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Introduction

Single-User Channel

Transmitter Receiverp(y |x)
x1, . . . , xn y1, . . . , yn

Memoryless channel

p (y1, . . . , yn|x1, . . . , xn) =
n
∏

t=1

p (yt |xt)

Basic definitions:

Blocklength n: number of channel uses

Codebook C: a set of M = 2nR codewords (vectors of length n)

Average Error Probability: Pe = P

(

Ĉ 6= C

)

, where

C ∼ Uniform (C)
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Introduction

Single-User Channel

Transmitter Receiverp(y |x)
x1, . . . , xn y1, . . . , yn

Memoryless channel

p (y1, . . . , yn|x1, . . . , xn) =
n
∏

t=1

p (yt |xt)

Basic tradeoff:

Tradeoff between number of codewords, blocklength and average error

probability
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Introduction

Single-User Channel

Transmitter Receiverp(y |x)
x1, . . . , xn y1, . . . , yn

Memoryless channel

p (y1, . . . , yn|x1, . . . , xn) =
n
∏

t=1

p (yt |xt)

First-Order (Capacity): asymptotics in blocklength

Capacity C: Highest achievable rate with vanishing Pe as n → ∞
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Introduction

Shannon Theory

Random Code: Symbol-wise (and codeword-wise) i.i.d. p(x)

Information Density:

i(X ;Y )
△
= log

p(X ,Y )

p(X )p(Y )

Mutual Information:

I(X ;Y )
△
= Ei(X ;Y )

Shannon’s Channel Coding Theorem [’48] (first-order characterization)

C = max
p(x)

I(X ;Y )

maximization over all input distributions p(x)
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Introduction

Tradeoff: Refined Analysis

There is a long history of finite blocklength bounds: Elias,

Feinstein, Gallager, . . .

Polyanskiy et al. [2010] gave two simple achievability bounds (DT

& RCU). Disturbing point: neither dominates

We have resolved this issue (but not in this talk...)

Asymptotic analysis: the error event amounts to (except for low

rates)

i(X n;Y n) ,
1

n

n
∑

k=1

i(Xk ;Yk ) < R
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Introduction

Asymptotic Bounds on the Information Density

The following asymptotics are with respect to the blocklength (for high

rates):

Central Limit Theorem (CLT): good for high Pe, dispersion

[Strassen 1962, Polyanskiy et al. 2010]

We have derived results regarding the extension to network

problems (but not in this talk...)

Large Deviations Principle (LDP): good for low Pe, exponent

Pr {i(X n;Y n) < R} ≤ exp{−nE(R)}

Similar lower bounds are known
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Introduction

Error Exponent: Code Structure May Matter

High rates: typical error due to a

"bad" channel i(X n;Y n) < R.

Random coding achieves the

exponent

Low rates: typical error due to "bad"

codewords (e.g. for BSC, minimum

distance dominates)

Can be solved by expurgation of

random codes, or (almost all) linear

codes

Who cares about expurgation? For

almost noiseless (binary input)

channels

Rex

C
−→
C→1
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Distributed Structure
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Distributed Structure

But First: Why Linear Codes in Single-User Channel?

Whenever uniform distribution is optimal, linear codes achieve

capacity, exponents, dispersion

But no theoretical gain

Historically, interest was due to practical (complexity) advantages
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Distributed Structure

Why Linear Codes in Networks?

Contribution II (in this talk...)

Recent interest, reviving a theme introduced by Körner-Marton

1979: first-order (capacity) advantage in some network settings

(Nazer & Gastpar, Wilson et al., Philisof et al., . . . )

In this work: distributed hypothesis testing

Terminals use the same linear code

Contribution I (in this talk...)

Error-probability advantage in network settings (even when no

first-order gain) – multiple-access (MAC) channel

Terminals use different linear codes

The prospect for such an improvement was hinted to in a

distributed source coding context by Csiszár [1982, “Linear Codes for

Sources and Source Networks: Error Exponents, Universal Coding”]
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Distributed Structure
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Distributed Expurgation

MAC Channel

For simplicity 2 users

PY |X1,X2

X1

X2

Y

Capacity region: the closure of the convex-hull of all (R1,R2)
satisfying:

R1 ≤ I(X1;Y |X2)

R2 ≤ I(X2;Y |X1)

R1 + R2 ≤ I(X1,X2;Y ),
R1

R2

I(X1;Y |X2)

I(X2;Y |X1) R1 + R2 = I(X1,X2;Y )

over some product distribution p(x1, x2) = p(x1)p(x2)
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Distributed Expurgation

Toy Example: Erasure-Additive MAC Channel

X1

Y

X2

Erasure

Channel

X1

X2

Erasure

Channel

X

Obvious bounds on Pe

Lower bound: single-user erasure channel

Upper bound: same with half blocklength (time sharing)

Is any of these bounds tight?
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Distributed Expurgation

What Can Be Achieved Using Random Codes?

Slepian & Wolf [’73], Gallager [’85]

Receiver’s perspective: sum of codebooks, C = C1 + C2

For random codes: summation preserves pairwise independence,

thus most standard bounds (RCU, DT, dispersion, random

exponent) hold

Codebook structure (e.g. minimum distance) is not preserved

But recall that minimum distance dictates error exponent at low

rates

Expurgation attempts recently by Nazari et al.: expurgate one

user (even for MAC channel with many users)
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Distributed Expurgation

Solution: Use Linear Codes

Create a linear sum-codebook (recall: inherently expurgated)

Simply split the generating matrix between users

At the receiver, the summation is indistinguishable from a single

user channel with the sum-rate

Performance identical to single user with the sum rate

Any performance that is attainable via linear codes over the

single-user channel is also attainable for the considered MAC

The generation process is equivalent to generating two different

linear codes
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Distributed Expurgation

The Error Exponent of MAC Channels

In toy example: single-user

random+expurgated

exponents are achievable

Extends to any MAC channel

that is finite-field summation +

single-user channel (e.g., BSC

MAC)

Advantage for any “similar”

channel (by continuity)

AWGN MAC channel -

constraints are a challenge.

For certain parameters -

improving on Gallager [’85]

General case: wide open.
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Distributed Hypothesis Testing
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Distributed Hypothesis Testing

Distributed Hypothesis Testing [Berger ’79]

X φX

ψ

iX ∈ MX

Ĥ

Y φY

iY ∈ MY

H0 : (X,Y) ∼ i.i.d. P0(x , y)

H1 : (X,Y) ∼ i.i.d. P1(x , y)

Rates: RX = 1/n · log |MX |, RY = 1/n · log |MY |

Error probabilities {ǫ0}, {ǫ1} as in standard hypothesis testing

But now, there is a tradeoff between rates, error probabilities and
blocklength

Long history: Ahlswede & Csiszár ’81, ’86, Han ’87, Shalaby & Papamarcou ’92,
Shimokawa et al. ’94, Han & Amari ’98, Rahman & Wagner 2012...
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Distributed Hypothesis Testing

Rate-Exponents Tradeoff

For (a sequence of) error probabilities {ǫ0(n)}, {ǫ1(n)}, the

exponential decay rates are defined as:

Ei = lim inf
n→∞

−
1

n
log ǫi(n)

Goal: Characterize the achievable region of (E0,E1) pairs subject

to the rate constraints

Two extreme (and natural) cases:

Side-information case: RY unconstrained

Symmetric rate constraints: RX = RY = R
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Distributed Hypothesis Testing

Binary Symmetric Case

Under both hypotheses, (X ,Y ) is a doubly-symmetric source

Noise / difference sequence: Z = (X + Y ) mod 2

Hi : Z is Bernoulli-pi , where p0 < p1 ≤ 1/2

The key point is that the type of Z is a sufficient statistic

For R ≥ 1, the unconstrained exponents are achievable: For any

p0 ≤ s ≤ p1,

E0(s) = Db(s‖p0)

E1(s) = Db(s‖p1)

where Db(·) is the binary KL divergence
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Distributed Hypothesis Testing

Side-Information Case: Random Binning [Shimokawa et al. ’94]

Base on Slepian-Wolf coding (random binning)

Decoder recovers the sources first (decoding similar to BSC

decoder with “channel” noise Z)

Key observation: under a binning error, typically the reconstruction

will not fall in the vicinity of Y

This gives a non-trivial exponent pair

Can be improved by using quantization

We have further improvements using geometric analysis (but not

in this talk...)

But what about the symmetric constraints case?
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Distributed Hypothesis Testing

Körner-Marton Reminder

X φX

ψ

iX ∈ MX

Ẑ

Y φY

iY ∈ MY

Z

Setting: Suppose we wish to compress the difference Z = X + Y

(X and Y BSS pair) in a distributed manner

Using SW (first reconstructing X,Y) requires:

RX = H(Z),RY = H(Y)
But KM showed that it suffices to require: RX = H(Z),RY = H(Z)

Again: linear codes are the way to go
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Distributed Hypothesis Testing

Körner-Marton Coding Scheme (crash course)

Let H be a parity-check matrix of a linear code of rate R

φX (X) = HX, φY (Y) = HY have rate 1 − R

The decoder evaluates HX + HY = HZ

Finally, a syndrome decoder is used

Ẑ = Z if and only if Z is inside the basic “Voronoi” cell

Same error event as in the side-information (SW coding) case
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Distributed Hypothesis Testing

Main Result

Achievable tradeoff for symmetric constraints

We can leverage KM coding to the distributed hypothesis problem

(Essentially the) same exponents are therefore achievable, as in

the side-information case

SW Random-binning DHT

↓ ↓
KM KM-style DHT

January 21, 2018 ACC Annual Workshop 24



Distributed Hypothesis Testing

Thank you for your attention!
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