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Outline

@ Introduction: Error exponent for single user channel
@ Overview of linear codes in network problems

@ Contribution I: Distributed expurgation using structured codes for
network problems — terminals use different linear codes

@ Contribution II: Distributed hypothesis testing using structured
codes — terminals use same linear code
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Introduction

Single-User Channel

X1, X N _
Transmitter ! ! p(y|x) Y Y Receiver

Memoryless channel

n
p(y1,---,yn|x1,--.,Xn) = H p(yt|Xt)

Basic definitions:
@ Blocklength n: number of channel uses
@ Codebook C: a set of M = 2" codewords (vectors of length n)
@ Average Error Probability: P =P (C # C>, where
C ~ Uniform (C)
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Introduction

Single-User Channel

Transmitter = p(y|x) Yoo Receiver

Memoryless channel

n
PV, YnlXe, . xn) = TT p(Velxe)

t=1

Basic tradeoff:

Tradeoff between number of codewords, blocklength and average error
probability

v
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Introduction

Single-User Channel

Transmitter _ p(y|x) _ Receiver

Memoryless channel

S

p(y1,--.,yn’X1,-..,Xn): 1p(yt‘xt)

t=

First-Order (Capacity): asymptotics in blocklength
Capacity C: Highest achievable rate with vanishing Pe as n — oo
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Introduction

Shannon Theory

@ Random Code: Symbol-wise (and codeword-wise) i.i.d. p(x)
@ Information Density:

@ Mutual Information:

I(X; Y) 2 Ei(X; Y)

Shannon’s Channel Coding Theorem ['48] (first-order characterization)

C=maxI(X;Y)
p(x)

@ maximization over all input distributions p(x)

January 21, 2018 ACC Annual Workshop



Tradeoff: Refined Analysis

@ There is a long history of finite blocklength bounds: Elias,
Feinstein, Gallager, ...

@ Polyanskiy et al. [2010] gave two simple achievability bounds (DT
& RCU). Disturbing point: neither dominates
@ We have resolved this issue (but not in this talk...)

@ Asymptotic analysis: the error event amounts to (except for low

rates)
n

(X" ym & %ZI(XK; Yy) <R
k=1
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Introduction

Asymptotic Bounds on the Information Density

The following asymptotics are with respect to the blocklength (for high
rates):

@ Central Limit Theorem (CLT): good for high Pe, dispersion
[Strassen 1962, Polyanskiy et al. 2010]

@ We have derived results regarding the extension to network
problems (but not in this talk...)

@ Large Deviations Principle (LDP): good for low Pe, exponent
Pr{i(X"; Y") < R} < exp{—nE(R)}

@ Similar lower bounds are known
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Error Exponent: Code Structure May Matter

@ High rates: typical error due to a
"bad" channel i(X™; Y") < R.
Random coding achieves the
exponent 0.7

-
@ Low rates: typical error due to "bad" 06 - - ~Best known
codewords (e.g. for BSC, minimum - 05
. . [
distance dominates) g
S04
@ Can be solved by expurgation of 2
random codes, or (almost all) linear 503
codes Woz2
@ Who cares about expurgation? For 0.1
almost noiseless (binary input) 0 ‘ ‘ O : ‘
0 0.1 02 03 04 05 06
channels Rate (nats)
Rex
— 1
C ¢

January 21, 2018 ACC Annual Workshop



Outline

@ Overview of linear codes in network problems
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But First: Why Linear Codes in Single-User Channel?

@ Whenever uniform distribution is optimal, linear codes achieve
capacity, exponents, dispersion

@ But no theoretical gain
@ Historically, interest was due to practical (complexity) advantages
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Distributed Structure

Why Linear Codes in Networks?

Contribution 1l (in this talk...)

@ Recent interest, reviving a theme introduced by Kdrner-Marton
1979: first-order (capacity) advantage in some network settings
(Nazer & Gastpar, Wilson et al., Philisof et al., .. .)

@ In this work: distributed hypothesis testing
K Terminals use the same linear code

Contribution | (in this talk...)

@ Error-probability advantage in network settings (even when no
first-order gain) — multiple-access (MAC) channel

@ Terminals use different linear codes

@ The prospect for such an improvement was hinted to in a
distributed source coding context by Csiszar [1982, “Linear Codes for
Sources and Source Networks: Error Exponents, Universal Coding”]
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Outline

@ Contribution I: Distributed expurgation using structured codes for
network problems — terminals use different linear codes
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MAC Channel

@ For simplicity 2 users

Xy ——>
Py1x, % |
Xg —_—

@ Capacity region: the closure of the convex-hull of all (Ry, Rz)

satisfying: Ro
1(X5; Y| X _ )
A< i) oe V) Ay + Re = 10X, %1 Y
Ry < I(Xz; Y| Xq)
Ry 4+ Ro < I(X3, X2, Y),
R
10X Y[X2) ™

over some product distribution p(x1, x2) = p(x1)p(X2)
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Toy Example: Erasure-Additive MAC Channel

Xi

( )X Erasure
—> Y
Channel

Xz

Obvious bounds on P,
@ Lower bound: single-user erasure channel
@ Upper bound: same with half blocklength (time sharing)

Is any of these bounds tight?
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What Can Be Achieved Using Random Codes?

@ Slepian & Wolf ['73], Gallager ['85]

@ Receiver’s perspective: sum of codebooks, C = Cy + (o

@ For random codes: summation preserves pairwise independence,
thus most standard bounds (RCU, DT, dispersion, random
exponent) hold

@ Codebook structure (e.g. minimum distance) is not preserved

@ But recall that minimum distance dictates error exponent at low
rates

@ Expurgation attempts recently by Nazari et al.: expurgate one
user (even for MAC channel with many users)
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Distributed Expurgation

Solution: Use Linear Codes

@ Create a linear sum-codebook (recall: inherently expurgated)
@ Simply split the generating matrix between users

@ At the receiver, the summation is indistinguishable from a single
user channel with the sum-rate

@ Performance identical to single user with the sum rate

@ Any performance that is attainable via linear codes over the
single-user channel is also attainable for the considered MAC

@ The generation process is equivalent to generating two different
linear codes
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The Error Exponent of MAC Channels

@ In toy example: single-user 07

random+expurgated 0.6k
exponents are achievable '

@ Extends to any MAC channel
that is finite-field summation +
single-user channel (e.g., BSC
MAC)

@ Advantage for any “similar”
channel (by continuity)

@ AWGN MAC channel -

constraints are a challenge.
@ For certain parameters - + “ #
improving on Gallager ['85]

@ General case: wide open.

Error Exponent
o o o
[

o
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Outline

@ Contribution II: Distributed hypothesis testing using structured
codes — terminals use same linear code
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Distributed Hypothesis Testing [Berger '79]

ixGMX

X — ox

iy€My

Y — oy

Ho : (X, Y) ~i.id. Po(x,y)
Hi: (X, Y) ~iid. Pi(x,y)
@ Rates: Rx =1/n-log|Mx|, Ry =1/nlog | My]|
@ Error probabilities {¢o}, {¢1} as in standard hypothesis testing

@ But now, there is a tradeoff between rates, error probabilities and
blocklength

@ Long history: Ahlswede & Csiszar 81, '86, Han '87, Shalaby & Papamarcou '92,
Shimokawa et al. ‘94, Han & Amari '98, Rahman & Wagner 2012...
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Distributed Hypothesis Testing

Rate-Exponents Tradeoff

@ For (a sequence of) error probabilities {ey(n)}, {e1(n)}, the
exponential decay rates are defined as:

o 1
Ei = I%rlggf—g log €i(n)

@ Goal: Characterize the achievable region of (Ey, E1) pairs subject
to the rate constraints
@ Two extreme (and natural) cases:

o Side-information case: Ry unconstrained
@ Symmetric rate constraints: Rx = Ry = R
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Distributed Hypothesis Testing

Binary Symmetric Case

@ Under both hypotheses, (X, Y) is a doubly-symmetric source

@ Noise / difference sequence: Z = (X + Y) mod 2

@ H;: Zis Bernoulli-p;, where py < p1 < 1/2

@ The key point is that the type of Z is a sufficient statistic

@ For R > 1, the unconstrained exponents are achievable: For any
Po < S < p1,

Eo(s) = Dp(s0)
Ex(s) = Dy(slp1)

where Dp(-) is the binary KL divergence
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Distributed Hypothesis Testing

Side-Information Case: Random Binning (shimokawa et al. 94]

@ Base on Slepian-Wolf coding (random binning)

@ Decoder recovers the sources first (decoding similar to BSC
decoder with “channel” noise Z)

@ Key observation: under a binning error, typically the reconstruction
will not fall in the vicinity of Y

@ This gives a non-trivial exponent pair
@ Can be improved by using quantization

@ We have further improvements using geometric analysis (but not
in this talk...)

@ But what about the symmetric constraints case?
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Distributed Hypothesis Testing

Koérner-Marton Reminder

iXeMX

iyEMy

@ Setting: Suppose we wish to compress the difference Z =X+ Y
(X'and Y BSS pair) in a distributed manner
@ Using SW (first reconstructing X, Y) requires:
Rx = H(Z), Ry = H(Y)
o But KM showed that it suffices to require: Rx = H(Z), Ry = H(Z)
@ Again: linear codes are the way to go
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Distributed Hypothesis Testing

Kdérner-Marton Coding Scheme (crash course)

@ Let H be a parity-check matrix of a linear code of rate R

@ ¢x(X) = HX, ¢y(Y) = HY haverate 1 — R

@ The decoder evaluates HX + HY = HZ

@ Finally, a syndrome decoder is used

@ Z = Zif and only if Z is inside the basic “Voronoi” cell

@ Same error event as in the side-information (SW coding) case
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Distributed Hypothesis Testing

Main Result

Achievable tradeoff for symmetric constraints

@ We can leverage KM coding to the distributed hypothesis problem

@ (Essentially the) same exponents are therefore achievable, as in
the side-information case

SW Random-binning DHT

1 1
KM KM-style DHT
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Thank you for your attention!
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