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Abstract

Bob offers a face-detection web service where clients can submit their images for
analysis. Alice would very much like to use the service, but is reluctant to reveal
the content of her images to Bob. Bob, for his part, is reluctant to release his face
detector, as he spent a lot of time, energy and money constructing it. Secure Multi-
Party computations use cryptographic tools to solve this problem without leaking
any information. Unfortunately, these methods are slow to compute and we intro-
duce a couple of machine learning techniques that allow the parties to solve the
problem while leaking a controlled amount of information. The first method is an
information-bottleneck variant of AdaBoost that lets Bob find a subset of features
that are enough for classifying an image patch, but not enough to actually recon-
struct it. The second machine learning technique is active learning that allows
Alice to construct an online classifier, based on a small number of calls to Bob’s
face detector. She can then use her online classifier as a fast rejector before using
a cryptographically secure classifier on the remaining image patches.

1 Introduction

The Internet triggered many opportunities for cooperative computing in which buyers and sellers
can meet to buy and sell goods, information or knowledge. Placing classifiers on the Internet allows
buyers to enjoy the power of a classifier without having to train it themselves. This benefit is hin-
dered by the fact that the seller, that owns the classifier, learns a great deal about the buyers’ data,
needs or goals. This raised the need for privacy in Internet transactions. While it is now common to
assume that the buyer and the seller can secure their data exchange from the rest of the world, we
are interested in a stronger level of security that allows the buyer to hide his data from the seller as
well. Of course, the same can be said about the seller, who would like to maintain the privacy of his
hard-earned classifier.

Secure Multi-Party Computation (SMC) are based on cryptographic tools that let two parties, Alice
and Bob, to engage in a protocol that will allow them to achieve a common goal, without revealing
the content of their input. For example, Alice might be interested in classifying her data using Bobs’
classifier without revealing anything to Bob, not even the classification result, and without learning
anything about Bobs’ classifier, other than a binary answer to her query.

Recently, Avidan & Butman introducedBlind Vision[1] which is a method for securely evaluating a
Viola-Jones type face detector [12]. Blind Vision uses standard cryptographic tools and is painfully
slow to compute, taking a couple of hours to scan a single image. The purpose of this work is to
explore machine learning techniques that can speed up the process, at the cost of a controlled leakage
of information.



In our hypothetical scenario Bob has a face-detection web service where clients can submit their
images to be analyzed. Alice would very much like to use the service, but is reluctant to reveal the
content of the images to Bob. Bob, for his part, is reluctant to release his face detector, as he spent a
lot of time, energy and money constructing it.

In our face detection protocol Alice raster scans the image and sends every image patch to Bob
to be classified. We would like to replace cryptographically-based SMC methods with Machine
Learning algorithms that might leak some information but are much faster to execute. The challenge
is to design protocols that can explicitly control the amount of information leaked. To this end we
propose two, well known, machine learning techniques. One based on the information bottleneck
and the other on active learning.

The first method is a privacy-preserving feature selection which is a variant of the information-
bottleneck principle to find features that are useful for classification but not for signal reconstruc-
tion. In this case, Bob can use his training data to construct different classifiers that offer different
trade-offs of information leakage versus classification accuracy. Alice can then choose the trade-off
that suits her best and send only those features to Bob for classification. This method can be used,
for example, as a filtering step that rejects a large number of the image patches as having no face in-
cluded in them, followed by a SMC method that will securely classify the remaining image patches,
using the full classifier that is known only to Bob.

The second method is active learning and it helps Alice choose which image patches to send to Bob
for classification. This method can be used either with the previous method or directly with an SMC
protocol. The idea being that instead of sending all image patches to Bob for classification, Alice
might try to learn from the interaction as much as she can and use her online trained classifier to
reject some of the image patches herself. This can minimize the amount of information revealed to
Bob, if the parties use the privacy-preserving features or the computational load, if the parties are
using cryptographically-based SMC methods.

2 Background

Secure multi-party computation originated from the work of Yao [14] who gave a solution to the
millionaire problem: Two parties want to find which one has a larger number, without revealing
anything else about the numbers themselves. Later, Goldriechet al. [5] showed that any function
can be computed in such a secure manner. However, the theoretical construct was still too demanding
to be of practical use. An easy introduction to Cryptography is given in [9] and a more advanced
and theoretical treatment is given in [4]. Since then many secure protocols were reported for various
data mining applications [7, 13, 1]. A common assumption in SMC is that the parties arehonest
but curious, meaning that they will follow the agreed-upon protocol but will try to learn as much as
possible from the data-flow between the two parties. We will follow this assumption here.

The information bottleneck principle [10] shows how to compress a signal while preserving its
information with respect to a target signal. We offer a variant of the self-consistent equations used
to solve this problem and offer a greedy feature selection algorithm that satisfy privacy constraints,
that are represented as the percentage of the power spectrum of the original signal.

Active learning methods assume that the student (Alice, in our case) has access to an Oracle (Bob)
for labeling. The usual motivation in active learning is that the Oracle is assumed to be a human op-
erator and having him label data is a time consuming task that should be avoided. Our motivation is
similar, Alice would like to avoid using Bob because of the high computational cost involved in case
of cryptographically secure protocols, or for fear of leaking information in case non-cryptographic
methods are used. Typical active learning applications assume that the distribution of class size is
similar [2, 11]. A notable exception is the work of [8] that propose an active learning method for
anomaly detection. Our case is similar as image patches that contain faces are rare in an image.

3 Privacy-preserving Feature Selection

Feature selection aims at finding a subset of the features that optimize some objective function, typi-
cally a classification task [6]. However, feature selection does not concern itself with the correlation
of the feature subset with the original signal.



This is handled with the information bottleneck method [10], that takes a joint distributionp(x, y)
and finds a compressed representation ofX, denoted byT , that is as informative aboutY . This is
achieved by minimizing the following functional:

min
p(t|x)

L : L ≡ I(X;T )− βI(T ;Y ) (1)

whereβ is a trade-off parameter that controls the trade off between compressingX and maintaining
information aboutY . The functionalL admits a set of self-consistent equations that allows one to
find a suitable solution.

We map the information bottleneck idea to a feature selection algorithm to obtain a Privacy-
preserving Feature Selection (PPFS) and describe how Bob can construct such a feature set. Let
Bob have a training set of image patches, their associated label and aweightassociated with every
feature (pixel) denoted{xn, yn, sn}Nn=1. Bob’s goal is to find a feature subsetI ≡ {i1, . . . , ik} s.t.
a classifierF (x(I)) will minimize the classification error, wherex(I) denotes a samplex that uses
only the features in the setI. Formally, Bob needs to minimize:

min
F

N∑
n=1

(F (xn(I))− yn))2 (2)

subject to
∑
i∈I

si < Λ

whereΛ is a user defined threshold that defines the amount of information that can be leaked.

We found it useful to use the PCA spectrum to measure the amount of information. Specifically, Bob
computes the PCA space of all the face images in his database and maps all the data to that space,
without reducing dimensionality. The weights{sn}Nn=1 are now set to the eigenvalues associated
with each dimension in the PCA space. This avoids the need to compute the mutual information
between pixels by making the assumption that features do not carry mutual information with other
features beyond second order statistics.

Algorithm 1 Privacy-Preserving Feature Selection

Input: {xn, yn, sn}Nn=1
ThresholdΛ
Number of iterationsT

Output: A privacy-preserving strong classifierF (x)

• Start with weightswn = 1/N n = 1, 2, . . . , N , F (x) = 0, I = ∅
• Repeat fort = 1, 2, . . . , T

– Set working index setJ = I ∪ {j|sj +
∑

i∈I si < Λ}
– Repeat forj ∈ J
∗ Fit a regression stumpgj(x(j)) ≡ aj(x(j) > θj) + bj to thej-th feature,x(j)

∗ Compute errorej =
∑N

n=1
wn(yn−(aj(xn(j)>θj+bj)

2∑N

n=1
wn

– Setft = gi where ei < ej ∀j ∈ J
– Update:

F (x)← F (x) + ft(x) (3)

wn ← wne−ynft(xn) (4)

I ← I ∪ {i} (5)

Boosting was used for feature selection before [12] and Bob takes a similar approach here. He uses
a variant of the gentleBoost algorithm [3] to find a greedy solution to (2). Specifically, Bob uses
gentleBoost with “stumps” as the weak classifiers where each “stump” works on only one feature.
The only difference from gentleBoost is in the choice of the features to be selected. In the original
algorithm all the features are evaluated in every iteration of the algorithm, but here Bob can only use



a subset of the features. In each iteration Bob can use features that were already selected or those
that adding them will not increase the total weight of selected features beyond the thresholdΛ.

Once Bob computed the privacy-preserving feature subset, the amount of information it leaks and
its classification accuracy he publishes this information on the web. Alice then needs to map her
image patches to this low-dimensional privacy-preserving feature space and send the data to Bob for
classification.

4 Privacy-Preserving Active Learning

In our face detection example Alice needs to submit many image patches to Bob for classification.
This is computationally expensive if SMC methods are used and reveals information, in case the
privacy-preserving feature selection method discussed earlier is used. Hence, it would be beneficial
if Alice could minimize the number of image patches she needs to send Bob for classification. This
is where she might use active learning. Instead of raster scanning the image and submitting every
image patch for classification she sends a small number of randomly selected image patches, and
based on their label, she determines the next group of image patches to be sent for classification. We
found that substantial gains can be made this way.

Specifically, Alice maintains an RBF network that is trained on-line, based on the list of labeled
prototypes. Let{cj, yj}Mj=1 be the list ofM prototypes that were labeled so far. Then, Alice con-
structs a kernel matrixK whereKij = k(ci, cj) and solves the least squares equationKu = y,
wherey = [y1, . . . , yM ]T . The kernel Alice uses is a Gaussian kernel whose width is set to be the
range of the prototype coordinates, in each dimension. The score of each image patchx is given by
h(x) = [k(x, c1), . . . , k(x, cM)]u.

For the next round of classification Alice chooses the image patches with the highesth(x) score.
This is in line with [2, 11, 8] that consider choosing the examples of which one has the least amount
of information. In our case, Alice is interested in finding image patches that contain faces (which we
assume are labeled+1) but most of the prototypes will be labeled−1, because faces are a rear event
in an image. As long as Alice does not sample a face image patch she will keep exploring the space
of image patches in her image, by sampling image patches that are farthest away from the current set
of prototypes. If an image patch that contains a face is sampled, then her online classifierh(x) will
label similar image patches with a high score, thus guiding the search towards other image patches
that might contain a face. To avoid large overlap between patches, we force a minimum distance, in
the image plane, between selected patches. The algorithm is given in algorithm 2.

Algorithm 2 Privacy-Preserving Active Learning

Input: {xi}Ni=1 unlabeled samples
NumberM of classification calls allowed
Numbers of samples to classify in each iteration

Output: Online classifierh(x)

• Chooses random samples{xi}si=1, setC = [x1, . . . ,xs] and obtain their labelsy =
[y1, . . . , ys] from Bob.

• Repeat form = 1, 2, ...,M times

– Construct the kernel matrixKij = k(ci, cj) and solve for the weight vectoru through
least squaresKu = y.

– Evaluateh(xi) = [k(xi, c1), . . . , k(xi, cm)]u ∀i = 1, . . . , N .
– Choose tops samples with highesth(x) score, send them to Bob for classification and

add them, and their labels toC, y, respectively.

5 Experiments

We have conducted a couple of experiments to validate both methods.



Figure 1: Privacy preserving feature selection. We show the ROC curves of four strong classifiers,
each trained with 100 weak, “stump” classifiers, but with different levels of information leakage.
The information leakage is defined as the amount of PCA spectrum captured by the features used
in each classifier. The number in parenthesis shows how much of the eigen spectrum is captured by
the features used in each classifier.

The first experiment evaluates the privacy-preserving feature selection method. The training set
consisted of 9666 image patches of size24 × 24 pixels each, split evenly to face/no-face images.
The test set was of similar size. We then run algorithm 1 with different levels of the thresholdΛ and
created a strong classifier with100 weak, “stump” based, classifiers. The ROC curves of several
such classifiers are shown in figure 1. We found that, for this particular dataset, settingΛ = 0.1
gives identical results to a full classifier, without any privacy constraints. ReducingΛ to 0.01 did
hurt the classification performance somewhat.

The second experiment tests the active learning approach. We assume that Alice and Bob use the
classifier withΛ = 0.05 from the previous experiment, and measure how effective is the on-line
classifier that Alice constructs in rejecting no-face image patches.

Recall that there are three classifiers at play. One is the full classifier that Bob owns, the second is the
privacy-preserving classifier that Bob owns and the last is the on-line classifier that Alice constructs.
Alice uses the labels of Bobs’ privacy-preserving classifier to construct her on-line classifier and the
questions is: how many image patches she can reject, without actually rejecting image patches that
will be classified as faces by the full classifier (that she knows nothing about)?

Before we performed the experiment, we conducted the following pre-processing operation: We
find, for each image, the scale at which the largest number of faces are detected using Bob’s full
classifier, and used only the image at that scale.

The experiment proceeds as follows. Alice chooses 5 image patches in each round, maps them to the
reduced PCA space and sends them to Bob for classification, using his privacy-preserving classifier.
Based on his labels, Alice then picks the next 5 image patches according to algorithm 2 and so on.
Alice repeats the process 10 times, resulting in 50 patches that are sent to Bob for classification. The
first 5 patches are chosen at random. Figure 2 shows the 50 patches selected by Alice, the online
classifierh and the corresponding rejection/recall curve, for several test images. The rejection/recall
curve shows how many image patches Alice can safely reject, based onh, without rejecting a face
that will be detected by Bobs’ full classifier. For example, in the top row of figure 2 we see that
rejecting the bottom40% of image patches based on the on-line classifierh will not reject any face
that can be detected with the full classifier. Thus 50 image patches that can be quickly labeled while
leaking very little information can help Alice reject thousands of image patches.

Next, we conducted the same experiment on a larger set of images, consisting of 65 of the
CMU+MIT database images1. Figure 3 shows the results. We found that, on average (dashed line),

1We used the 65 images in the newtest directory of the CMU+MIT dataset



(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

(a-3) (b-3) (c-3)

Figure 2: Examples of privacy-preserving feature selection and active learning. (a) The input images
and the image patches (marked with white rectangles) selected by the active learning algorithm. (b)
The response image computed by the online classifier (the black spots correspond to the position of
the selected image patches). Brighter means a higher score. (c) The rejection/recall curve showing
how many image patches can be safely rejected. For example, panel (c-1) shows that Alice can reject
almost50% of the image patches, based on her online classifier (i.e., response image), and not miss
a face that can be detected by the full classifier (that is known to Bob and not to Alice).



(a)

Figure 3: Privacy preserving active learning. Results on a dataset of 65 images. The figure shows
how many image patches can be rejected, based on the online classifier that Alice owns, without
rejecting a face. The horizontal axis shows how many image patches are rejected, based on the
on-line classifier, and the vertical axis shows how many faces are maintained. For example, the
figure shows (dashed line) that rejecting20% of all image patches, based on the on-line classifier,
will maintain 80% of all faces. The solid line shows that rejecting40% of all image patches, based
on the on-line classifier, will not miss a face in at least half (i.e. the median) of the images in the
dataset.

using only 50 labeled image patches Alice can reject up to about20% of the image patches in an
image while keeping80% of the faces in that image (i.e., Alice will reject20% of the image patches
that Bob’s full classifier will classify as a face). If we look at the median (solid line), we see that for
at least half the images in the data set, Alice can reject a little more than40% of the image patches
without erroneously rejecting a face.

We found that increasing the number of labeled examples from 50 to a few hundreds does not greatly
improve results, unless many thousands of samples are labeled, at which point too much information
might be leaked.

6 Conclusions

We described two machine learning methods to accelerate cryptographically secure classification
protocols. The methods greatly accelerate the performance of the system, while leaking a controlled
amount of information. The two methods are a privacy preserving feature selection that is similar to
the information bottleneck and an active learning technique that was found to be useful in learning
a rejector from an extremely small number of labeled data. We plan to keep investigating these
methods, apply them to classification tasks in other domains and develop new methods to make
secure classification faster to use.
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