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We address the novel problem of detecting dynamic regions in CrowdCam images – a set of still im- 

ages captured by a group of people. These regions capture the most interesting parts of the scene, and 

detecting them plays an important role in the analysis of visual data. Our method is based on the obser- 

vation that matching static points must satisfy the epipolar geometry constraints, but computing exact 

matches is challenging. Instead, we compute the probability that a pixel has a match, not necessarily the 

correct one, along the corresponding epipolar line. The complement of this probability is not necessarily 

the probability of a dynamic point because of occlusions, noise, and matching errors. Therefore, informa- 

tion from all pairs of images is aggregated to obtain a high quality dynamic probability map, per image. 

Experiments on challenging datasets demonstrate the effectiveness of the algorithm on a broad range 

of settings; no prior knowledge about the scene, the camera characteristics or the camera locations is 

required. 

© 2017 Elsevier Inc. All rights reserved. 
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1. Introduction 

CrowdCam images are images captured by a crowd of peo-

ple. These images usually capture some interesting dynamic event,

and the dynamic objects are often where the attention should be

drawn. It is therefore useful to ask whether the dynamic regions of

a scene from CrowdCam images can be detected. A method for de-

tecting these regions can be used to propose image windows that

are likely to contain an object of interest. Other computer vision

applications that can benefit from such a method include change

detection, moving object segmentation, and action recognition. 

In this paper, we address the novel problem of detecting the dy-

namic regions in a scene from CrowdCam images. As these images

may be taken with a wide baseline in space and time, significant

new challenges arise, such as distinguishing an object that moved

from one whose appearance changed due to changes in the cam-

era’s viewpoint or occlusions (as demonstrated in Fig. 1 ). 

CrowdCam images violate the assumptions made by existing

methods. Background subtraction methods assume the camera is

static, or at least that the images can be properly aligned. Mo-

tion segmentation algorithms usually work on video, which has

a high temporal frame rate and small baseline between succes-

sive frames. In CrowdCam images, on the other hand, the images
∗ Corresponding author. 
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re few and far between, thus they cannot necessarily be aligned,

akeing it impossible to preserve the spatial-temporal continuity.

inally, co-segmentation methods assume that the appearance of

he background significantly changes from frame to frame. How-

ver, as CrowdCam images capture the same event, the background

s usually consistent. Moreover, co-segmentation methods do not

istinguish between static and dynamic objects. 

Detecting dynamic regions in CrowdCam images can also be

onsidered a by-product of running a dense Structure-from-Motion

SFM) procedure. The static regions will be matched and recon-

tructed in 3D. All the remaining pixels belong, by definition, to

he dynamic regions. In practice, dense correspondence in Crowd-

am images is not possible for each pixel (hence there are holes in

he reconstructions) and is prone to many errors.” For the static re-

ions, the wide baseline causes changes of appearance and occlu-

ions. The moving objects cause additional occlusions (see Fig. 2 )

nd may undergo significant deformations, due to non-rigid mo-

ion. This makes it very difficult to reliably match them across

mages (as demonstrated in Section 4 ). A straightforward use of

pipolar constraint for distinguishing between dynamic and static

egions (e.g., Luong and Faugeras, 1996; Yuan et al., 2007 ), will also

uffer from matching failures on CrowdCam data. 

We propose a novel method for detecting the dynamic regions

f a scene from CrowdCam images. Our method avoids 3D recon-

truction and does not rely on establishing dense correspondences

etween the images. We assume that epipolar geometry can be

omputed between some pairs of images. We treat each image as

http://dx.doi.org/10.1016/j.cviu.2017.04.004
http://www.ScienceDirect.com
http://www.elsevier.com/locate/cviu
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cviu.2017.04.004&domain=pdf
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Fig. 1. A set of images captured at different times by different cameras. Which object moved? Right image reveals the answer. 

Fig. 2. Types of occlusions in a wide baseline image pair with a moving object: Consider images (a) and (b) – corresponding epipolar lines are marked in yellow, ellipses 

indicate locations that are occluded by (i) an out of field of view (red), (ii) different viewpoints (purple), (iii) a moving object such as the chicken toy (black). When image 

(c) is considered as well (corresponding epipolar lines between (b) and (c) are marked in magenta), the red suitcase correspondence occluded in (a) by the moving object is 

revealed. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 3. Three images out of a set of eight: (c) was regarded as the reference image; (a) and (b) are two of the seven support images. The dynamic probability map and a its 

thresholded map are presented in (d) and (e), respectively. 
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 reference, and compute a dynamic probability map that repre-

ents the probability of each pixel to be a projection of a dynamic

D point. An example of a set of three out of eight images, the

omputed dynamic probability map for one of the images, and a

hresholded map are presented in Fig. 3 . The maps clearly contain

nformation about the dynamic regions. 

The method works as follows. First, the dynamic probability

ap is computed for a reference image and another (support) im-

ge from the set, for which the epipolar geometry can be com-

uted. The probability of a pixel to be a projection of a general

oving 3D point depends on the probability that it has a match

n the other image along the corresponding epipolar lines; pro-

ections of static background must lie on corresponding epipolar

ines. We do not try to find the correct match, but instead com-

ute the likelihood that there exists at least one potential match

long the epipolar line. In this way we capture the likelihood that

 match exists: doing so decreases the probability that the pixel

s dynamic . This method allows us to deal with matching errors

hat are due to lack of texture, repeated structure, occlusions, and

o on. To reduce ambiguity, the matching is defined on epipo-

ar patches, i.e., patches confined by pairs of matching epipolar

ines. 

Each image may serve as a reference image associated with

 subset of support images (for which epioplar geometry can

e computed). We then aggregate, for each reference image, the

atching probability maps computed using each of its support im-

ges, to obtain the final high quality dynamic probability map. This

ggregation is necessary because a single map may be unreliable

ue to accidental matching, resulting in low dynamic probability,

r due to occlusions, resulting in high dynamic probability (see

ection 3.1 ). However, these cases are unlikely to consistently re-

eat w.r.t. all support images. Hence, the results improve as the

umber of support images increases. 
p
The main contributions of this paper are (i) the introduction

f the new problem of detecting dynamic regions from Crowd-

am data; (ii) a voting-based approach that avoids dense corre-

pondence or 3D modeling; (iii) aggregation of information from

ultiple views for distinguishing between moving objects and

ccluded regions; (iv) using candidate epipolar patches matching

hile avoiding rectifications between each pair of images (see

ection 3.1.1 ). 

. Related work 

We next review existing methods for detecting moving regions

nder various setups. 

Change Detection: Change detection algorithms detect regions

f change in images of the same scene taken at different times,

here the regions of change often coincide with the moving ob-

ects. The change detection algorithms are based on comparing a

rame to a learned model of the background. A necessary pre-

rocessing step is accurate alignment of several images into the

ame coordinate frame (often obtained by using a static camera).

nce the images are aligned, the background model can be gen-

rated and compared to a new frame. The background model may

e at the pixel level (e.g., Stauffer and Grimson, 1999 ), region level

e.g., Klare and Sarkar, 2009 ), or the frame level (e.g., Wang and

uter, 2006 ). More sophisticated algorithms also model the fore-

round appearance. A comprehensive survey of background sub-

raction methods is provided in Cristani et al. (2010) ; Lu et al.

2004) ; Radke et al. (2005) . 

Change detection algorithms are not applicable to CrowdCam

ets such as those used in our setup, where the images are cap-

ured by cameras with a wide baseline, the scenes are not neces-

arily flat or distant, and the images cannot be aligned (see sup-

lementary material). 
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Motion-based segmentation: Motion-based segmentation sep-

arates regions in the image that correspond to different motion en-

tities. It usually deals with video sequences. The classic approach

to motion segmentation is based on two-frame optical flow, while

recent approaches consider a set of frames and examine the move-

ment characteristics over time ( Ochs et al., 2014; Sun et al., 2012 ).

While early approaches estimate the optical flow and the segmen-

tation independently ( Shi and Malik, 1998; Wang and Adelson,

1994 ), optical flow estimation and segmentation were later con-

sidered as a joint optimization problem ( Brox et al., 2006; Cremers

and Soatto, 2005; Sun et al., 2012 ). In our case, no video sequence

is available, hence optical flow methods are not applicable. 

Only two papers introduce methods for segmenting motion

fields computed from a wide-baseline pair of still images, which

is similar to the setup we considered ( Wang et al., 2015 ), Gullapally

et al. . The first method is based on matching feature points, and

then minimizing a function that divides the matching into continu-

ous groups of rigid motions. We, on the other hand, do not assume

rigid motion, nor do we assume that correspondence between fea-

tures of moving objects can be computed. The second method is

based on computing dense correspondence and segment them into

two main motions. The algorithm is limited to regions where dense

correspondence can be calculated. We show in Section 4 the limi-

tations of dense correspondence methods on our datasets. 

Co-segmentation: Co-segmentation is typically defined as the

task of jointly segmenting ‘something similar’ in a given set of

images. Existing co-segmentation approaches cast this problem as

a Markov Random Field (MRF) based segmentation of the image

pair with a regularized difference of the two histograms, assum-

ing a Gaussian prior on the foreground appearance ( Rother et al.,

2006 ) or by calculating the sum of squared differences ( Mukherjee

et al., 2009 ). The problem of co-segmentation is different from the

one we aim to solve, since it does not distinguish between static

and dynamic objects. Moreover, co-segmentation assumes shared

appearance models for the foreground but different backgrounds,

where in CrowdCam data of dynamic scenes, the background is

similar while the appearance of dynamic objects may undergo sig-

nificant deformations. 

Multi-view object segmentation: Algorithms of this family ad-

dress the task of unsupervised multiple image segmentation of a

single physical object, possibly moving, as seen from two or more

calibrated cameras. The input may either be still images or video

sequences. Gang and Long (2004) coined the problem, and pro-

posed an initial rudimentary silhouette-based algorithm for build-

ing segmentations consistent with a single 3D object. Many meth-

ods follow this initial trend by building explicit 3D object recon-

structions and alternating with image segmentations of the views

based on foreground/background appearance models ( Campbell

et al., 2010; Guillemaut and Hilton, 2011 ). 

Our method avoids the 3D reconstruction. Recovering the 3D

structure of a dynamic scene often requires prior knowledge about

the 3D structure or the motion of objects, and a very large num-

ber of images, which we do not assume to have. The limitations

of dense 3D reconstruction on our data are presented in detail in

Section 4 . 

Yet another line of related work is that of objectness proposal,

where the goal is to suggest image windows that are likely to con-

tain an object of interest (e.g., Alexe et al., 2012 ). These methods

work with a single image and therefore cannot reason about mo-

tion information, which often indicates the interesting regions. Our

method can therefore be integrated into objectness proposal al-

gorithms, in addition to other single image cues such as saliency,

color contrast and edge density. 
F  

t  

b

. Method 

We are given a set of n images, taken by various uncalibrated

ameras. We assume that for each image we can compute its

pipolar geometry w.r.t. a subset of images, termed support set .

his assumption holds when there are sufficient static features in

he set of images and the dynamic features are treated as outliers

y a RANSAC algorithm which is used to compute the epipolar ge-

metry (e.g., Goshen and Shimshoni, 2008 ). For each image, we

ompute a matching probability map based on its epipolar geome-

ry with each of its support images and then merge all those maps

nto a dynamic probability map for that image. We next describe a

ethod to compute a matching probability map from a pair of im-

ges, and then discuss the aggregation of these maps to compute

 dynamic probability map. 

.1. Pair of images 

Given a reference image I and a single support image, I s , we

ompute P ( x | I s ) , the probability that a pixel, x ∈ I, is static and

on-occluded. Observe that P ( x | I s ) is low not only for pixels in dy-

amic regions, but also for pixels in the following regions: (i) Out

f field of view; (ii) Occluded due to different viewpoints; (iii) Oc-

luded by the moving object in I s , e.g., Fig. 4 (c) (we refer to these

egions as dynamic object shadows ); (iv) Regions for which the de-

criptor fails to detect the similarity due to variations in appear-

nce. Such variations exist due to the change of viewpoint and/or

llumination, and the difference between the cameras’ inner pa-

ameters. 

It is evident from this list that failure to find a match does not

ecessarily mean that the pixel belongs to a dynamic region. As

e show later, when using many support images, the probability

f finding matches for static pixels will be significantly higher than

or dynamic pixels (see also Fig. 6 ). 

.1.1. The set of epipolar patches: 

Matching a single pixel is very noisy and we work with patches

nstead. The probability that a pixel x has a match is derived from

he probability that each of the patches covering x has a match. 

When building a set of candidate pairs of patches for corre-

pondence, the first step in the calculation is to define the patch’s

hape and size in I and in I s . Rectangular patches are commonly

sed, but they are more appropriate for rectified pairs. Since in the

eneral case the epipolar lines are not parallel, each of the possi-

le matches may be of different height. We consider patches that

re confined between pairs of epipolar lines – epipolar patches . The

orrespondence of a static epipolar patch in I is an epipolar patch

n I s , confined by the pair of corresponding epipolar lines. This fol-

ows directly from epipolar geometry of static regions. The use of

pipolar patches determines the height of the candidate patches

n I s , for matching. The ambiguity regarding the candidate patch

idth remains, since the scale of the object in I s is unknown (see

ig. 5 (a-b). 

In practice, we compute a set of epipolar lines in the reference

mage, and a set of patches between each pair of adjacent lines

s defined, with up to 2/3 overlap between them (see Fig. 5 (c)).

n a similar manner, the candidate set of patches is computed in

he support image between the corresponding epipolar lines but

ith 3 different widths. The epipolar lines are parametrized by

he angle of the line where the epipole is taken to be the ori-

in. For obtaining overlap across epipolar lines, additional epipo-

ar lines are considered with 1/3 and 2/3 shift of the angle (see

ig. 5 (d)). Thanks to the use of overlapping patches, the confidence

hat a pixel is static is measured a few times, and the final proba-

ility map is smoother and more robust. 
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Fig. 4. Dynamic object shadow: (a) a reference image; (b) a support image; (c) the computed static probability map. Two low probability regions are depicted: the true 

location of the moving object, marked by a continuous line, and the moving object’s shadow, marked by a dashed line. 

Fig. 5. (a)-(b) The corresponding region of the statue’s base (the white object to the left of scene) is located between the corresponding pair of epipolar lines. The width of 

the corresponding patches differs between the two images. Some additional possible matching patches of varied sizes are depicted for illustration purposes. (c) Overlapped 

patches defined between a pair of epipolar lines. (d) Overlapped patches across epipolar lines. 

Fig. 6. The improvement of the dynamic probability map as a function of the number of support images. The number of support images is depicted beneath the probability 

maps; the color bar, which is common to all the probability maps, is depicted to the left. 
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.1.2. Patch confidence measure: 

Let C( r | I s , θ ) be the confidence that the patch r ∈ I is a pro-

ection of a static scene region not occluded in I s . This confidence

s based on the similarity between r and its nearest neighbor

mong R 

′ , the set of candidate matching patches in I s . Formally,

( r | I s , θ ) = max 
r ′ ∈ R 

′ { sim θ ( r , r 
′ ) } , (1)

here sim θ ( r , r ′ ) is the similarity between the two patches, using

he descriptor θ (e.g., HOG or color histogram). The confidence is

ormalized to the range (0, 1) for each descriptor by mapping the

ange of C( r | I s , θ ) of all pairs of reference and support images. We

enote the normalized value by ˆ C ( r | I s , θ ) . 

Albeit simple, this measure turns out to have important and

ontrivial values. Ambiguity often makes it difficult to choose the

est candidate. For example, when the background is periodic or

niform, there may be more than a single patch with high corre-

pondence confidence along the epipolar line. As we do not aim

o recover the 3D structure, locating the correct match is not im-

ortant for the success of the algorithm. We merely focus on the

uestion of whether or not a good correspondence exists. Clearly,

f the best match has low confidence, the pixel is unlikely to be a

rojection of a non-occluded static 3D point. 

Extensive research exists regarding the difficulties of choosing

he best descriptor of a patch and the best method of comput-

ng similarity between descriptors of two patches. As expected, we

ound that the optimal descriptor depends on the image set – the

xtent to which the image colors change, and the various textures

f the captured objects. The algorithm proposed in this paper may

e used with any set of descriptors and similarity measures. 
.1.3. Matching probability map: 

We treat the confidence as a probability and use it to build a

robability map that holds, for each pixel x in I , the probability

hat x is static and not occluded, P ( x | I s ) . This probability measure

s based on the confidence that a good match of the pixel’s region

xists along the epipolar line, as described in Eq. 1 . 

Let R x be the set of patches that contain a pixel x and let � =
 θ1 . . . θm 

} be the set of descriptors. The matching probability of a

ixel, P ( x | I s ) , is calculated as the weighted expectation estimation

f the set of confidences computed for each of the patches in R x 

ith each descriptor in �. It is given by: 

 ( x | I s ) = 

∑ 

θ∈ �, r ∈R x 

w r w θ
ˆ C ( r | I s , θ ) . (2)

ere w θ and w r are the weights of the confidence of a descrip-

or θ and the location of x within the patch, respectively. The value

 θ is predefined by the user for each descriptor. We set w r to

e inverse proportional to the distance, d( x , r c ) , of the pixel from

he patch center, r c . In our implementation, w r = e −d( x , r c ) 2 / 2 σ 2 
and

= max x,r c { d( x , r c ) } / 3 , where the max is taken over all patches

n all of the images. All weights are normalized to sum to one for

ach pixel; therefore P ( x | I s ) is guaranteed to be in the range of

ero to one, and we can regard it as probability. 

.2. A set of images 

Combining the results obtained from multiple support images is

nalagous to considering the testimonies of a few witnesses who

iewed the same scene from different locations. Regions that are

ccluded or out of view in one image are expected to be visible in

ther images (see Fig. 2 ). Similarly, if the motion coincides with the
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Table 1 

Quantitative Results: for each data set we show the number of images in the 

set, the average size of the support set for each image, that is, the number of 

images for which the BEEM algorithm succeed in computing the fundamental 

matrices per each reference image, and the Jaccard measure (higher is better). 

We show Jaccard results with a threshold optimized per image and per set. 

Image set Set size Average size of Jaccard Jaccard 

support sets opt. per image opt. per set 

Helmet 4 2 0.53 ± 0.18 0.36 ± 0.28 

Skateboard 5 4 0.44 ± 0.1 0.42 ± 0.1 

Playground 7 2.6 0.37 ± 0.11 0.32 ± 0.01 

Toy Ball 7 4.5 0.63 ± 0.03 0.6 ± 0.05 

Basketball 8 7 0.48 ± 0.04 0.47 ± 0.04 

Climbing 10 9 0.15 ± 0.05 0.13 ± 0.04 
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epipolar lines in a pair of images, it is unlikely to coincide with the

epipolar lines with respect to the other images. Fig. 6 illustrates

the effect of using an increasing number of support images, as we

next describe. 

Our goal is to compute the dynamic probability, P ( x ) , given a

set of support images { I S } . We compute the matching probability,

P ( x | I s ) , for each I s ∈ I S , and combine the probabilities as follows:

P static ( x | I S ) = 

�
s ∈S 

P ( x | I s ) 
�
s ∈S 

P ( x | I s ) + �
s ∈S 

(1 − P ( x | I s )) . (3)

P dynamic ( x ) is the complementary probability. Note that the above

aggregation of probabilities has the following characteristics: the

aggregated probability of a few probabilities that are higher than

0.5 is higher than each of the input probabilities. Similarly, when

all of the probability values are lower than 0.5, the combined prob-

ability measure is lower than each of the inputs. An input proba-

bility of 0.5 does not influence the combined probability – in this

case the combined probability is determined by the rest of the

input probabilities. Moreover, high and low probabilities balance

each other out and result in a probability that lies in between

them. Before combining the probabilities we add a preliminary

step of remapping the probability values to the range (0.3,0.7), to

avoid the overinfluence of extreme values of P ( x | I s ) (e.g., 0 or 1).

The use of multiple images, multiple overlapping patches, and de-

scriptors per pixel, allows our method to handle false correspon-

dences, as we demonstrate in the next section. 

4. Results 

We implemented the proposed algorithm in MATLAB and tested

it on challenging real-world data sets. (Standard datasets for this

task are not available.) 

Datasets: Three images of each set are depicted in Fig. 1, Fig. 3 ,

and Fig. 7 (the full sets can be found in the supplementary ma-

terial). The sets capture both indoor and outdoor scenes, single

as well as multiple moving objects, and rigid as well as non-rigid

(person) objects. The rock-climbing set was captured by Park et al.

(2010) , the playground, basketball and skateboard sets were cap-

tured by Basha et al. (2012) , and the other two were captured by

us. All images were captured from different viewpoints, without

calibration or a controlled setup. We used the same camera in four

of the six image sets to focus on the behavior of the algorithm and

not the sensitivity of the descriptors to camera change. 

Implementation details: We computed the fundamental ma-

trices of the image pairs using the BEEM algorithm ( Goshen and

Shimshoni, 2008 ), and used only pairs of images where BEEM suc-

ceeded. The sets of patches in the reference image were chosen

such that each pixel was covered by nine patches – three over-

lapping patches along the epipolar line, and three across epipolar

lines. We used the same combination of two descriptors for all ex-

periments: a histogram of oriented gradients (HOG) descriptor, and

a 2D histogram of the H and S channels of the HSV color represen-

tation. The weights of the descriptors were set to 2 and 1, respec-

tively. The similarity of the HOG descriptors was computed using

the cosine distance. The similarity of two 2D histograms, B 1 and

B 2 , was computed using their intersection over union measure (in

our implementation we used 10 bins per channel). 

4.1. Qualitative results 

The dynamic probability maps are presented for each of the

datasets as a heat map (blue for static and red for dynamic). We

consider independently each image in each dataset as a reference

image. Fig. 8 shows an example of a dynamic probability map for

one reference image per set, and its thresholded map overlayed on
he image. The thresholded dynamic probability maps computed

ndependently for each of the images in the skateboard dataset,

re shown in Fig. 9 . Overall, we observe that our algorithm suc-

essfully assigns high probabilities to the moving regions, in most

ases. Hence, it can be used to detect the dynamic regions. Observe

hat these regions are indeed the interesting parts of the scene and

ence our method can be used to direct the attention of higher

evel algorithms to these regions. 

In some places the algorithm struggles. This is usually because

ome of our underlying assumptions are not met in practice. In

he skateboard set, the rider’s shirt resembles the color of the

ight windows, and in the toy-ball set part of the ball is not de-

ected since it resembles parts of the background. In the challeng-

ng climbing set, the man wearing the red shirt at the bottom of

he images hardly moves; therefore only the edges of his silhouette

re detected ( Fig. 8 , last row). The colors of the climber’s shirt re-

emble the colors of some areas of the climbing wall, and the shirt

etection is weak as a result. False positives occur when the de-

criptor fails to detect similarities. For example, the matching fails

n reflective, transparent and narrow objects in the climbing set

with width less than that of a patch). 

.2. Quantitative results 

We evaluate our method using the Jaccard measure (intersec-

ion over union) on manually labeled moving regions. The measure

equires a binary map so we threshold the probability map to ob-

ain one. Inspired by the evaluation methodology of the Berkeley

egmentation Data Set Martin et al. , we use two thresholds – a

hreshold that optimizes the Jaccard measure of each image, and

ne that optimizes the mean Jaccard measure of all of the images

n a given set. Examples of manual ground truth masks are shown

n the left column of Fig. 8 , and examples of masks that resulted

rom thresholding the dynamic probability map are shown on its

ight column. 

The algorithm was applied to each of the images in the sets and

he mean Jaccard measures per dataset are presented in Table 1 .

he measure is high for the toy ball, basketball and helmet sets. It

s low for the challenging climbing set, as discussed earlier. 

Comparison to other methods: The results of Gullapally

t al. and our method on one of the images of the skateboard

ataset are presented in Fig 10 . The figure demonstrates that our

lgorithm not only detects all moving regions in the image, but

lso creates a smoother and more complete region of the skate-

oard rider, compared to Gullapally et al. . In order to conduct a fair

omparison the method of Gullapally et al. , which assumes only a

ingle moving object in the scene, we generated a ground truth

ask of only the main moving object. 

The reported Jaccard measures by Gullapally et al. on a pair of

mages from the set were 0.37 and 0.28. Our results were 0.42 and
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Fig. 7. Three images of each dataset. From top to bottom: Toy Ball, Playground, Skateboard, Climbing. (The helmet and basketball sets can be viewed in Fig. 1 and Fig. 3 , 

respectively). 
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.59, respectively, when only a single support image was used, and

.45 and 0.6 when four support images were used. 

We could not test the method of Gullapally et al. on other im-

ges from our datasets, since their code is not available. Instead,

e demonstrate that NRDC ( HaCohen et al., 2011 ), which is the

rst step of their method, does not perform well on most of our

atasets. An example of the performance of the NRDC algorithm

n an image of our CrowdCam images is demonstrated in Fig. 11 ,

ith additional examples in the supplementary material. Quantita-

ive results show that for the skateboard dataset, NRDC found cor-

espondences for 75% of the image, but for the rest of the datasets

s few as 33% of the correspondences were found. Moreover, for

he moving objects only about 50% of their pixels had some match-

ng points, and in some cases this number was as low as 19%. This

s the raw data that is available to the motion segmentation algo-

ithm of Gullapally et al. . We conclude that our algorithm outper-

orms that of Gullapally et al. by a large margin. 

We also tested the applicability of back-projecting dense SFM

or detecting moving regions. To this end, we use the SFM algo-
ithm of Wu (2013) on our data sets. However, as can be seen in

ig. 12 , the SFM algorithm reconstructs only a small number of

cene points, and in the other two datasets it failed completely.

ence, it is impossible to use the back-projecting dense SFM to

nfer the dynamic regions unless all pixels that were not recon-

tructed are considered dynamic regions, which is clearly not the

ase. Further evidence that SFM methods struggle with our data

ets is the failure of the SFM-based method of Wang et al. (2015) 1 .

We also applied one of the state-of-the-art co-segmentation

ethods ( Faktor and Irani, 2013 ) to our data set and show the re-

ults in Fig. 11 (c,d). Again, we see that this algorithm does not cope

ell with our data. Note that the goal of co-segmentation method

s to segment objects rather than detect moving regions (see dis-

ussion in Section 2 ). 

We could not compare our method to motion segmentation al-

orithms, because they work on video while we only use a sparse
Personal communication with the authors. 
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Fig. 8. From left to right: ground truth mask, dynamic probability map, and the thresholded map, for each of the datasets. The ‘don’t care’ areas in the ground truth masks 

are marked in blue. Note that from the thresholded map, all dynamic regions are detected, only the last row contains many false positive detections. 

Fig. 9. The result of thresholding the dynamic probability map for each of the images in the skateboard dataset. 

Fig. 10. An image from the skateboard set, the dynamic probability map, a mask obtained from using a simple threshold on it at 0.5, and the mask of Gullapally et al. 
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Fig. 11. Failure cases of other methods: (a) The region for which the NRDC algorithm found matching pixels on a pair of images from the playground dataset, (b) the 

confidence map of the matching computed by the NRDC algorithm. Black regions indicates regions for which no matching pixels were found. (c)-(d) An example of the 

failure of co-segmentation ( Faktor and Irani, 2013 ) on the playground dataset. 

Fig. 12. Visual SFM ( Wu, 2013 ) results on the (left to right) Climbing, basketball, toy-ball and playround sets; the algorithm failed on the skateboard and helmet sets. 

s  

c  

f  

r

5

 

t  

n  

p  

p  

(  

t  

s  

q  

o  

o  

e  

b

 

f  

s  

i  

m  

m  

w  

t  

a  

f  

m  

s  

m  

p

A

 

d  

n

S

 

f

R

A  

 

B  

B  

C  

 

C  

C  

 

F  

G  

G  

 

G  

G  

H  

 

K  

 

L  

L  

M  

 

 

M  

O  

P  

 

R  

R  

 

S  

S

et of still images. Similarly, we could not compare our method to

hange detection algorithms, because our images were not taken

rom the same viewpoint, nor can they be aligned with a homog-

aphy. 

. Conclusions and future work 

CrowdCam images are an emerging form of photography. De-

ecting moving regions is a basic step towards analyzing the dy-

amic content of such data. We proposed an algorithm that com-

utes the probability of a pixel to be a projection of a dynamic 3D

oint. It does so by finding the probability that an epipolar patch

defined by a pair of matching epipolar lines) has matches consis-

ent with the epipolar geometry. This renders, our algorithm less

ensitive to matching errors than alternative algorithms that re-

uire precise matching. The aggregation of the results from a set

f support images allows us to distinguish dynamic regions from

ccluded regions and objects which move along epipolar lines. We

valuated our method on a new and challenging data set (that will

e made public) and report results better than the alternative. 

Our method is sensitive to the quality of the descriptors used

or matching patches. We propose to use additional descriptors and

et their weight for each pair of images or scene. One way to do

t is by considering several descriptors for computing the funda-

ental matrices, and set the weights according to the number of

atched features for each descriptor. In addition, in future research

e intend to use the results of our method for various applica-

ions including change detection, moving object segmentation, and

ction recognition. For example, to improve the naive thresholding

or moving object segmentation, we propose to use advanced seg-

entation methods that integrate our maps with other image cues

uch as color and texture. Moreover, it is of interest to develop a

oving object segmentation method that combines the computed

robability maps in all images. 
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