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Abstract

Processing large point clouds is a challenging task.

Therefore, the data is often sampled to a size that can be

processed more easily. The question is how to sample the

data? A popular sampling technique is Farthest Point Sam-

pling (FPS). However, FPS is agnostic to a downstream ap-

plication (classification, retrieval, etc.). The underlying as-

sumption seems to be that minimizing the farthest point dis-

tance, as done by FPS, is a good proxy to other objective

functions.

We show that it is better to learn how to sample. To do

that, we propose a deep network to simplify 3D point clouds.

The network, termed S-NET, takes a point cloud and pro-

duces a smaller point cloud that is optimized for a particu-

lar task. The simplified point cloud is not guaranteed to be a

subset of the original point cloud. Therefore, we match it to

a subset of the original points in a post-processing step. We

contrast our approach with FPS by experimenting on two

standard data sets and show significantly better results for

a variety of applications. Our code is publicly available1

1. Introduction

Capturing 3D data is getting easier in recent years and

there is a growing number of 3D shape repositories avail-

able online. This data can be represented in a variety of

ways, including point clouds, multi-view images and voxel

grids. A point cloud contains information only about the

surface of a 3D object, while a grid based representation

also holds data about free space, making the former much

more efficient. However, processing a point cloud can be

challenging, since it may contain a lot of data points. Re-

ducing the number of points can be beneficial in many as-

pects, such as reduction of power consumption, computa-

tional cost and communication load, to name a few.

One naive approach to reduce the data load is to ran-

domly sample a subset of points. Another approach, which

1https://github.com/orendv/learning_to_sample
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Figure 1. An illustration of the proposed learned sampling ap-

proach. In the training phase, S-NET generates points that are

passed to a task network, which was pre-trained and is held fixed.

The minimization objective contains the task’s loss and a sampling

loss. The latter serves as a regularizer and encourages proximity

between the input and generated points. At inference time, we

match the points generated by S-NET with the input point cloud

and get a subset of it. Only these points are then fed to the task

network for performance evaluation.

is commonly used in the literature, is Farthest Point Sam-

pling (FPS) [27, 28, 21]. This sampling method takes into

account the structure of the point cloud and selects a group

of points that are farthest apart from each other [6, 24].

These sampling methods, as well as other approaches in the

literature [3, 18], operate according to a non-learned prede-

termined rule.

In the last few years, deep learning techniques have been

applied with great success to point cloud data. Among

various applications one can find point cloud classifica-

tion [27, 28, 21, 42, 30, 36], part segmentation [27, 28, 21,

30, 36, 20], semantic segmentation [27, 21, 36, 34, 32, 12]

and retrieval [35, 17]. Other techniques perform point cloud

auto-encoding [1, 38, 8], generation [1, 33, 19], comple-

tion [1, 2, 41] and up-sampling [40, 39, 43]. Yet a learned

point clouds sampling approach, subject to a subsequent

task objective, has not been proposed before.

We propose a simplification network, termed S-NET,

that is based on the architecture of PointNet [27]. S-NET
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learns to generate a smaller (simplified) point cloud that is

optimized for a downstream task, such as classification, re-

trieval or reconstruction.

The simplified point cloud must balance two conflicting

constraints. On the one hand, we would like it to preserve

similarity to the original shape. On the other hand, we wish

to optimize it to a subsequent task. We solve this by train-

ing the network to generate a set of points that satisfy two

objectives: a sampling loss and the task’s loss. The sam-

pling loss drives the generated points close to the input point

cloud. The task loss ensures that the points are optimal for

the task.

An advantages of FPS is that it samples a subset of the

original points. In contrast, the simplified point cloud pro-

duced by S-NET is not guaranteed to be a subset of the in-

put point cloud. To address this issue, we perform a post-

processing step at inference time, where we match the gen-

erated points with the input point cloud and obtain a subset

of it, i.e., a set of sampled points (see Figure 1). Experi-

ments show that better results for several tasks are achieved

using our sampled points in comparison to FPS.

Our approach can be thought of as a feature selection

mechanism [9, 16]. Each point is a feature of the underlying

shape and we seek to select the ones that contribute the most

to the task. It can also be interpreted as a form of visual

attention [22, 14], focusing the subsequent task network on

the significant points.

S-NET is trained to output a fixed sample size, which

means that we need to train a different S-NET for every

target size. To overcome this limitation, we introduce an

extension of S-NET termed ProgressiveNet. ProgressiveNet

orders points by importance to the task. This lets the sample

size to be chosen at inference time, allowing for a dynamic

level-of-detail management, according to the requirements

and available resources.

The proposed sampling approach is applied to three dif-

ferent tasks: point cloud classification, retrieval and recon-

struction. We compare our approach with common non-data

driven methods: random sampling and FPS. For the first

task we show better classification accuracy; in the second

we show improved retrieval results; and in the last we get

a lower reconstruction error. To summarize, our key contri-

butions are:

• A task-specific data-driven sampling approach for

point clouds;

• A Progressive sampling method that orders points ac-

cording to their relevance for the task;

• Improved performance for point cloud classification,

retrieval and reconstruction with sampled point clouds.

2. Related work

Point cloud simplification and sampling Several tech-

niques for either point cloud simplification [25, 23] or sam-

pling [15, 5] have been proposed in the literature. Pauly et

al. [25] presented and analyzed several simplification meth-

ods for point-sampled surfaces, including: clustering meth-

ods, iterative simplification and particle simulation. The

simplified point set, resulting from these algorithms, was

not restricted to be a subset of the original one. Farthest

point sampling was adopted in the work of Moenning and

Dodgson [23] as a means to simplify point clouds of geo-

metric shapes, in a uniform as well as feature-sensitive man-

ner.

Katz and Tal [15] suggested a view dependent algorithm

to reduce the number of points. They used hidden-point

removal and target-point occlusion operators in order to im-

prove a human comprehension of the sampled point set. Re-

cently, Chen et al. [5] employed graph-based filters to ex-

tract per point features. Points that preserve specific infor-

mation are likely to be selected by a their sampling strat-

egy. The desired information is assumed to be beneficial to

a subsequent application.

The above sampling approaches aim to optimize a vari-

ety of sampling objectives. However, they do not consider

directly the objective of the task to be followed.

Progressive simplification In a seminal paper, Hoppe

[11] proposed a technique for progressive mesh simplifica-

tion. In each step of his method, one edge is collapsed such

that minimal geometric distortion is introduced.

A recent work by Hanocka et al. [10] suggested a neu-

ral network that performs task-driven mesh simplification.

Their network relies on the edges between the mesh ver-

tices. This information is not available for point clouds.

Several researchers studied the topic of point set com-

pression [26, 13, 29]. An octree data structure was used for

progressive encoding of the point cloud. The objective of

the compression process was low distortion error.

Deep learning on point sets The pioneering work of Qi

et al. [27] presented PointNet, the first neural network that

operates directly on unordered point cloud data. They con-

structed their network from per-point multi-layer percep-

trons, a symmetric pooling operation and several fully con-

nected layers. PointNet was employed for classification and

segmentation tasks and showed impressive results. For as-

sessing the applicability of PointNet for reduced number of

input points, they used random sampling and FPS. In our

work, we suggest a data-driven sampling approach, that im-

proves the classification performance with sampled sets in

comparison to these sampling methods.

Later on, Qi et al. extended their network architecture

for hierarchical feature learning [28]. In the training phase,

centroid points for local feature aggregation were selected

by FPS. Similar to their previous work [27], FPS was used

for evaluating the ability of their network to operate on

fewer input points.
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Li et al. [20] suggested to learn the centroid points for

feature aggregation by a self-organizing map (SOM). They

used feature propagation between points and SOM nodes

and showed improved results for point cloud classification

and part segmentation. The SOM was optimized separately,

as a pre-processing step.

Building on the work of Qi et al. [27], Achlioptas et

al. [1] developed autoencoders and generative adversarial

networks for point clouds. Instead of shape class or per-

point label, the output of their network was a set of 3D

points. In this work we apply our sampling approach for

the task of point cloud reconstruction with the autoencoder

proposed by Achlioptas et al.

Several researchers tackled the problem of point cloud

consolidation. Yu et al. [40] extracted point clouds from

geodesic patches of mesh models. They randomly sampled

the point sets and trained a network to reconstruct the orig-

inal patch points. Their follow-up work [39] incorporated

edge information to improve the reconstruction accuracy.

Zhang et al. [43] studied the influence of sampling strat-

egy on point cloud up-sampling. They used Monte-Carlo

random sampling and curvature based sampling. Their net-

work was trained to produce a fixed size point cloud from

its sample. In contrast to these works, our study focuses on

the down-sampling strategy.

3. Method

Problem statement Given a point set P = {pi ∈ R
3, i =

1, . . . , n}, a sample size k ≤ n and a task network T , find

a subset S∗ of k points that minimizes the task network’s

objective function f :

S∗ = argmin
S

f(T (S)), S ⊂ P, |S| = k ≤ n. (1)

This problem poses a challenge, as sampling might

seems akin to pooling, yet in pooling the pooled value is

propagated forward, so the gradient with respect to it can

be calculated. Discrete sampling, however, is like ”arg-

pooling”, where the propagated value cannot be updated in-

crementally. As a result, a sampling operation cannot be

trained directly. Therefore, we propose a two-step process:

first, we employ a neural network, i.e., S-NET, to generate

a set of points. Second, we match the generated points with

the input point cloud to obtain a subset of its points, i.e., the

sampled points. Figure 1 illustrates the process.

The input to S-NET is a set of n 3D coordinates, namely

points, representing a 3D shape. The output of S-NET is

k generated points. S-NET is followed by a task network.

The task network is pre-trained on an input of n points, to

perform a given task on the point cloud (i.e., classification,

retrieval or reconstruction). It is kept fixed during training

and testing of S-NET. This ensures that sampling is being

optimized to the task, rather than the task being optimized

to an arbitrary sampling.

At the training phase, the generated points are fed to the

task network. The points are optimized to the task at hand

by minimizing the task loss. We use an additional sampling

regularization loss term, that encourages each of the gener-

ated points to be close to one of the input points and forces

the generated points to spread over the input cloud.

At inference, the generated points are matched with the

input point cloud in order to obtain a subset of it. These are

the sampled points, the final output of our process. These

points are passed through the task network and its perfor-

mance is evaluated.

We present two sampling versions: S-NET and Progres-

siveNet. In the first version (Figure 1), we train a different

sampling network per sample size. In the second one (Fig-

ure 2), we train one network that can be used to produce any

sample size smaller than the input size.

3.1. SNET

The architecture of S-NET follows that of Qi et al. [27].

The input points undergo a set of 1 × 1 convolution lay-

ers, resulting in a per point feature vector. Then, a sym-

metric feature-wise max pooling operation is used to ob-

tain a global feature vector. Finally, we use several fully-

connected layers. The output of the last layer is the set of

generated points.

Let us denote the generated point set as G and the input

point set as P . We construct a sampling regularization loss,

composed out of three terms:

Lf (G,P ) =
1

|G|

∑

g∈G

min
p∈P

||g − p||22 (2)

Lm(G,P ) = max
g∈G

min
p∈P

||g − p||22 (3)

Lb(G,P ) =
1

|P |

∑

p∈P

min
g∈G

||p− g||22. (4)

Lf and Lm keeps the points in G close to those in P , in

the average and worst case, respectively. This is designed

to encourage tight matches in the following matching pro-

cess. We found that mixing average and maximum opera-

tions speeds up convergence. Lb ensures that the generated

points are well spread over the input points, decreasing the

number of collisions in the matching process. The sampling

regularization loss is a weighted sum of these three terms:

Ls(G,P ) = Lf (G,P ) + βLm(G,P )

+(γ + δ|G|)Lb(G,P ).
(5)

Note that this is a generalization of the Chamfer dis-

tance [7], achieved when β = 0, γ = 1 and δ = 0.

In addition, we denote Ltask as the task network loss.

The total S-NET loss is:

LS−NET (G,P ) = Ltask(G) + αLs(G,P ) (6)
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where α controls the regularization trade-off. The output of

S-NET is a k×3 matrix, where k is the sample size, and we

train separately for each k.

3.2. Matching

The generated points G are not guaranteed to be a subset

of the input points P . In order to get a subset of the in-

put points, we match the generated points to the input point

cloud.

A widely used approach for matching two point sets is

the Earth Mover’s Distance (EMD) [1, 41, 43, 7]. EMD

finds a bijection between the sets that minimizes the average

distance of corresponding points, while the point sets are

required to have the same size. In our case, however, G and

P are of different size.

We examine two matching methods. The first adapts

EMD to uneven point sets. The second is based on near-

est neighbour (NN) matching. Here we describe the latter,

which yielded better results. The reader is referred to the

supplementary material for details about the other matching

method.

In NN-based matching, each point x ∈ G is replaced

with its closest euclidean corresponding point y∗ ∈ P :

y∗ = argmin
y∈P

||x− y||2. (7)

Since several points in G might be closest to the same point

in P , the number of unique sampled points might be smaller

than the requested sample size. Therefore, we remove du-

plicate points and get an initial sampled set. Then, we com-

plete this set, up to the size of G, by running farthest point

sampling (FPS) [28], where in each step we add a point

from P that is farthest from the current sampled set.

The matching process is only applied at inference time,

as the final step of inference. During training, the gener-

ated points are processed by the task network as-is, since

the matching is not differentiable and cannot propagate the

task loss back to S-NET .

3.3. ProgressiveNet: sampling as ordering

S-NET is trained to sample the points to a single, prede-

fined, sample size. If more than one sample size is required,

more than one S-NET needs to be trained. But what if we

want to train one network that can produce any sample size,

i.e., sample the input at any sampling ratio? To this end we

present ProgressiveNet. ProgressiveNet is trained to take a

point cloud of a given size and return a point cloud of the

same size, consisting of the same points. But, while the

points of the input are arbitrarily ordered, the points of the

output are ordered by their relevance to the task. This al-

lows sampling to any sample size: to get a sample of size k,

we simply take the first k points of the output point cloud

of ProgressiveNet and discard the rest. The architecture of

ProgressiveNet is the same as S-NET , with the last fully

connected layer size equal to the input point cloud size (has

3n elements).
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Figure 2. ProgressiveNet training. The generated points are di-

vided into groups of increasing size, such that each group is a sub-

set of the following larger group. Each group has corresponding

task and sampling losses. The overall objective is the sum of the

per-group losses. The task network was pre-trained and is kept

fixed.

To train ProgressiveNet (Figure 2) we define a set of

sizes Cs = {21, 22, ..., 2log2(n)}. For each size c ∈ Cs

we compute a task loss term and a sampling regularization

loss term, such that the total ProgressiveNet’s loss becomes:

LProgressiveNet(G,P ) =
∑

c∈Cs

LS−NET (Gc, P )) (8)

where LS−NET is the loss term as defined in equation 6 and

Gc are the first c points from the points generated by Pro-

gressiveNet (the first 3c elements of the output layer). This

loss function defines a nested structure of point subsets. For

example, the first subset, consisting of two points, is used

in all terms LS−NET (Gc, P ), for c ≥ 2. Because this sub-

set is used in all terms, it is contained in all larger subsets.

Similarly, the first 4 points define the second subset, that

includes the first subset and is part of all larger subsets.

Under this training process, the first k generated points

(for any k) are optimized to be suitable both for the task at

hand as a stand-alone set and for integration with their pre-

ceding points to create a larger set that will improve results

on the given task. This makes sure that a point that is more

important for the task will appear earlier in the generated

point set, while extra points will give diminishing marginal

utility, resulting in a a task-oriented progressive decompo-

sition of the point cloud [31].

At inference, the generated points (ProgressiveNet’s out-

put layer) are matched with the input point cloud using

the same matching process we used in Section 3.2 for S-

NET. We transfer the order of the generated points to their

matched points. To obtain a specific sample size k, we take

the first k sampled points.
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4. Results

We applied S-NET to three tasks: point set classifica-

tion [27], retrieval and reconstruction [1]. For classifica-

tion and retrieval we adopt the ModelNet40 [37] point cloud

data provided by Qi et al. [27] and PointNet [27] as the task

network. For reconstruction we employ ShapeNet Core55

repository [4] and the point set autoencoder of Achlioptas et

al. [1].

Random sampling and FPS are employed as alternative

non-data driven sampling approaches for comparison with

our suggested approach. In order to make a fair compari-

son, we only use S-NET points after the matching process,

so both our sampled points and the alternative approaches’

points are subsets of the input point cloud. Further experi-

mental details can be found in the supplementary material.

4.1. Classification

We report instance classification results on the Model-

Net40 data set, adopting the official train-test split. We

employed the full version of PointNet as the task network

for S-NET and the vanilla version of PointNet for Pro-

gressiveNet (to save training time), except where otherwise

noted.

S-NET Figure 3 shows the classification accuracy of

PointNet, when trained on the complete data (1024 points

per point cloud) and tested on samples of different size. We

compare several different sampling methods: random sam-

pling with uniform distribution over the input points, FPS

and S-NET. We trained 10 different S-NETs, for sample

sizes of k ∈ {2, 4, 8, . . . , 1024} points. The sampling ratio

is defined as n/k = 1024/k. We observe that the classi-

fication accuracy using S-NET’s sampled points is equal or

better than that of using FPS’s points for any sampling ratio,

with a margin of up to 34.2% (for sampling ratio 32).

Table 1 shows that the accuracy of PointNet is also

higher when training it on the points sampled by S-NET.

Each of the numbers in this table represents a different

PointNet, each trained and tested on point clouds of a

specific size that was sampled with a different sampling

method. We see, for example, that PointNet that was

both trained and tested on point clouds of just 16 points,

achieved 85.6% accuracy, when using S-NET, compared to

only 76.7% with FPS. This shows that S-NET is not over-

fitted to the specific instance of the classifier it was trained

with. Instead, it samples the points in a way that makes the

sampled set easy to classify, creating a strong distinction

between different classes in the data.

ProgressiveNet In Figure 4 we compare the accuracy of

PointNet vanilla on points sampled by S-NET (trained with

PointNet vanilla, in this case) to those sampled by Progres-

siveNet. The evaluation was done for all sample sizes in
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Figure 3. S-NET for classification. PointNet was trained on com-

plete point clouds (1024 points) and evaluated on sampled point

clouds of the test set using different sampling methods: random,

FPS, and S-NET. The accuracy using S-NET is evidently higher.

#Sampled points Random FPS S-NET

1024 89.2 89.2 89.2

512 88.2 88.3 87.8

256 86.6 88.1 88.3

128 86.2 87.9 88.6

64 81.5 86.1 87.7

32 77.0 82.2 87.3

16 65.8 76.7 85.6

8 45.8 61.6 83.6

4 26.9 35.2 73.4

2 16.6 18.3 53.0

Table 1. Training PointNet classifier on sampled point clouds.

We sample the train and test data with different sampling meth-

ods: random sampling, FPS, and S-NET. Afterwards, PointNet is

trained and evaluated on the sampled data. Applying S-NET al-

lows good classification even with minimal data to train on. We

conclude that S-NET transforms the data into a more separable

representation.

the range [2, 1024]. S-NET results are from 10 different S-

NETs, each trained for a specific sample size, for sizes of

k ∈ {2, 4, 8, . . . , 1024} points. For the sample sizes in be-

tween those values, we took the S-NET that was trained for

a lower sample size and then completed with FPS to the re-

quired size. For example, to get a sample of size 48, we took

the points sampled by S-NET that was trained to sample 32

points, and then made 16 steps of FPS. The Progressive re-

sults are from one ProgressiveNet with output size 1024,

that was trained with classification and sampling loss terms

for sizes Cs = {2, 4, 8, . . . , 1024}.

We observe that S-NET has better performance for the

sample sizes it was trained for, while ProgressiveNet per-

forms better for any sample size in between. This shows

the advantage of ProgressiveNet, which orders the points

by priority, so that the accuracy is approximately monoton-

ically increasing in the sample size.
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Figure 4. ProgressiveNet vs. S-NET. PointNet vanilla was trained

on complete point clouds (1024 points) and evaluated on every

sample size k in the range [2, 1024]. The sampling ratio is defined

as 1024/k. We compared three different sampling methods: FPS,

S-NET and ProgressiveNet. S-NET is better for the sample sizes it

was trained for, while ProgressiveNet performs better for sample

sizes in between.

Scalability by S-NET S-NET assumes that the task net-

work is already trained. This will cause a problem in case

of very large point clouds. We show that it is possible to

train the task network on FPS-sampled point clouds and use

that to train S-NET . The resulting S-NET can then be used

to re-train the task network to a higher accuracy. Please

see Figure 5 for an illustration of the proposed training and

testing procedure.

The following small scale simulation demonstrate this:

We used FPS to sample ModelNet40 to k = 32 points per

point cloud, and trained PointNet on those sampled points.

This is our baseline. The accuracy of the baseline on the test

set is 82.2%. When we fed this trained PointNet with point

clouds of size 1024, the accuracy was just 46.6%. We then

trained S-NET , using the 32-sized point clouds training set,

and the baseline PointNet as the task network. Then we

sampled ModleNet40 again to size k = 32, this time using

S-NET. Finally, we trained PointNet on the points sampled

by S-NET. The accuracy of the re-trained PointNet on the

test set improved to 86.0%. Employing S-NET allows us

to improve PointNet’s accuracy without training on larger

point clouds.

Time and space considerations The time complexity of

PointNet-like networks is dominated by their per-point con-

volution layers, and thus is strongly dependent on the size of

the input point cloud. The space complexity of S-NET is a

linear function of its output size k. S-NET offers a trade-off

between space (number of parameters) and inference time

(number of floating point operations). For example, cascad-

ing S-NET that samples a point cloud of 1024 to 16 points

with a following PointNet reduces inference time by over

90% compared to running PointNet on the complete point

cloud, with only 5% increase in space. See full details in

the supplementary material.

Figure 5. Scalability by S-NET. Illustration of the proposed train-

ing and inference procedure on large point clouds. In stage 1 we

use FPS to sample the point clouds to a trainable size and use the

sampled point clouds to train the task network. In stage 2 we train

S-NET on the sampled point clouds, employing the fixed task net-

work. In stage 3 we apply S-NET to re-sample the large point

clouds and in stage 4 we train the task network again, this time

on S-NET’s points. At inference time, we use S-NET to sample a

large point cloud to the size the task network was trained for.

Approximate sampling Up to this point we applied the

matching post-processing step to compare ourselves di-

rectly with FPS. However, there might be settings where

the k output points do not have to be a subset of the original

point cloud. In such cases, we can use S-NET’s generated

points directly, forgoing the matching step. One can use ei-

ther the generated or the sampled points. A third alternative

is to interpolate between the two, i.e., using points that are

up to ǫ away from the original input points. This is done by

interpolating each generated point with its matched sampled

point, to get a third point on the line between them, no more

than ǫ away from the sampled point. Figure 6 shows that

PointNet’s accuracy is higher when feeding it the generated

points. For point clouds normalized to the unit sphere, we

find that choosing ǫ = 0.05 results in classification accuracy

that is about mid-way between the accuracy on the sampled

and generated points. Note that ǫ is set at inference time.

Critical set sampling The critical set, as defined by Qi

et al. [27], is the set of points that contributed to the max

pooled features. A plausible alternative to our method

might be to sample the critical points that contribute the

most features. We tried this approach and found it viable

only at small sampling ratios. See full details in the supple-

mentary material.

4.2. Retrieval

We now show that employing S-NET instead of FPS

leads to better retrieval results. Specifically, we took the S-

NET that was trained with PointNet for classification as the

task network, without re-training it. We sampled the points
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Figure 6. Approximate sampling. PointNet was trained on com-

plete point clouds (1024 points) and evaluated on point clouds of

different sizes. We use S-NET’s generated and sampled points, as

well as a third set of points, where each point is an interpolation

between the generated and sampled point, bounded to be no more

than ǫ = 0.05 away from an original input point. Approximate

sampling enables higher accuracy, when deviating from original

points is not a concern.

Sampling ratio FPS mAP S-NET mAP

1 71.3 71.3

2 70.1 69.8

4 65.7 64.8

8 58.3 60.4

16 49.4 59.0

32 37.7 59.0

64 27.4 54.5

Table 2. Point cloud retrieval. We took the same S-NET that was

trained with PointNet classifier as the task network and applied it

as the sampling method for retrieval. The shape descriptor was

PointNet’s activations of the layer before the last, with L2 as the

distance metric. We measured the macro mean Average Precision

(mAP) for different sampling ratios and methods. S-NET performs

better than FPS for large sampling ratios and is almost insensitive

to the sampling ratio.

that are fed to PointNet and used its penultimate layer as a

shape descriptor. Retrieval was done based on L2 distance

on this shape descriptor. We repeated the experiment with

every shape in the ModelNet40 test set serving as a query

shape. The experiment was repeated with different sample

sizes for both S-NET and FPS.

Table 2 summarizes the mean Average Precision (mAP)

for different sampling ratios and sampling methods. We see

that S-NET performs much better for sampling ratios larger

than 4 and is not very sensitive to the sampling ratio. Fig-

ure 7 presents the precision-recall curve for the original data

and for the sampled data using FPS and S-NET, sampling to

k=32 points per shape. We observe significantly better pre-

cision when applying S-NET across all recall values.
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Figure 7. Precision-Recall curve for point cloud retrieval. We

compare FPS and S-NET when sampling 32 points, as well as us-

ing the complete 1024 points data. Significantly better precision

is achieved when using S-NET compared to FPS, across all recall

values.

4.3. Reconstruction

We next learn to sample with an autoencoder as the task

network. We used the ShapeNet Core55 point cloud data

provided by Achlioptas et al. [1], as well as their autoen-

coder and trained it on four shape classes: table, car, chair

and airplane. These classes have the most available mod-

els. Each shape class is split into 85%-5%-10% for train-

validation-test sets. The autoencoder was trained to receive

and reconstruct point clouds of 2048 points.

The reconstruction error of the autoencoder is measured

by the Chamfer distance [1]. In order to compare differ-

ent sampling methods, we use Normalized Reconstruction

Error (NRE). That is, we reconstruct the complete point

set from a subset of points and from the complete point

set and take the reconstruction error ratio between the two.

We trained several S-NETs with the following sample sizes:

k ∈ {16, 32, . . . , 2048}, and a single ProgressiveNet with

loss terms for the same sizes. As an alternative sampling

approach we used FPS.

Normalized reconstruction error Figure 8 presents the

NRE as a function of the sampling ratio, where the sampling

ratio is defined as n/k = 2048/k. We compare FPS with

S-NET and ProgressiveNet. For small sampling ratios, the

NRE for our sampled points is similar to that of FPS. How-

ever, as the sampling ratio increases, our sampling methods

outperform FPS. For example, at sampling ratio of 32, the

NRE of FPS is a little over 2, while the NRE of S-NET and

ProgressiveNet is about 1.5 and 1.75, respecitvely. S-NET

achieves lower NRE than ProgressiveNet, since the former

was optimized separately per sampling ratio, resulting in

improved reconstruction performance. We learn to sample

points from unseen shapes that enable lower reconstruction

error.

Sample and reconstruction visualization Figure 9 com-

pares the reconstruction result from the entire point cloud,
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Figure 8. Normalized Reconstruction Error (NRE). We trained

an autoencoder on complete point clouds of 2048 points, and eval-

uated the reconstruction error from sampled point clouds with

FPS, S-NET and ProgressiveNet on the test split. Up to a sam-

pling ratio of 8, the error for S-NET and ProgressiveNet is on par

with FPS. However, at higher sampling ratios S-NET and Progres-

siveNet achieves lower error.

to that from a sample size of 64 points, where the samples

are produced by either S-NET or FPS. The reconstruction

quality when employing S-NET is higher than that of using

FPS and approaches that of using the entire point cloud. In-

terestingly, the points sampled by S-NET are non-uniformly

distributed, as opposed to the more uniform distribution of

the points sampled by FPS.

Adversarial simplification In this proof of concept we

show how to trick the autoencoder. We simplify a point

cloud to be visually similar to one class but reconstructed by

the autoencoder to a shape from a different class. We train

S-NET with a single pair of input and target shapes, where

the input is a shape from one class and the target is a shape

from another class. The sampling loss was between the in-

put and the points generated by S-NET. The reconstruction

loss was between the target shape and the reconstructed one.

Figure 10 shows the result of turning an airplane into a car.

5. Conclusions

We presented a method that learns how to sample a point

cloud that is optimized for a downstream task. The method

consists of a simplifying network, S-NET, followed by a

post-processing matching step. We also suggested a net-

work, termed ProgressiveNet, for ordering a point cloud ac-

cording to the contribution of each point to the task. The

resulting methods outperform FPS in sampling points for

several tasks: classification, retrieval and reconstruction of

point clouds.

The proposed method is general and can produce a small

point cloud that consists of points that are not necessarily

part of the original input shape. The output point cloud

minimizes a geometric error with respect to the input point

Complete Input S-NET FPS

NRE = 1.00 NRE = 1.11 NRE = 2.38
Figure 9. Point cloud reconstruction. NRE stands for Normal-

ized Reconstruction Error. Top row: complete input point cloud of

2048 points, input with 64 S-NET sampled points (in Green), in-

put with 64 FPS points (in Magenta). The sampled and FPS points

are enlarged for visualization purpose. Bottom row: reconstructed

point cloud from the input and from the corresponding sample.

The reconstructed point cloud from S-NET’s sampled points is vi-

sually more similar to the input and has lower reconstruction error.

Figure 10. Adversarial simplification. Top row: input shape (in

Blue) and 256 generated points (in Red). Bottom row: target shape

and reconstruction from the generated points. While the simplified

point cloud resembles the input airplane shape, it is reconstructed

to a completely different shape - a car!

cloud while optimizing the objective function of a down-

stream task. We have shown that learning to sample can

improve results and be used in conjunction with various ap-

plications.
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