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Abstract
Semi Global Boundary Detection (SGBD) breaks the image into scan lines in
multiple orientations, segments each one independently, and combines the results
into a final probabilistic 2D boundary map.

The reason we break the image into scan lines is that they are a mid-level
image representation that captures more information than a local patch. Luckily,
scan lines are 1D signals that can be optimally segmented using dynamic pro-
gramming, and we make the assumption that the border pixels between segments
are boundary pixels in the image.

This leads to a simple and efficient algorithm for boundary detection. The
entire algorithm requires little parameter tuning, works well across different data
sets and modalities, and produces sharp boundaries. We report results on several
benchmarks that include both color and depth.

Keywords: Edge / Boundary Detection, Semi Global Matching

1. Introduction

The goal of this work is to accurately detect and localize boundaries in natural
scenes using image measurements along scan lines. We use Dynamic Program-
ming (DP) to find an optimal segmentation for each scan line and take the bound-
aries between these 1D segments to determine boundary pixels in the image.

Boundary pixels can be recovered either locally or globally. Edge detection
algorithms are local in the sense that they determine if a pixel is a boundary pixel
based on a local patch around it. Global methods, on the other hand, partition the
image into regions based on global considerations. The boundary pixels then are
taken to be the boundaries between regions. The two approaches can be combined
with local methods providing important cues to a global algorithm.

We propose a mid-level image representation that is based on scan lines in
different directions (e.g., rows, columns). Scan lines are not local, because they
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extend beyond a local patch. On the other hand, they are not global, because a
scan line does not span the whole image. The reason we use scan lines is that
they are a 1D signal and there are efficient and optimal algorithms for segmenting
them.

Interestingly, a similar approach works quite well in stereo. There, Semi
Global Matching (SGM) [1] solves stereo matching by breaking the image into
multiple scan lines in different directions and finding an optimal stereo matching
for each scan line independently. The results from all scan lines are later combined
to give the final stereo matching solution. SGM-based algorithms are consistently
ranked at the top of various stereo benchmarks such as the Middlebury data set
[2] and the KITTI dataset [3].

Our algorithm, termed Semi Global Boundary Detection (SGBD), breaks an
image into multiple scan lines in different directions. It then segments each scan
line multiple times with different number of segments per scan line and different
feature channels. Each such segmentation give rise to boundary pixels and be-
cause we collect statistics of each segment within a scan line we can determine
the strength of boundary pixels. The results are then aggregated to obtain a final
probability map.

The proposed algorithm enjoys a number of favorable features. It requires
tuning just a small number of parameters and we tune them only once on the the
BSDS500 training set. Once tuned, it performs consistently well across a wide
range of image data sets and imaging conditions. This includes indoor as well as
outdoor images, RGB as well as depth images and clean as well as noisy images.
This is an important quality of the algorithm because we do not know who is
going to use it and on what type of images. Finally, the algorithm is simple to
implement, quite fast in practice, and can be easily made to run in parallel on a
GPU (The source code will be released).

2. Background

The literature on edge detection is vast and will not be covered here. A popular
and early edge detector that is still in use today is the Canny edge detector [4] that
detects a peak in gradient magnitude in the direction normal to the edge.

A trend in recent years, though, is to learn edge detectors. Martin et al. learn to
detect natural image boundaries using local brightness, color and texture cues [5].
Dollar et al. use a boosted classifier to classify each pixel based on its surround-
ing patch [6]. Mairal et al. use discriminative sparse image models to learn class
specific edge detectors [7]. Ren and Bo learned sparse codes of patch gradients
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[8]. Recently, Dollar and Zitnick [9] used structured forest for fast edge detec-
tion. Leordeanu et al. [10] proposed a closed-form solution to the generalized
boundary detection problem. They assume that boundaries often coincide across
multiple channels and fit them with a linear model. This is reduced to solving an
eigenvector problem.

These different edge detectors fit the framework of Arbelaez et al. [11] that
also proposed a contour detection based on multiple local cues. They further
showed how the output of any contour detection can be fed into a globalization
framework based on spectral clustering that leads to an automatically generated
hierarchical segmentation.

Recently, Isola et al. [12] introduced a crisp boundary detection algorithm
that relies on pointwise mutual information. In particular, they observe that pixels
belonging to the same object exhibit higher statistical dependencies than pixels
belonging to different objects. These dependencies are used as local cues for
spectral clustering [11].

Andres et al. [13] treat the problem of image segmentation as a multi-cut
problem that can be solved using Integer Linear Programming (ILP) with an ex-
ponential number of constraints. However, they can find the violating constraints
in polynomial time and add them iteratively. This gives a practical solution to the
multicut problem which is NP-hard.

Our algorithm is inspired by the work of Hirschmuller on Semi Global Match-
ing (SGM) [1]. He used SGM to solve stereo matching by breaking the image into
multiple scanlines in different directions and finding an optimal stereo matching
for each scanline independently. The results from all scanlines are later combined
to give the final stereo matching solution.

SGM uses Dynamic Programming to find the optimal disparity assignment per
scanline. We use Dynamic Programming as well, but use it for segmentation and
not labeling. In fact, our work closely follows the original work of Bellman that
used Dynamic Programming for a piecewise linear approximation of curves [14].

It is instructive to relate our work on segmenting scan lines to work on image
segmentation using graph cuts. For example, Zabih and Kolmogorov [15] pro-
posed an EM procedure for unsupervised image segmentation. The M step divides
the pixels into categories (without enforcing spatial coherency) using a standard
clustering technique (i.e., k-means). The E step runs graph-cut [16] to segment
the image into spatially coherent regions based on the current category estimates.
The advantage of such an approach is that it works on the entire image at once.
On the downside, observe that it combines two non-optimal steps (graph-cuts and
k-means). In fact, this is also done in the case of interactive image segmentation
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Figure 1: 1D Segmentation: (a) Input image with a diagonal scan line superimposed. (b)
Optimal segmentation to 2 (up), 9 (middle) and 15 (bottom) segments. (c) The estimated
probability p(k) of the number of segments for the scan line. Observe that segmenting the
scan line into 9 segments gets a much higher probability score.

[17, 18] where user scribbles provide the unary potentials, based on a GMM of
color distribution of the object, for graph-cut to segment the image.

We could have replaced the graph-cut step with a variant of SGM. After all,
SGM was designed to optimize the same MRF based objective function as graph-
cuts. Instead, we prefer to work on one scan line at a time. This lets us find the
optimal segmentation in one step, albeit for a single scan line. The second step,
of combining multiple 1D segmentation results into a global and consistent 2D
boundary map, is done in a probabilistic way, as we show later in the paper.

Superpixels [19] can also be used in conjunction with graph-cuts to segment
an image. For example, SLIC (Simple Linear Iterative Clustering) [20] propose
a simple, linear and iterative clustering algorithm that over-segments an image
into superpixels. The superpixels are then used in conjunction with graph-cuts
to obtain the final image segmentation. The final boundary map is based on the
boundaries between segments.

Our work is related to that of Han et al. [21] who also used Dynamic Program-
ming to segment images. However, they show their method on a single synthetic
image and do not report results on any real world images, nor do they report
quantitative results. We, on the other hand, show how to deal with texture, how to
merge results from multiple channels, and report results on several data sets.

3. The Method

Let x = [x1,x2, ...,xN ] denote a scan line where xi is the value of the pixel at
location i. We are interested in the probability p(ei|x) of pixel i to be a boundary
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pixel between two segments, when segmenting the entire scan line x into k seg-
ments. Since we don’t know the number of segments k ahead of time we apply
the law of total probability and obtain:

p(ei|x) =
K∑
k=1

p(ei|x, k)p(k|x). (1)

In words, the probability p(ei|x) is marginalized over all possible segmen-
tations of x into k segments. Clearly, there are many ways to segment x into
k segments and we make the simplifying assumption that only the optimal seg-
mentation matters. We show how to find the optimal segmentation in section 3.1.
Since k is not given ahead of time we show how to compute p(k|x) using the
principal of Minimum Description Length (MDL) in section 3.2. In section 3.3
we show how to estimate p(ei|x, k) which is the local probability of a pixel to be
an edge pixel, given that x is segmented into k segments.

3.1. Optimal Segmentation of 1D Signals
We wish to find an optimal segmentation of x into k segments, where each seg-

ment is represented by a model (e.g., constant, linear, etc...). To do so, define an er-
ror function err(i, j) that determines how well the model approximates the points
xi, · · · ,xj . Let OPTk(n) denote the optimal error of segmenting [x1,x2, ...,xn]
into k segments. We are interested in OPTK(N) and can find it using the follow-
ing recursive equation:

OPTk(N) = min
1≤m≤N−1

{OPTk−1(m) + err(m+ 1, N)}

With the initial condition OPT1(m) = err(1,m). This can be solved using dy-
namic programming. By backtracking OPTK(N) we can find the set of transi-
tions (i.e., edge pixels) as well.

The complexity of the algorithm isO(N3) because we need to compute err(i, j)
for O(N2) pairs and each such operation takes O(N). This can be reduced to
O(N2) by using an integral scan line (i.e., a 1D integral image). For an image
of size N × N pixels, the overall complexity of the algorithm is O(NKN2) =
O(N3), where N is the length of the scan line (say, width or height of the image)
and K is the maximum number of segments per scan line (K is a small constant).
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3.2. Estimating Number of Segments
The optimal segmentation algorithm described above assumes the number of

segments,K, is known. This is not the case in practice. We cannot choose aK that
minimizes the segmentation error because the error is monotonically decreasing
as K increases. Instead, we use the Minimal Descriptive Length (MDL) principle
that penalizes the model as the number of parameters (i.e., segments) increases.
It was shown in [21] that the MDL factor for a piecewise polynomial function
with degree P and white additive Gaussian noise is proportional to KPln(N).
Therefore, we define the MDL error for k to be:

MDLE(k) = OPTk(N) + λkP ln(N) (2)

where λ is a regularization weight balancing the measured error with the number
of segments used. Minimizing (2) implies that there is only one correct value for
k. A better alternative is to estimate the probability distribution function (pdf) of
k. To do so, we normalize it into a probability:

p(k|x) = 1

Z
· exp

{
−MDLE(k)−MDLEmin

σ2

}
(3)

Where MDLEmin is the minimal value of (2) over all k, Z is a factor that nor-
malizes the distribution p(k) and σ2 is a tunable parameter that controls the spread
of p(k). This gives us the probability of segmenting x into k segments. Figure 1
illustrates this. It shows an image with a diagonal scan line superimposed on it.
Next to it we show the results of optimally segmenting this 1D line into differ-
ent numbers of segments. As can be seen, p(k), the probability of the number of
segments, for this scan line peaks at k = 9.

3.3. Estimating Local Edge Strength
Once we segment x into k segments we need to assign a probability to each

boundary pixel found by that segmentation. For example, we can set

p(ei|x, k) = 1k(xi) (4)

where 1k(xi) is an indicator function that equals 1 if xi is a transition pixel when
optimally segmenting x into k segments and zero otherwise. This means that all
edge pixels found for a particular value k have the same probability. Clearly, this
is not true in practice and we must augment 1k(xi) with some local edge esti-
mation. For example, we can approximate each segment with its mean and take
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the difference of the means to the left and right of the edge pixel to measure local
edge strength. This did not work well in practice. The reason that the difference of
means failed is that it falsely enhanced edges inside textured areas, where bound-
aries do not exist. In also falsely punished edges between two textures that are
very different but have similar means.

This is why we introduce texture as a way to measure edge strength. Specif-
ically, we calculate a histogram of textons for every segment. We then take the
local edge strength to be the chi-square distance between the texton histograms to
the right and to the left of the boundary. Formally:

p(ei|x, k) = 1k(xi)χ
2(hL,xi

, hR,xi
) (5)

where hL,xi
and hR,xi

are the texton histograms to the left and right of the edge
pixel xi, respectively.

We calculate the texton histograms in a method similar to [11]. Given an input
image, we convert it to Lab space and work on the L channel. We convolve the L
channel with 16 Gaussian derivative filters, then cluster the 16D vectors into 32
prototype textons using k-means and assign each pixel to the closest prototype.

It is worth comparing the approach we take to the one taken by Arbelaez et al.
[11]. There, edge pixels are first detected using a fixed scale local operator and
then merged into a global solution using normalized cuts. Here, on the other hand,
edge pixels are first detected in a semi-global manner. Then we estimate the local
edge strength at those points. This allows us to use adaptive scale. For each edge
pixel we look at the segments to its left and right, extract a histogram of textons
and measure the chi-squared distance between the two histograms.

4. The Algorithm

Section 3 described the method we use for a single scanline. Here we provide
the overall algorithm. It consists of the following steps:

1. Semi-Global Smoothing the image.
2. Running the 1D method on each scan line.
3. Merging the 1D results to produce a 2D edge map.

As an optional post-processing step we run the Ultrametric contour map algorithm
[11]. Algorithm 1 gives the pseudo-code.
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4.1. Semi-Global Smoothing
We work in Lab space and observe noticeable jpeg compression artifacts, esp-

cially in the a and b channels, that cause multiple spurious edges. Smoothing the
image with a median, Gaussian or bilateral filter did not eliminate these artifacts.
Therefore, we perform semi-global smoothing. Figure 2 illustrates semi-global
smoothing on the L, a and b channels of an image.

Semi-global smoothing relies on 1D segmentation to determine the spatial
extent of smoothing. Specifically, let xi ∈ sk(j) denote that pixel xi belongs to
the j-th segment when segmenting x into k segments. Then the smoothed value
of xi is set to:

xSmooth
i =

∑
k

p(k|x) · µsk(j) (6)

Where µsk(j) is the mean of segment sk(j). This smoothing operation is quite
strong, so for the a and b channels we average it with the original channels. The
L channel was not smoothed. In addition, we normalize the mean and variance of
the image to a global mean and variance that was computed once on the BSDS500
training set.

Once we have smoothed the a and b channel, and have normalized all three
channels for mean and variance, we run our method on each scan line in each
channel in each direction.

4.2. Merging 1D Results to 2D Edge Map
After running our method on all scan lines we end up with four 2D proba-

bility maps per channel. These maps are the result of running the algorithm in
different directions (i.e., rows, columns and both diagonals). Each map indicates
the probability of a pixel to belong to a boundary (i.e., edge) that is in a direction
perpendicular to the scan line.

We merge the edge maps in each direction by taking the maximum across
the different channels, as each channel reflects different properties. This gives us
four edge maps, one per direction that encodes edge information from all chan-
nels. Finally, we determine the orientation of each boundary pixel by projecting
the four maps onto several orientations and picking the one that maximizes their
combination.

As a final step we feed our edge maps to the Ultrametric contour map al-
gorithm [11]. As an input to the oriented watershed transform we provide a
smoothed version of the four probability maps that we calculated. In addition
[11]’s code expects 8-channels, so we averaged the results of consecutive angles,
0◦ with 45◦, 45◦ with 90◦ and so on, to extend the 4 directions into 8. A pseudo-
code of the algorithm is given in Algorithm 1.
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Figure 2: Semi Global Smoothing: top row shows L, a and b channel respectivly. Bottom
row shows the semi-global smoothed versions. The jpeg artifacts, appearing mainly in the
a and b channels mostly disappear while boundary information is preserved. (In practice
we only smooth the a and b channels and keep the L channel intact.)

Algorithm 1
Input image: IN×M

Edge probability: EN×M

1: I ← rgb2lab(I)
2: I ← smooth(I) // using equation (6)
3: for direction d ∈ {rows, cols, diag45◦ , diag−45◦}
4: for channel c ∈ {l, a, b}:
5: foreach scanline evaluate p(k|x) and p(ei|x, k) // using equations (3),(5)
6: Ed

c (ei)← p(ei|x, k) // using equation (1)
7: Ec ← minc(E

d
c )

8: for angle a ∈ {0◦, 45◦, 90◦, 135◦}
9: Ea ←

∑
c(Project Ec on a)

10: E(ei) = maxa(Ea)
11: Eucm ← im2ucm(E) (optional) // using [11]
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5. Results

We report results on a number of datasets. The first is the original Berkeley
Segmentation Data Set (BSDS300), the second is the new and larger BSDS500,
and the third is the NYU RGBD data set. On the NYU dataset we report results
on the RGB component as well as the depth component, in addition to results
on RGBD. This dataset was used by Ren and Bo [8] to evaluate edge detection
using RGB or RGBD images. Their algorithm requires training and they use a
60%/40% training/testing split. We don’t use the training set and report results
on the test set only. We also demonstrate the tolerance of the algorithm to noise,
and perform an experiment on BSDS500 images that are corrupted with white
Gaussian noise.

All experiments were carried out with the same parameters. The parameters
were tuned using the 200 training set images of the BSDS500 data set. Once
tuned, these parameters are fixed in all the experiments reported here. The param-
eters that needs to be tuned are γ, the tradeoff between segmentation error and the
MDL factor, and σ, std of the Gaussian kernel for estimating p(k). To do that, we
started with a 3 × 3 grid of values and evaluated the F-measure. We found the
point on the grid with maximal F-measure and repeated the process with a finer
grid centered at it. We repeated the process until there was no significant increase
in F-measure (3 iterations). It turned out that σ2 = 15 was optimal across all
channels and γL = 0.1, γa = γb = 0.7, γdepth = 0.1 were optimal for the L, a,
b and depth channels, respectively. All parameters were tuned with maximal K
equals 20 (we observed that p(k) for k ≥ 15 is negligible).

5.1. Experiments
Table 1 show results of our algorithm on the BSDS300 and BSDS500 datasets

and compares it to several other methods. On the BSDS300 data set, our algorithm
achieves a result of F = 0.69. On the BSDS500 data set we achieve a score of
F = 0.72 which is slightly worst than recent results of [11] (F = 0.73) and [8, 9]
(F = 0.74). We report here the results on the test set but it is worth noting that
the performance of our algorithm are the same on the train set as well. This is an
indication that the algorithm is very stable and performs consistently well across
a wide range of image data sets and imaging conditions, as will be described later
in the section.

For the BSDS500 dataset we report the results of three variants of the algo-
rithm. The first variant, termed SGBD-naive, only uses equation 4 and does not
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Figure 3: BSDS500 results: Top first row shows BSDS500 images. The bottom three
bottom rows show the boundary probabilities for SGBD-naive, SGBD and SGBD-owt-
ucm. Columns show image with (a) min recall, (b) max recall, (c) min precision, and (d)
max precision. These are the probability maps produced by our method. Observe how
crisp are the boundaries.

take local edge strength (i.e., texture information) into account. The second vari-
ant, termed SGBD, uses texture to estimate the local edge strength (i.e., equation 5
). The third variant, termed SGBD-owt-ucm, applies the Ultrametric Contour Map
on top of the results of the SGBD algorithm. As can be seen in table 1 the naive al-
gorithm achieves a 0.68 F-score with no texture information whatsoever. Adding
texture information improves the results to 0.7 F-score and adding the Ultrametric
Contour Map method brings the overall performance to 0.72.

Figures 3 show results on the BSDS500 data set. In particular, we show the
images with the lowest/highest precision/recall. Figure 5 shows the ROC curve of
our method, along with several other methods.

Next we conduct an experiment to demonstrate the robustness of our algorithm
to noise. In the experiment we add increasing amounts of noise to the BSDS500
test images and compare our method to that of [9] and [12]. Results are reported
in Figure 6. As can be seen, our algorithm is quite robust to noise because of its

11



Figure 4: Noise experiment: The top row shows several noisy images from the BSDS500
data set, second row shows the results of [9], the bottom two rows show SGBD and
SGBD-owt-ucm results, respectively. Observe our algorithm does a better job detecting
boundaries in the image. SGBD detects most of the relevant boundary pixels. SGBD-
owt-ucm cleans up the result.
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BSDS300
Method OSD OIS AP
Human 0.79 - -
SCG[8] 0.71 - -
gPb-owt-ucm[11] 0.71 0.74 0.73
Gb[5] 0.67 - -
BEL [6] 0.66 - -
Canny [4] 0.58 0.62 0.58

SGBD-owt-ucm 0.69 0.71 0.69

BSDS500
Method OSD OIS AP
Human 0.80 0.80 -
Crisp-MS, [12] 0.74 0.77 0.78
SE-MS, T=4 [9] 0.74 0.76 0.78
SCG [8] 0.74 0.76 0.77
gPb-owt-ucm [11] 0.73 0.76 0.73
Sketch Tokens [22] 0.73 0.75 0.78
gPb[11] 0.71 0.74 0.65
NCuts[23] 0.64 0.68 0.45
MeanShift[24] 0.64 0.68 0.56
Felz-Hutt[25] 0.61 0.64 0.56
Canny[4] 0.60 0.63 0.58

SGBD-owt-ucm 0.72 0.74 0.72
SGBD 0.70 0.72 0.73
SGBD-naive 0.68 0.69 0.71

Table 1: Results on the BSDS dataset: Our results (bottom row) compared to recent
techniques.
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semi-global nature. The method of [9] works better on clean images but degrades
faster as the amount of noise increases. The method of [12] degrades drastically,
probably because the pairwise pixel statistics are strongly corrupted by the noise.
Even when the amount of noise is large (std of 38 intensity values) our algorithm
manages to maintain a gap from [9] ( F = 0.57 vs. F = 0.53 ). Some examples
of the noisy images and the edge maps we produce can be seen in Figure 4.

Figure 5: Precision recall curve on BSDS500 Dataset: figure copied from [15] with our
curve overlaid.

Noise Variance
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Figure 6: Noise sensitivity: F-measure (OSD) as a function of white Gaussian noise added
to images. The x-axis is the noise variance (in the scale of [0, 255]). The y-axis is the OSD
score. [9] (in blue) [12] in speedy mode (in red) and ours (in black). As can be seen, our
algorithm degrades gracefully as the amount of noise increases.

The next set of experiments is on the NYU data set. Table 2 reports the results
on the RGB images, the depth image, and the RGBD images. Again, our algo-
rithm matches the results of [11, 8, 9] and achieves an F-measure of F = 0.58.

14



(a) (b) (c) (d)

Figure 7: NYU Results top two rows RGB images, rows 3 and 4 depth images, rows 5
6 & 7 RGBD images. Columns show image with (a) min recall, (b) max recall, (c) min
precision, and (d) max precision.
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The method of [9] achieves top score of 0.60 compared to our score of 0.58.
However, their method was specifically trained on the NYU dataset. When it was
trained on the BSDS500 data set and tested on the NYU data set their results
dropped to 0.55. Figure (7) show the results on the RGB only, depth only, and
RGBD images. In each case we show the images with the lowest/highest pre-
cision/recall score. When dealing with RGBD images, we simply aggregate the
results of both sources.

Our method is quite fast in practice. It runs for 8sec per BSDS RGB image
(321x481pixels), 3sec per NYU RGB image (320x240 pixels), and 1 sec per NYU
depth image. For comparison, Crisp [12] reports 15min per BSDS image, SCG
[18] report 1-2sec and SE [9] reports 6hz. Parallelism is inherent to our method, as
each line is processed separately. Therefore an efficient implementation, utilizing
multiple threads or the GPU will surely boost our run time performance.

The experiments show that our algorithm is competitive across a wide range
of images and imaging conditions. We tuned its parameters once on the BSDS500
training set images, which are mainly outdoor images. Then we tested it on the
BSDS500 test set where it gave good results as well as on a noisy version of
the BSDS500 test images as well as the NYU data set (which is mainly indoor
images), where it gave state-of-the-art results. This is probably due to the fact
that we need to tune only a small number of parameters. We believe this is an
important quality of the algorithm because we do not know who is going to use
it and on what type of images. Finally, we observe that our algorithm produces
crisp boundaries across all data sets.

NYU
Method OSD OIS AP
gPb [11] (0.51,0.44,0.53) (0.52,0.46,0.54) (0.37,0.28,0.40)
SCG [8] (0.55,0.53,0.62) (0.57,0.54,0.63) (0.46,0.45,0.54)
SE-MS[9] (0.60,0.58,0.64) (0.61,0.59,0.65) (0.56,0.57,0.63)

SE-MS[9] (0.55, - , - ) (0.57, - , - ) (0.46, - , - )
SGBD (0.58,0.53,0.60) (0.59,0.55,0.61) (0.52,0.45,0.58)

Table 2: Results on the NYU dataset: Our result (bottom row) compared to recent tech-
niques. Each parenthesis holds the values for RGB, depth and RGBD. [9] report different
results when training on NYU and testing on NYU, or training on BSDS500 and testing
on NYU.
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6. Conclusions

We presented a simple algorithm for boundary detection that relies on a Semi
Global analysis of the image. The algorithm works on scan lines, which are a mid-
level image representation, that is not purely local like patch based methods, yet
is not global, as it does not work on the entire image. The reason for using scan
lines is that they are 1D signals and as such we can use Dynamic Programming to
efficiently find a globally optimal segmentation. This is based on the assumption
we make that the boundaries between 1D segments are the boundary pixels in the
image. We gave a probabilistic analysis that suggests how to combine all the 1D
results into a single coherent probabilistic 2D boundary map, and evaluated it on a
number of data sets. The algorithm is simple to implement, and works well across
a wide range of data sets without any modification.
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