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Abstract

Boundary Snapping is an interactive image cutout algo-
rithm that requires a small number of user supplied control
points, or landmarks, to infer the cutout contour. The key
idea is to match the appearance of all points along the de-
sired contour to the landmark points, where appearance is
given by an intensity profile perpendicular to the boundary.
An optimization process attempts to find a contour that max-
imizes the similarity score of its points with the landmarks.
This approach works well in the typical case where the fore-
ground and background differ in appearance, as well as in
challenging cases where the subject is clearly perceived, but
the regions on both sides of the boundary are similar and
cannot be easily discriminated. By enabling the user to de-
fine the boundary points directly, the technique is not limited
to boundaries that necessarily have to be the most salient
or high gradient feature in the region. It can also be used
for margin cutout around the boundary. The use of multi-
ple control points along the boundary can handle spatially
varying attributes as both foreground and background may
change in appearance along the boundary. The final result
is accurate, because it allows the user to enforce hard con-
straints on the boundary directly, at the expense of moderate
user labor in positioning the landmark points. Finally, the
algorithm is fast, works on a variety of images, and handles
situations where the boundary is not obvious.

1. Introduction

Object cutout is the task of extracting, or segmenting, a

foreground object from an image. This has become a pop-

ular image editing operation with the advent of digital pho-

tography and can be found in almost every photo editing

software. Yet, despite its intuitive explanation, it proved to

be quite a challenging task and a battery of solutions was

proposed to solve it. These solutions vary in the way they

approach the problem and in the way the user is involved in

the process. Image cutout can be interpreted as a region-

based or a contour-based process. In a region-based ap-

proach, the algorithm aims at learning the statistics of the

foreground object and the background so that it is able to

find a boundary to distinguish between the two. In contour-

based methods, the algorithm aims at finding the contour,

which is usually presumed to be the most salient edge in

the region. User interaction can also be classified into two

categories, that are roughly aligned with the two types of

image cutouts discussed above. For region-based methods

it is natural to use scribbles, supplied by the user, that indi-

cate which pixels belong to the foreground and which to the

background. Contour-based algorithms, on the other hand,

typically track the cursor motion, as supplied by the user,

and constantly snap the contour to the closest salient edge.

Region-based algorithms do not provide direct control

over the boundary location. Instead, the user can update

the scribbles in the hopes of getting a better cutout result,

but the user cannot specifically mark the boundary. The

problem is aggravated when the statistics of the foreground

and background are similar. In this case, a considerable

amount of user interaction is needed to obtain a good result.

Contour-based methods seemingly allow the user a more

direct control by tracking the cursor and snapping to the

closest salient edge. However, this makes the implicit as-

sumption that the cutout contour is indeed the most salient,

or maximum gradient edge in the region. Also, tracking

the cursor motion is an online algorithm that is inherently

more difficult than batch algorithms such as scribble based

methods, that take all the scribbles into account before com-

puting the contour cutout. This often means that user input

must closely follow the desired boundary to avoid snapping

to erroneous edges.

Given these considerations, we introduce a new variant

of contour-based image cutout that relies on a user input

taken from the region-based approach. It allows the user

to mark the boundary directly, just like in contour-based

methods, but instead of tracking the entire contour of the

object, which may become tedious, it requires just a small



Figure 1. Results of boundary snapping on various image types. The foreground and background exhibit similar texture and yet, our

algorithm has no problem finding the correct boundary cutout using a minimal amount of user interaction.

number of control points, like the scribbles used in region-

based methods. The system then builds a generative model

of the boundary profile and computes, in real time, a bound-

ary whose points resemble in content, as much as possible,

the control points. We represent each boundary point as a

1D intensity profile in direction orthogonal to the boundary.

The intensity profile is a rich descriptor that improves the

segmentation process. We also use it for Margin Cutout,

where we segment the object with some margin that is

learned automatically from the intensity profile. As a re-

sult, the user enjoys complete freedom and control in mark-

ing the boundary of the object. Creating a Margin Cutout

is useful in a variety of applications (e.g. medical applica-

tions) where the cutout must be away from the natural edge

defining the boundary. Using a descriptor with higher di-

mensions is obviously possible [e.g. textures] but we found

the simple 1D profile to be sufficient and adequate for the

real time interactive performance we set to achieve.

Our technique requires the user to provide a sufficient

number of control points to characterize the whole bound-

ary, which in simple cases might be somewhat redundant.

However, as can be seen in Figure 1, our results show accu-

rate cutouts of various difficult examples, all of which are

achieved in a few seconds of interaction and with very lim-

ited user input.

2. Background
Image segmentation has long been known to be a chal-

lenging problem and the research on the topic is too vast

to be covered here. We focus on the work most relevant to

ours.

Our method is focused on interactive boundary-based

image cutout. This theme was explored in the past with

great success [9, 10, 5, 12]. Typically this is done by con-

stantly following the cursor motion and ”snapping” to the

nearby edge. Unfortunately, this requires the user to manu-

ally track the entire object boundary, albeit roughly, to ob-

tain a satisfactory result. Others have suggested assuming

the shape of the object is either known in advance [4] or a

previous set of images have been used to train a boundary

classifier [8].

Alternatively, one can take a region-based approach

[13, 1] and use graph-cuts [2, 14, 3], where the user in-

dicates on a small number of pixels if they belong to the

foreground or the background and a discrete optimization

is then used to find a boundary based on user input. This

approach can show partial results, so the user can review

the cutout and then add, remove or modify the input to im-

prove the result. Typically, in region based methods it is

difficult to achieve pixel-accurate image cutout, because the

user does not precisely define the boundary points directly.

Graph cut methods rely on region labeling to simplify

user interaction [2]. The user identifies a sample of ob-

ject and background pixels. A graph is constructed with

weighted edges according to the similarity and vicinity to

the identified pixels. The boundary is defined as the min

cut through the graph. Since it is based on region labeling,

graph-cut methods do not let the user specifically define a

desired boundary in areas where the results are locally not

satisfactory. This has been recently amended by the Lazy

Snapping approach [7]. The approach starts as a graph cut,

but once the initial segmentation is obtained it switches to

polygon representation that the user can edit. The use of

both region and contour based interaction provides a very

flexible tool that can be both fast and delicate as needed due

to an adaptive combination of region and edge based energy

functional. However Lazy Snapping might fail when the

foreground and background share a similar texture. In con-

trast, our approach can handle such cases because it models

the boundary directly, albeit, at the expense of increased

user interaction.

We take a contour-based approach with a region-based

user interface. Instead of requiring the user to track the en-

tire boundary of the object, which can become tedious, we

require him to specify only a small number of landmark

points, that serve as hints. Instead of indirectly specify-

ing the boundary, by scribbling over foreground and back-

ground pixels, we let the user directly mark pixels on the

boundary. The result is an extremely fast and easy to use

system that gives the user a direct control over the cutout

process. In addition to relying on image data in determining

the object boundary, we use shape priors, such as smooth-



ness in a manner akin to active contour methods, such as

snakes and level sets [6, 11].

It is worth noting the difference between our method and

active contour methods. These methods optimize a global

objective function that integrates many terms, including re-

gion, boundary and gradient orientation, to name a few.

Thus offering a less direct control over the process, as well

as a lower degree of user interaction. Usually, a single seed

point is needed to initiate active contour methods. Also,

the relative weight of the various terms is often established

empirically. Our method does not assume the boundary to

be the salient edge or maximum local gradient in the re-

gion. We let the user input define the desired attributes of

the boundary and thus are not misled by strong but irrele-

vant edges. The most important distinction is that we fo-

cus on an interactive user interface that allows the user to

closely control the algorithm and offer real time feedback.

The user does not specify a seed point and let the active con-

tour methods run its course. Instead, the user is constantly

in the loop, adjusting the input to achieve the desirable out-

come.

3. Boundary Snapping
Our approach starts with some initial user input. The

user interactively places few control points where the bor-

der of interest is. These landmarks are not necessarily lo-

cated on local maximal or most significant gradients. The

user marks several landmarks that model the characteristics

of the boundary and the algorithm then evolves a polygo-

nal snake that is as similar as possible to the landmarks in

its behavior. In addition to the image based attributes our

algorithm maintains the smoothness of the contour to as-

sure robust results. The result of the cutout is continuously

displayed to the user to enable additional input where local

results are not satisfactory.

3.1. Evolving polygonal contour

The polygonal snake P = {pi}n
i=1 consists of an ordered

set of n vertices, where C = {c1, · · · , cs} ⊆ P denote the

control points (i.e. points marked by the user). For each

edge defined between the control points ci and ci+1 we add

m vertices. Thus, the line connecting each pair of consec-

utive landmarks is broken into m + 1 line segments. The

polygonal snake is refined during the evolution of the snake.

The objective function to be optimized, over the image

I, is given by:

G(P,C, I) = Gext(P,C, I) + λGint(P ), (1)

where λ is a regularization scalar, and Gext and Gint de-

note the external and internal forces that influence the snake

evolution, respectively. The control points C are restricted

to remain at the user defined location, while the rest of the

Figure 2. Description of the boundary normals. The algorithm at-

tempts to move the boundary (blue line) such that the intensity

profiles of normals along it (light brown line segments) will match

those of the landmark points (green points). The intensity profiles

of the landmark points are not shown for better visibility.

vertices in P can move to optimize G. The external com-

ponent is driven by the landmarks C and the input image

I seeking to place the boundary where it best matches the

attributes of the image as defined at the control points. The

internal component aims at keeping the boundary smooth

by favoring consistent displacement trends in neighboring

vertices. The internal forces lead to an iterative process

where each vertex is affected by its neighboring vertices.

The global term of G evolves during the iterations being a

sum of a similar functional for each vertex. A higher con-

tribution of a specific vertex means a higher confidence in

the position of this specific vertex on the boundary.

3.2. External forces

The external forces rely on image data to drive the pre-

ferred location of boundary. We apply a learning pro-

cess in which the control points define the attributes of

the desired boundary. Given a pair of consecutive control

points, {ci, ci+1} we denote the vertices between them by

{pk}m
k=1 ⊂ P . Initially these points are equally placed on

the edge {ci, ci+1}. Let δ(pk) denote a 1D profile along the

local normal to the borderline and centered around pk. The

profile is a 1D vector having the underlying pixel values of

the image on both sides of the borderline. The vector repre-

sents the local attributes of the borderline (see Figure 2).

The total value of the external force term is given by:

Gext(P (t), C, I) =
n∑

k=1

Gscore(p
(t)
k , C, I) (2)

where P (t) denote the polygonal snake at iteration t, and

Gscore is a correlation function that scores the extent to

which a profile at a specific point p
(t)
k matches the profile

of the near by control points. We assume that the profiles

change smoothly along the boundary, thus the score of p
(t)
k



(a) (b)
Figure 3. System evaluation. The user first marks four points on

the boundary of the object. The system creates, in real time, an

initial boundary (a). Adding one more point (b) allows the system

to calculate a new and accurate boundary. With five mouse clicks,

the user can cutout the object of interest.

depends on how well its profile matches δ(ci) and δ(ci+1).
Each of the two scores of p

(t)
k are weighed by its arc length

distance to each of nearby control points.

Gscore(pk) = (1− α)Gmatch(δ(ci+1), δ(pk)) (3)

+ αGmatch(δ(ci), δ(pk))

where

α =
dist(pk, ci+1)

dist(pk, ci) + dist(pk, ci+1)

Gmatch is a correlation function to grade how well any

two profiles share similar image attributes:

Gmatch(δ(x), δ(y)) = 1−
∑L

l=1 abs(δ(xl)− δ(yl))
L ·Θ (4)

where δ(x) and δ(y) are two intensity profiles to be com-

pared and Θ is a normalization term equal to the maximum

value of the three (δi, δi+1, δk).
The search for the best candidate point is done along a

segment defined by the outward normal at pk. A set of S
candidate points are taken along the normal. The search

range is centered around the current location of pk to allow

updating its location in either way. For each candidate Si

we compute the external force score Gscore(Si).

3.3. Internal forces

The external forces find, for each point pk, the optimal

displacement based on the profile matching out of all can-

didates. This is the displacement,that will maximize the

match between the intensity profile of the point pk and

its two nearest control points. However, to assure smooth

and locally consistent results a term in the form of internal

forces is added. This smoothness term will give higher pref-

erence to candidates whose proposed displacement is simi-

lar to that of the local neighborhood. The set of neighboring

points that will affect pk is denoted by N(pk).

original image with control points super-imposed

λ = 0.5 λ = 1.5 λ = 2
Figure 4. Evaluating the importance of internal forces. We com-

pare three identical cases, where the only difference is the weight

of the internal forces (the parameter λ, in equation 1).

For each neighboring point qj ∈ N(pk) we find its pro-

jection on the normal of pk. We compute a weighted aver-

age of all these projections based on the confidence level of

G(qj) in the previous iteration t − 1. The weighted aver-

age point will be the proposed location for pk based on the

internal forces and is given by:

d =

∑
j∈Ni

G(q(t−1)
j )(q(t−1)

j − p
(t−1)
k )·n(t−1)

i
∑

j∈Ni
G(q(t−1)

j )
(5)

Considering all the potential candidates {s1, . . . , sk},
the internal force term will prefer the one that has the min-

imal projection distance to the average projection d. The

projection score for each candidate along the normal to pk

is given by:

Gp score(si) = 1− |si − d|
|s0 − sk| (6)

The selected candidate si is the one where the com-

bination of the external and internal terms Gscore(si) +
λ·Gp score(si) is maximized.

This iterative process continues until the selected candi-

dates and thus the location of all vertices in P show con-

secutive displacements that are below a preset threshold.

The result is a maximization of the combined functional of

the boundary. Dynamic programming techniques were also

considered in implementing this concept however the key

novelty of unconstrained boundary definition is not sensi-

tive to the implementation technique.



(a) Original image with control points super-imposed (b) cutout

(c) Initial boundary (d) after 5 iterations (e) after 12 iterations
Figure 5. Iterations of the algorithm. The top row shows the original image (a) and the cutout (b). The bottom row (c-e) shows the

iterations of the algorithm, given the control points. Within 12 iterations, the system found a boundary whose points match the control

points sufficiently well. The entire process runs in real time. The attached heat maps show in color the score of candidate points along a

normal in each iteration starting. Initially scores are low and wildly spread but as the polygonal snake evolves the score becomes higher

(”hotter”) and tightly converges to the boundary.

(a) Boundary Snapping (b) Lazy Snapping

(c) Boundary Snapping (d) Lazy Snapping
Figure 6. Comparison between Boundary Snapping and Lazy Snapping. Obtaining high quality cutouts requires a comparable amount of

user interaction in both methods. However, our approach directly addresses the boundary, giving the user a direct control over the expected

result.



4. Results
We have implemented the method, tested it on a wide

variety of images and compared it to previously published
techniques. In the first experiment, we show how the sys-
tem is used. The user marks a small number of landmarks
and a rough initial polygonal contour is created. The user
can visually inspect the result and keep adding points until
the outcome is satisfactory. We observed that in practice a
small number of control points, quite often less than ten, are
enough to cutout an object. Figure 3 shows a couple of im-
ages depicting this process. To better understand the roles
of the internal and external forces, we fixed the number of
landmark points and ran the algorithm multiple times, using
different weights for the forces. As can be seen in Figure 4,
different weights lead to different boundaries. But we found
that in general a weight of around 0.7 gives satisfactory re-
sults.

Next, we evaluated the quality of our 1D appearance pro-
file. This was done by computing a heat map that measures
the similarity of different pixels to the landmarks. Figure 5
shows an example of an image and its associated heat map.
As can be seen, the 1D profile used to model the boundary
gives a good measure for boundary point similarity.

We demonstrate the effectiveness of the 1D intensity pro-
file for Margin Cutout. In several medical applications this
comes in handy. For example, in case of tumors it is often
required to segment the tumor with a margin, to help in the
treatment program. Figure 7 demonstrates this capability.
Observe that there was no need to modify the algorithm at
all.

We then compared boundary snapping to three leading
techniques: lazy snapping (Figure 6), level-sets (Figure 8)
and intelligent scissors (Figure 9). As can be seen, bound-
ary snapping compares favorably with these state-of-the-art
techniques. We achieve comparable results to Lazy Snap-
ping using similar number of user input cues and applying
their graph cut algorithm (without further locally editing the
result). Moreover, observe in (Figure 6) (b) that there is an
error in the Lazy Snapping in the boundary separating the
two birds. The boundary is not obvious and it might be dif-
ficult to correct this in Lazy Snapping. It is not clear what
scribble should be made to indirectly affect the correct esti-
mation of the boundary. Our algorithm, on the other hand,
exhibits better results, and correcting errors is straightfor-
ward and simple. The second comparison shows similar re-
sults but required additional strokes on the Lazy Snapping.
In addition it can be seen that (Figure 6) (d) is still not opti-
mal at the bottom part of the cutout.

In the comparison to level sets we achieve superior re-
sults, albeit using about twenty control points. This is
clearly much more than the minimal input supplied to the
level set (just a seed point). However, our method gives
the user complete control and makes it easy to add control

(a) L = 10 (b) L = 20 (c) L = 30
Figure 7. Margin Cutout: Segmenting an object with a margin. In
medical applications it is often desired to cutout an object with a
margin. Our Boundary Snapping automatically learns the required
margin from the intensity profile of the control points. In the fig-
ures, the size of the intensity profile L was changed from 10 to
30.

points until the results are satisfactory. In the case of Intel-
ligent Scissors we achieve comparable results by clicking
on just 11 points, as opposed to roughly tracking the entire
boundary of the lamb. These comparisons demonstrate the
advantages of our method and the effectiveness of our user
interface.

Finally, Figure 10 shows results of image cutouts on a
wide variety of images, including natural, outdoors images
and medical images. As can be seen, a relatively small
number of control points is sufficient to obtain high quality
cutouts. These are challenging examples for many reasons.
Figure 10 (a) has many misleading edges around the desired
boundary. The texture of the objects is very diverse in color
and texture. Yet, our approach restricts its search to local
area around the control points and is thus not obstructed by
the misleading edges in the region. Figures 10 (b-d) show
that the technique is robust to somewhat vague boundaries
as well. The tissue boundary on the medical image and the
”furry” nature of the boundary in the kitten pose an accuracy
challenge to cutout techniques. With minimal user input our
technique provides a very accurate cutout due to the ability
to directly control the boundary. Figures 10 (e-f) show cases
in which the relationship between the object and the back-
ground is not consistent along the boundary and in some
cases hardly distinguishable. However with very few con-
trol points Boundary Snapping results in accurate cutouts.

5. Conclusions

We presented Boundary Snapping, an interactive image
cutout algorithm. It lets the user directly mark several points
on the boundary and then attempts to match the appearance
of the entire boundary with that of the user specified con-
trol points. The approach works very well in typical cases,
where the foreground and background differ in appearance,
as well as in challenging cases where the subject is clearly
perceived, but the regions on both sides of the boundary are
similar and cannot be easily discriminated. Our approach
can handle these cases because it models the boundary di-



(a) Boundary Snapping (b) Level Set
Figure 8. Comparison between Boundary Snapping and Level Sets. Level set achieves impressive result, using just a single seed point.

However, the result is not perfect and it is not clear how to modify the input to improve the cutout. Boundary Snapping, on the other hand,

gives better results and offers a direct control of the process, albeit at a modestly higher user interaction.

(a) Boundary Snapping (b) Intelligent Scissors
Figure 9. Comparison between Boundary Snapping and Intelligent Scissors. Both methods produce similar cutouts, but differ in their

interface. Intelligent Scissors requires the user to roughly track the entire contour of the object, while Boundary Snapping requires the user

to click a small number of control points.

rectly, albeit, at the expense of increased user interaction.

Furthermore, the boundary of the subject does not necessar-

ily have to be the most salient or high gradient feature in the

region. It gives the user full control to characterize the sig-

nificant boundary and is not obstructed by misleading edges

or spatial changes in the object or the background. The al-

gorithm is fast, providing immediate visual feedback to the

user, and robust, working on a variety of images, including

line drawings, natural images and medical images, to name

a few.
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