An Information-Theoretic Perspective

• "Baseband" picture of communication

- "Baseband" picture of communication
- Tradeoff between R = k/n, $P_e = P(M \neq \hat{M})$, and n

- "Baseband" picture of communication
- Tradeoff between R = k/n, $P_e = P(M \neq \hat{M})$, and n
- Capacity C: maximum R such that $P_e \rightarrow 0$ as $n \rightarrow \infty$

- "Baseband" picture of communication
- Tradeoff between R = k/n, $P_e = P(M \neq \hat{M})$, and n
- Capacity C: maximum R such that $P_e \rightarrow 0$ as $n \rightarrow \infty$

- "Baseband" picture of communication
- Tradeoff between R = k/n, $P_e = P(M \neq \hat{M})$, and n
- Capacity C: maximum R such that $P_e \rightarrow 0$ as $n \rightarrow \infty$

- "Baseband" picture of communication
- Tradeoff between R = k/n, $P_e = P(M \neq \hat{M})$, and n
- Capacity C: maximum R such that $P_e \rightarrow 0$ as $n \rightarrow \infty$

- "Baseband" picture of communication
- Tradeoff between R = k/n, $P_e = P(M \neq \hat{M})$, and n
- Capacity C: maximum R such that $P_e \rightarrow 0$ as $n \rightarrow \infty$

Channel coding theorem (Shannon 1948)

$$C = \max_{p(x)} I(X; Y)$$

• Simple model for wireless, wired, and optical communication

- Simple model for wireless, wired, and optical communication
- Average power constraint $\sum_{i=1}^{n} x_i^2(m) \le nP$

- Simple model for wireless, wired, and optical communication
- Average power constraint $\sum_{i=1}^{n} x_i^2(m) \le nP$
- Channel quality measured by $SNR = g^2 P$

- Simple model for wireless, wired, and optical communication
- Average power constraint $\sum_{i=1}^{n} x_i^2(m) \le nP$
- Channel quality measured by $SNR = g^2 P$

Channel coding theorem (Shannon 1948)

$$C = \frac{1}{2}\log(1 + \mathsf{SNR})$$

Capacity of the Gaussian channel (Forney–Ungerboeck '98)

• Random coding and joint typicality decoding (Shannon 1948, Forney 1972, Cover 1975)

• Find a unique *m* such that $(x^n(m), y^n)$ is jointly typical w.r.t. p(x, y)

- Find a unique *m* such that $(x^n(m), y^n)$ is jointly typical w.r.t. p(x, y)
- Successful w.h.p. if R < I(X; Y)

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code
 - Most codes are good

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code
 - Most codes are good
 - Works for any alphabet

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code
 - Most codes are good
 - Works for any alphabet
 - "All codes are good, except those that we know of" (Wozencraft–Reiffen 1961, Forney 1995)

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code
 - Most codes are good
 - Works for any alphabet
 - "All codes are good, except those that we know of" (Wozencraft-Reiffen 1961, Forney 1995)
- Coding theory
 - Algebraic: Hamming, Reed–Solomon, BCH, Reed–Muller, polar codes
 - Probabilistic: LDPC, turbo, raptor, spatially coupled codes

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code
 - Most codes are good
 - Works for any alphabet
 - "All codes are good, except those that we know of" (Wozencraft–Reiffen 1961, Forney 1995)
- Coding theory
 - Algebraic: Hamming, Reed–Solomon, BCH, Reed–Muller, polar codes
 - Probabilistic: LDPC, turbo, raptor, spatially coupled codes
- Coding practice
 - 4G LTE: Turbo and convolutional codes
 - 5G NR: LDPC and polar codes

- Average performance of randomly generate codes is good
 - Probabilistic method: there exists a good code
 - Most codes are good
 - Works for any alphabet
 - "All codes are good, except those that we know of" (Wozencraft-Reiffen 1961, Forney 1995)
- Coding theory
 - Algebraic: Hamming, Reed–Solomon, BCH, Reed–Muller, polar codes
 - Probabilistic: LDPC, turbo, raptor, spatially coupled codes
- Coding practice
 - 4G LTE: Turbo and convolutional codes
 - 5G NR: LDPC and polar codes
 - Everything is binary

$$0 \mapsto +\sqrt{P}$$
$$1 \mapsto -\sqrt{P}$$

· Sometimes multiple, independent (binary) codewords are modulated together

- Sometimes multiple, independent (binary) codewords are modulated together
- We decompose coded modulation into two operations

$$1 \mapsto -\sqrt{P}$$

- Sometimes multiple, independent (binary) codewords are modulated together
- We decompose coded modulation into two operations
 - Symbol-level mapping: $X = \phi(U_1, U_2, \dots, U_L), U_l \in \{\pm 1\}$

 $1 \mapsto -\sqrt{D}$

- We decompose coded modulation into two operations
 - Symbol-level mapping: $X = \phi(U_1, U_2, \dots, U_L), U_l \in \{\pm 1\}$
 - Block-level mapping: $U_l^n = \psi(C^N)$, l = 1, ..., L

Multiple layers and symbol-level mapping

• Natural mapping: $X = \alpha(U_1 + 2U_2)$

Multiple layers and symbol-level mapping

- Natural mapping: $X = \alpha(U_1 + 2U_2)$
- Gray mapping: $X = \alpha(U_1U_2 + 2U_2)$
Multiple layers and symbol-level mapping

- Natural mapping: $X = \alpha(U_1 + 2U_2)$
- Gray mapping: $X = \alpha(U_1U_2 + 2U_2)$
- Similar mapping ϕ exists for higher-order PAM, QPSK, QAM, PSK, MIMO, ...

$$X_{\text{QPSK}} = \sqrt{P} \exp\left(i\frac{\pi(U_1U_2 + 2U_2)}{4}\right)$$

Multiple layers and symbol-level mapping

- Natural mapping: $X = \alpha(U_1 + 2U_2)$
- Gray mapping: $X = \alpha(U_1U_2 + 2U_2)$
- Similar mapping ϕ exists for higher-order PAM, QPSK, QAM, PSK, MIMO, ...

$$X_{\text{QPSK}} = \sqrt{P} \exp\left(i\frac{\pi(U_1U_2 + 2U_2)}{4}\right)$$

- Can be many-to-one (still information-lossless)
- Can induce nonuniform X (Gallager 1968)

00

• Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$
 - Find a unique m_2 such that $(u_1^n(m_1), u_2^n(m_2), y^n)$ is jointly typical: $R_1 < I(U_1; U_2, Y)$

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$
 - Find a unique m_2 such that $(u_1^n(m_1), u_2^n(m_2), y^n)$ is jointly typical: $R_1 < I(U_1; U_2, Y)$
 - Combined rate:

$$R_1 + R_2 < I(U_1; Y, U_2) + I(U_2; Y)$$

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$
 - Find a unique m_2 such that $(u_1^n(m_1), u_2^n(m_2), y^n)$ is jointly typical: $R_1 < I(U_1; U_2, Y)$
 - Combined rate:

$$R_1 + R_2 < I(U_1; Y, U_2) + I(U_2; Y)$$

= $I(U_1, U_2; Y)$

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$
 - Find a unique m_2 such that $(u_1^n(m_1), u_2^n(m_2), y^n)$ is jointly typical: $R_1 < I(U_1; U_2, Y)$
 - Combined rate:

$$R_1 + R_2 < I(U_1; Y, U_2) + I(U_2; Y)$$

= $I(U_1, U_2; Y) = I(X; Y)$

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$
 - Find a unique m_2 such that $(u_1^n(m_1), u_2^n(m_2), y^n)$ is jointly typical: $R_1 < I(U_1; U_2, Y)$
 - Combined rate:

$$R_1 + R_2 < I(U_1; Y, U_2) + I(U_2; Y)$$

= $I(U_1, U_2; Y) = I(X; Y)$

• Regardless of ϕ or the decoding order

- Broadcast channels (Cover 1972), fading channels (Shamai–Steiner 2003)
- Successive cancellation decoding:
 - Find a unique m_1 such that $(u_2^n(m_2), y^n)$ is jointly typical: $R_2 < I(U_2; Y)$
 - Find a unique m_2 such that $(u_1^n(m_1), u_2^n(m_2), y^n)$ is jointly typical: $R_1 < I(U_1; U_2, Y)$
 - Combined rate:

$$R_1 + R_2 < I(U_1; Y, U_2) + I(U_2; Y)$$
$$= I(U_1, U_2; Y) = I(X; Y)$$

- Regardless of φ or the decoding order
- Multi-level coding (MLC): Wachsmann–Fischer–Huber (1999)

• Single codeword of length 2n: $C^{2n} = (C^n, C^{2n}_{n+1})$

$$C^n \mapsto U_1^n \qquad C_{n+1}^{2n} \mapsto U_2^n$$

• Single codeword of length 2n: $C^{2n} = (C^n, C^{2n}_{n+1})$

$$C^n \mapsto U_1^n \qquad C_{n+1}^{2n} \mapsto U_2^n$$

• Treating the other layer as noise:

• Single codeword of length 2n: $C^{2n} = (C^n, C^{2n}_{n+1})$

$$C^n \mapsto U_1^n \qquad C_{n+1}^{2n} \mapsto U_2^n$$

- Treating the other layer as noise:
 - ▶ Find a unique *m*₁ such that

 $(u_1^n(m), y^n)$ is jointly typical and $(u_2^n(m), y^n)$ is jointly typical

• Single codeword of length 2n: $C^{2n} = (C^n, C^{2n}_{n+1})$

$$C^n \mapsto U_1^n \qquad C_{n+1}^{2n} \mapsto U_2^n$$

- Treating the other layer as noise:
 - ▶ Find a unique *m*₁ such that

 $(u_1^n(m), y^n)$ is jointly typical and $(u_2^n(m), y^n)$ is jointly typical

Successful w.h.p. if

$$R < I(U_1; Y) + I(U_2; Y)$$

• Single codeword of length 2n: $C^{2n} = (C^n, C^{2n}_{n+1})$

$$C^n \mapsto U_1^n \qquad C_{n+1}^{2n} \mapsto U_2^n$$

- Treating the other layer as noise:
 - ▶ Find a unique *m*₁ such that

 $(u_1^n(m), y^n)$ is jointly typical and $(u_2^n(m), y^n)$ is jointly typical

Successful w.h.p. if

$$R < I(U_1; Y) + I(U_2; Y) < I(U_1, U_2; Y) = I(X; Y)$$

• Single codeword of length 2n: $C^{2n} = (C^n, C^{2n}_{n+1})$

$$C^n \mapsto U_1^n \qquad C_{n+1}^{2n} \mapsto U_2^n$$

- Treating the other layer as noise:
 - ▶ Find a unique *m*₁ such that

 $(u_1^n(m), y^n)$ is jointly typical and $(u_2^n(m), y^n)$ is jointly typical

Successful w.h.p. if

$$R < I(U_1; Y) + I(U_2; Y) < I(U_1, U_2; Y) = I(X; Y)$$

Bit-interleaved coded modulation (BICM): Caire–Taricco–Biglieri (1998)

• Think outside the block: Sequence of messages M(j) mapped to $C^{2n}(j)$

Block 1 2 3 4 5 6 7 U₂ U₁

Block	1	2	3	4	5	6	7
U_2		$C_{n+1}^{2n}(1)$	$C_{n+1}^{2n}(2)$	$C_{n+1}^{2n}(3)$	$C_{n+1}^{2n}(4)$		
U_1	$C^{n}(1)$	$C^{n}(2)$	$C^{n}(3)$	$C^{n}(4)$			

• Think outside the block: Sequence of messages M(j) mapped to $C^{2n}(j)$

Block	1	2	3	4	5	6	
U_2		$C_{n+1}^{2n}(1)$	$C_{n+1}^{2n}(2)$	$C_{n+1}^{2n}(3)$	$C_{n+1}^{2n}(4)$	$C_{n+1}^{2n}(5)$	
U_1	$C^{n}(1)$	$C^{n}(2)$	$C^{n}(3)$	$C^{n}(4)$	$C^{n}(5)$		-

7

Block	1	2	3	4	5	6	7
U_2		$C_{n+1}^{2n}(1)$	$C_{n+1}^{2n}(2)$	$C_{n+1}^{2n}(3)$	$C_{n+1}^{2n}(4)$	$C_{n+1}^{2n}(5)$	$C_{n+1}^{2n}(6)$
U_1	$C^{n}(1)$	$C^{n}(2)$	$C^{n}(3)$	$C^{n}(4)$	$C^{n}(5)$	$C^{n}(6)$	

• Think outside the block: Sequence of messages M(j) mapped to $C^{2n}(j)$

Block	1	2	3	4	5	6	7
U_2		$C_{n+1}^{2n}(1)$	$C_{n+1}^{2n}(2)$	$C_{n+1}^{2n}(3)$	$C_{n+1}^{2n}(4)$	$C_{n+1}^{2n}(5)$	$C_{n+1}^{2n}(6)$
U_1	$C^{n}(1)$	$C^{n}(2)$	$C^{n}(3)$	$C^{n}(4)$	$C^{n}(5)$	$C^{n}(6)$	
i i i		•					

• Sliding-window decoding:

• Think outside the block: Sequence of messages M(j) mapped to $C^{2n}(j)$

• Sliding-window decoding: $R < I(U_1; U_2, Y) + I(U_2; Y) = I(X; Y)$

- Sliding-window decoding: $R < I(U_1; U_2, Y) + I(U_2; Y) = I(X; Y)$
- Block Markov coding: Used extensively in relay and feedback communication

- Sliding-window decoding: $R < I(U_1; U_2, Y) + I(U_2; Y) = I(X; Y)$
- Block Markov coding: Used extensively in relay and feedback communication
- Sliding-window coded modulation (SWCM): Kim et al. (2016), Wang et al. (2017)

• Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$

- Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$
- Bell Laboratories Layered Space-Time (BLAST) architectures:

- Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$
- Bell Laboratories Layered Space-Time (BLAST) architectures:
 - Horizontal: H-BLAST (Foschini et al. 1999/2003), also known as V-BLAST

- Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$
- Bell Laboratories Layered Space-Time (BLAST) architectures:
 - Horizontal: H-BLAST (Foschini et al. 1999/2003), also known as V-BLAST
 - Diagonal: D-BLAST (Foschini 1996)
Multiple-antenna transmission

- Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$
- Bell Laboratories Layered Space-Time (BLAST) architectures:
 - Horizontal: H-BLAST (Foschini et al. 1999/2003), also known as V-BLAST
 - Diagonal: D-BLAST (Foschini 1996)
 - Vertical: Single-outer code (Foschini et al. 2003), but shouldn't this be "V-BLAST"?

Multiple-antenna transmission

- Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$
- Bell Laboratories Layered Space-Time (BLAST) architectures:
 - Horizontal: H-BLAST (Foschini et al. 1999/2003), also known as V-BLAST
 - Diagonal: D-BLAST (Foschini 1996)
 - Vertical: Single-outer code (Foschini et al. 2003), but shouldn't this be "V-BLAST"?
- Signal layers can be far more general than antenna ports

Multiple-antenna transmission

- Consider the signal layers U_1 and U_2 as antenna ports: $\mathbf{X} = (U_1, U_2)$
- Bell Laboratories Layered Space-Time (BLAST) architectures:
 - Horizontal: H-BLAST (Foschini et al. 1999/2003), also known as V-BLAST
 - Diagonal: D-BLAST (Foschini 1996)
 - Vertical: Single-outer code (Foschini et al. 2003), but shouldn't this be "V-BLAST"?
- Signal layers can be far more general than antenna ports
- Coded modulation can encompass MIMO transmission

Horizontal $U_2 \qquad M_2$ $U_1 \qquad M_1$

Multi-level coding (MLC)

 $\begin{aligned} R_2 &< I(U_2; Y) \\ R_1 &< I(U_1; U_2, Y) \end{aligned}$

Short, nonuniversal

Horizontal Vertical $U_2 \qquad M_2 \qquad M \\ U_1 \qquad M_1 \qquad M$

Multi-level coding (MLC)

Bit-interleaved coded modulation (BICM)

 $R < I(U_1; Y) + I(U_2; Y)$

$$\begin{split} R_2 &< I(U_2; Y) \\ R_1 &< I(U_1; U_2, Y) \end{split}$$

Short, nonuniversal

Other layers as noise

Horizontal	Vertical	Diagonal		
$\begin{array}{c c} U_2 & M_2 \\ U_1 & M_1 \end{array}$	<u>М</u> М	М М		
Multi-level coding (MLC)	Bit-interleaved coded modulation (BICM)	Sliding-window coded modulation (SWCM)		
$R_2 < I(U_2; Y)$ $R_1 < I(U_1; U_2, Y)$	$R < I(U_1; Y) + I(U_2; Y)$	$R < I(U_1; U_2, Y) + I(U_2; Y)$ = $I(X; Y)$		

Short, nonuniversal

Other layers as noise

Error prop., rate loss

BICM vs. SWCM

LTE turbo code / \leq 8-iteration LOG-MAP decoding at b = 20, n = 2048, BLER = 0.1

BICM vs. SWCM

LTE turbo code / \leq 8-iteration LOG-MAP decoding at b = 20, n = 2048, BLER = 0.1

Application: Interference channels

• P2P decoding

- P2P decoding
 - Treating interference as (Gaussian) noise: $R_1 < I(X_1; Y_1)$

- P2P decoding
 - Treating interference as (Gaussian) noise: $R_1 < I(X_1; Y_1)$
 - Successive cancellation decoding: $R_2 < I(X_2; Y_1), R_1 < I(X_1; Y_1|X_2)$

- P2P decoding
 - Treating interference as (Gaussian) noise: $R_1 < I(X_1; Y_1)$
 - Successive cancellation decoding: $R_2 < I(X_2; Y_1), R_1 < I(X_1; Y_1|X_2)$
- + rate splitting (Zhao et al. 2011, Wang et al. 2014)

- P2P decoding
 - Treating interference as (Gaussian) noise: $R_1 < I(X_1; Y_1)$
 - Successive cancellation decoding: $R_2 < I(X_2; Y_1), R_1 < I(X_1; Y_1|X_2)$
- + rate splitting (Zhao et al. 2011, Wang et al. 2014)
- Novel codes
 - Spatially coupled codes (Yedla, Nguyen, Pfister, and Narayanan 2011)
 - Polar codes (Wang and Şaşoğlu 2014)

 $M_{2}(4)$

 $M_{2}(5)$

 $M_{2}(6)$

 $M_{2}(7)$

 X_2

 $M_{2}(1)$

 $M_{2}(2)$

 $M_{2}(3)$

Block	1	2	3	4	5	6	7
U_2		$M_1(1)$	$M_1(2)$	$M_1(3)$	$M_{1}(4)$	$M_1(5)$	$M_1(6)$
U_1	$M_1(1)$	$M_1(2)$	$M_1(3)$	$M_{1}(4)$	$M_1(5)$	$M_{1}(6)$	
X_2	$M_{2}(1)$	$M_{2}(2)$	$M_{2}(3)$	$M_{2}(4)$	$M_{2}(5)$	$M_{2}(6)$	$M_{2}(7)$

• Sliding-window coded modulation for sender 1 (without alphabet constraints)

• Sliding-window decoding

- Sliding-window decoding
- Successive cancellation decoding

- Sliding-window decoding
- Successive cancellation decoding

 $R_2 < I(X_2;Y_j | U_2)$

- Sliding-window decoding
- Successive cancellation decoding

 $R_2 < I(X_2; Y_j | U_2)$ $R_1 < I(U_2; Y_j) + I(U_1; Y_j | U_2, X_2)$

Every corner point: different decoding orders

- Every corner point: different decoding orders
- Every point: time sharing or more superposition layers

- Every corner point: different decoding orders
- Every point: time sharing or more superposition layers
- Extension to Han–Kobayashi (Wang et al. 2017)

Gaussian channel performance (Park-Kim-Wang 2014)

LTE turbo code with b = 20, n = 2048, BLER = 0.1, SNR = 10 dB

System-level performance (Kim et al. 2016)

Areal throughput (Mb/s/km²)	Average UE throughput (Mb/s) (gain over baseline)			5% UE throughput (Mb/s) (gain over baseline)		
	LMMSE-IRC (baseline)	IAD	SWCM	LMMSE-IRC (baseline)	IAD	SWCM
33.6	16.921	21.122 (24.8%)	23.464 (38.7%)	0.981	1.189 (21.2%)	1.425 (45.3%)
57.22	10.996	14.252 (29.6%)	17.086 (55.4%)	0.471	0.583 (23.7%)	0.808 (71.5%)

Source: Arraycomm, Zander–Mähönen (2013)

Source: Arraycomm, Zander-Mähönen (2013)

• Gain over the past 45 years = $10^6 \propto \eta W_{\rm sys} N_{\rm BS}$

Source: Arraycomm, Zander-Mähönen (2013)

- Gain over the past 45 years = $10^6 \propto \eta W_{\rm sys} N_{\rm BS}$
 - Spectral efficiency η: x 25

Source: Arraycomm, Zander-Mähönen (2013)

- Gain over the past 45 years = $10^6 \propto \eta W_{\rm sys} N_{\rm BS}$
 - Spectral efficiency η : x 25
 - ► System bandwidth *W*_{sys}: x 25

Source: Arraycomm, Zander-Mähönen (2013)

- Gain over the past 45 years = $10^6 \propto \eta W_{\rm sys} N_{\rm BS}$
 - Spectral efficiency η: x 25
 - ► System bandwidth *W*_{sys}: x 25
 - ▶ # of base stations N_{BS}: x 1600 (spatial reuse of frequency)

• Coded modulation as superposition coding

- Coded modulation as superposition coding
 - Simple and unifying picture

- Coded modulation as superposition coding
 - Simple and unifying picture
 - Framework for new coded modulation schemes

- Coded modulation as superposition coding
 - Simple and unifying picture
 - Framework for new coded modulation schemes
- Open problems
 - Finer analysis: Single-shot method (Verdú 2018)

- Coded modulation as superposition coding
 - Simple and unifying picture
 - Framework for new coded modulation schemes

- Open problems
 - Finer analysis: Single-shot method (Verdú 2018)
 - Shaping and dependence (a la Marton): CCDM (Böcherer et al. 2015)

- Coded modulation as superposition coding
 - Simple and unifying picture
 - Framework for new coded modulation schemes

- Open problems
 - Finer analysis: Single-shot method (Verdú 2018)
 - Shaping and dependence (a la Marton): CCDM (Böcherer et al. 2015)
- To learn more
 - Kramer and Kim (2018), "Network information theory for cellular wireless," in Information Theoretic Perspectives on 5G Systems and Beyond, eds. Shamai, Simeone, and Maric
 - Wang et al. (2017), "Sliding-window superposition coding: Two-user interference channels," arXiv:1701.02345
 - Kim et al. (2016), "Interference management via sliding-window coded modulation for 5G cellular networks," IEEE Commun. Mag.