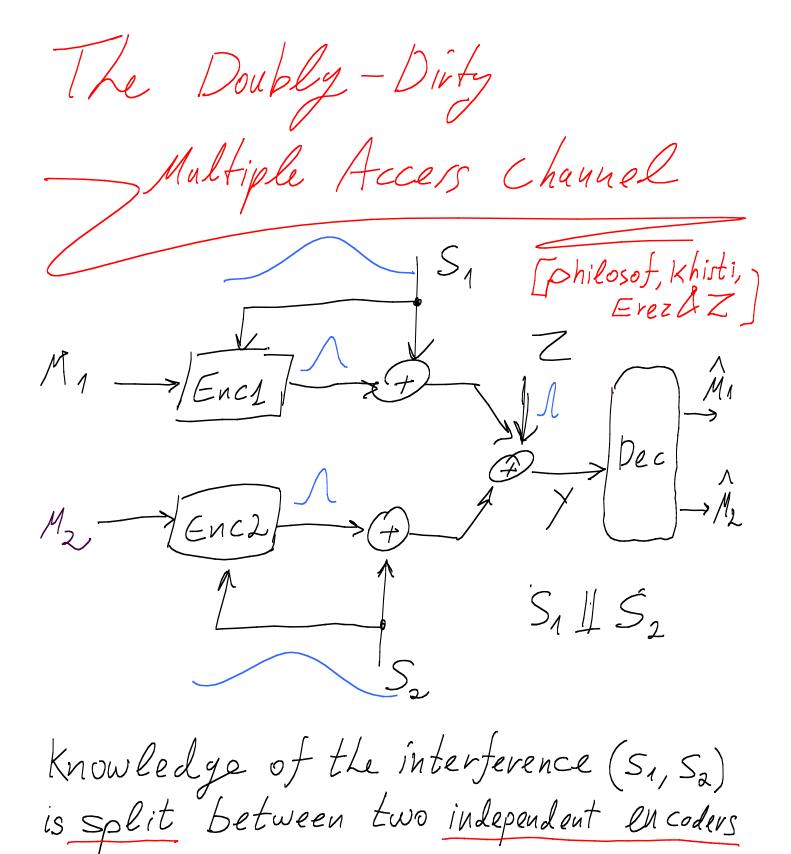
Distributed Coding => Need Commutativity:

Binning (y) - Binning (x) = Binning (y-x)

=> Binning should be aligned

Why Random Loses? 2-dim example of mis-aligned binning: o o o X

 $det(\Lambda_1) = det(\Lambda_2)$



Results

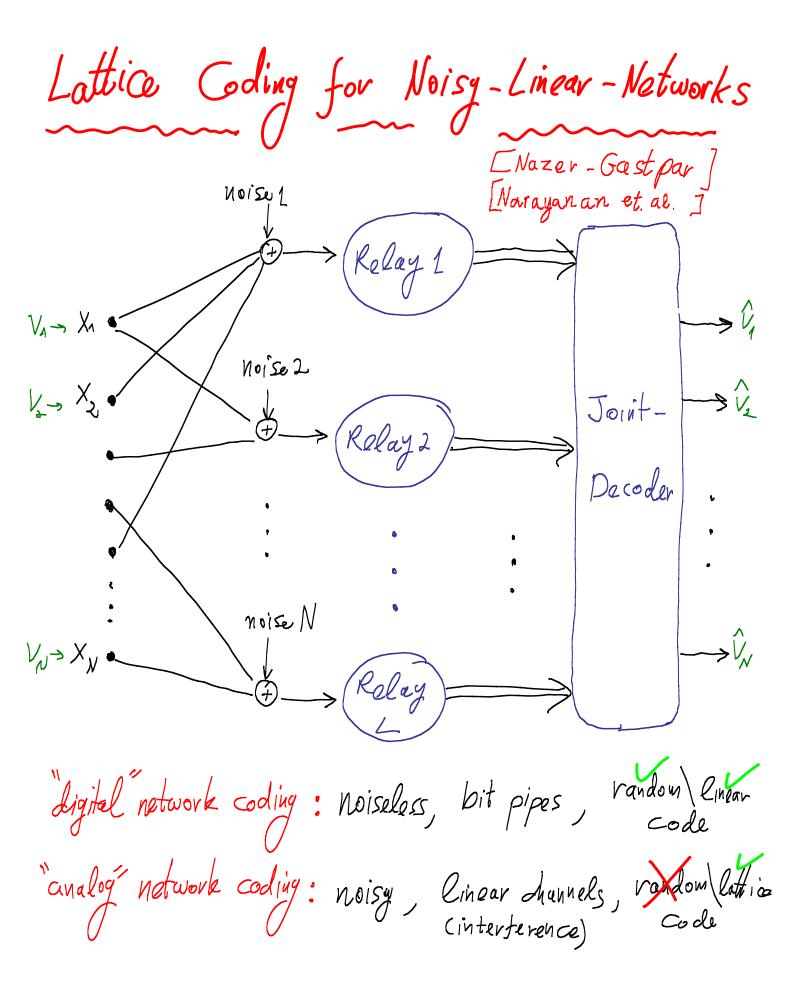
Costa (Random Binning) => C=0

(for Strong
interference)

Lattice Strutegies -> C = Clean-MAC

Lattice Alignment

	Align	Can be Random	
KM	reference signals => coarse lattice	fine (quantize) code	
DMAC	i concentration points => coarse lattice	fine (channel) code	
CO&F	desired codewords => fine lattice	coarse (shaping) code	
IC	interefer codewords => fine lattice	coarse (shaping) code	



Interference Alignment (in amplitude domain) [Bresler-Parekh-Tse] noise 1 noise 2 NOISE N

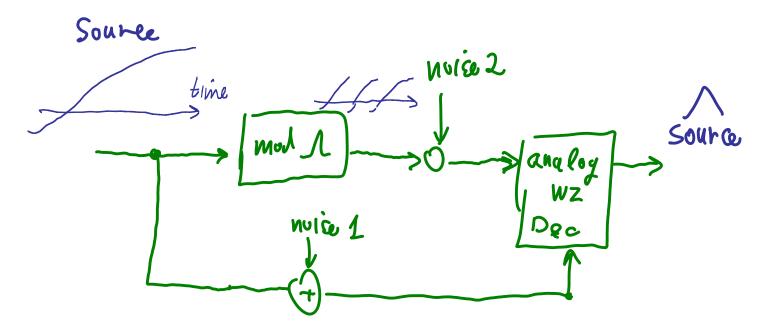
Joint Source-channel Coding Bandwidth Expansion & Compression

source channel

M Analog (colored) Matching chunnel response Analog Relaying

relays cannot de code ...

Modulo-Lattice Modulation for Bandwidth Expansion [Reznic Feder Z, Kochman Z]



V 11	, 1/.			
Why	Lattices	[N	Communication	6

- 1) a bridge from N=1 to $N=\infty$ = non-asymptotic analysis per dimension
- 2) Algebraic (low complexity) Binning = structured coding schomes for networks
- Better than Random-Coding, in distributed side-information problems
- 4) a bridge from Analog to Digital

 = Robust joint source channel coding

Concluding Remarks

O Classical FOMs: G(A), M(A,pe)

& properties G(A*) → 1/2 M(A*,pe) → 2.TRe

+pe

New FOMs: G(1).M(1,pe) for DPC

G(1).M(1e,pe) for WZ

12 C 11

G(1).M(1,pe) for Joint

WZ-DPC

- O Trellis code as 100
- Low complexity lattice encoding & decoding
 construction—A via q-ary LD.P.C.
 Low Density Lattice Codes
- O Is structure always at least as good as random?
- O The "best single letter" solution?

When Random is Better than Structure Structure sometimes creates ambiguity... 1. Information cross-checking ----> Channel 1 - y1 S=source Decodur > S map -> channel 2 -/ 12 random mapping is better than structured? e.g. turbo coding into bits systematic X1 See also Tuncel The break X2 2. Decode Many-from-One [distinguishibility] Symmetric MAC () - x1 Z

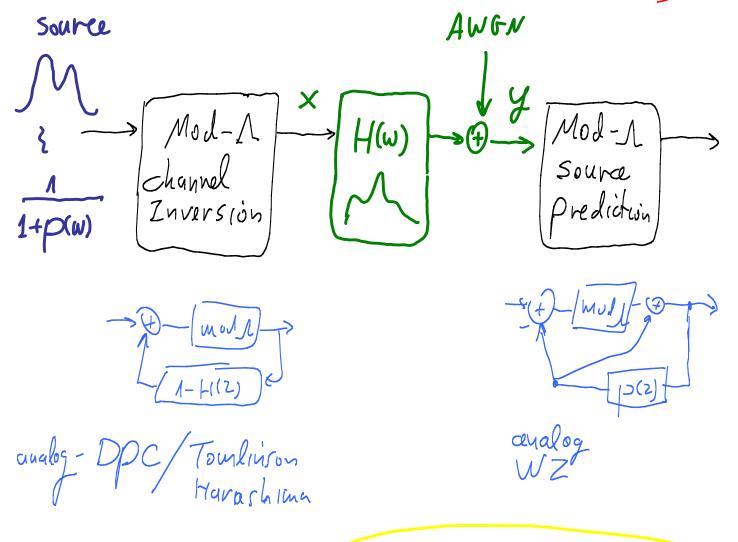
find X1 and X2 from X1+X2 (X1, X26/1 => ambiguity)

Thank

Backup Sliles

Analog Matching of Colored Sources to Colored Channels

Ckochman & Z]



Achieves
$$R(D) = C - LOSS$$

 $LOSS = \frac{1}{2}log(G(\Lambda) \cdot M(\Lambda, Pe))$

Rematch & Forward for Parallel Relays [Kochman Khina Erez 42] , coherent (constructie) Relaym I interference => extension of Amplity & Forward for Bo 7B,