
Joint feature-basis subset selection

Shai Avidan
Mitsubishi Electric Research Labs

201 Broadway, 8th FL
Cambridge, MA 02139

Abstract

We treat feature selection and basis selection in a unified
framework by introducing the masking matrix. If one con-
siders feature selection as finding a binary mask vector that
determines which features participate in the learning pro-
cess, and similarly, basis selection as finding a binary mask
vector that determines which basis vectors are needed for
the learning process, then the masking matrix is, in partic-
ular, the outer product of the feature masking vector and
the basis masking vector. This representation allows for a
joint estimation of both features and basis. In addition, it
allows one to select features that appear in only part of the
basis functions. This joint selection of feature/basis sub-
set is not possible when using feature selection and basis
selection algorithms independently. thus, the masking ma-
trix help extend feature and basis selection methods while
blurring the lines between them. The problem of searching
for a masking matrix is NP-hard and we offer a sub-optimal
probabilistic method to find it. In particular we demonstrate
our ideas on the problem of feature and basis selection for
SVM classification and show results for the problem of im-
age classification on faces and vehicles.

1. Introduction
Modern machine learning applications deal with large
amounts of data. Tasks such as visual recognition, text clas-
sification, speech recognition or bio-informatics require the
learning algorithm to deal with examples that contain from
several hundreds to many thousands of feature per exam-
ple, as well as thousands or tens of thousands of examples.
As a result, methods that reduce the amount of data and fo-
cus on the important features and examples are constantly
developed and used.

Feature selection and basis selection methods are used in
machine learning for various reasons. They can help reduce
the run-time complexity of classification tasks, discover the
underlying structure of the data or improve the performance
of the classifier, by removing irrelevant and redundant fea-
tures. For example, feature selection was recently shown
to be very effective for face detection [20], where the idea

was to form a huge bank of possible features and use a fea-
ture selection algorithm to greedily select features that re-
ject as much of the negative examples as possible. Fea-
ture selection from huge filter sets was also suggested by
[1] that use a three-stage algorithm to remove irrelevant and
redundant features before picking the informative features
for image classification. In text classification, feature selec-
tion methods are used to dramatically reduce the vocabulary
size while maintaining accurate classification [18].

In a similar vein, basis selection algorithms select a sub-
set of basis vectors from a given set of basis vectors to in-
fer a given learning task [14]. For instance, the run time
complexity of SVM classifiers depend linearly on the num-
ber of support vectors, so decreasing the number of support
vectors will reduce the run time complexity, as well as the
memory requirements of SVM. This can be done through
reduced set methods [4] that come in two flavors. One
variant aim at selecting the “best” support vectors from the
given set of support vectors while the other aim at construct-
ing a totally new set of support vectors that approximate the
original solution [17]. Viewed this way, one can think of
the first variant of reduced set methods as a basis selection
problem, in which a subset of the support vectors is to be
chosen from a given set. Alternatively, one might reduce
the number of features in the support vectors to accelerate
the dot-product operation required by the SVM in run-time
and improve the overall performance of SVM in the pres-
ence of irrelevant features [21].

Much of the work treat these two problems separately,
i.e., either do basis selection or feature selection, even
though both of them often employ very similar techniques.
In this work we only consider binary selection methods, as
our goal is to select the “best” basis vectors (i.e. support
vectors) and the “best” features associated with them. It
will therefor be convenient, for our purposes, to consider
subset selection as the problem of finding a binary mask
vector that determines which elements (either features or
basis vectors) are selected and which are not.

Clearly one can do basis and feature selection in se-
quence. First, find a binary mask of the basis vectors, and
given that mask find a binary mask for the features. This
will not be optimal as changing the feature subset might al-

ter the selection of the basis vectors.
Therefor we introduce the masking matrix that can be

formed by the outer product of the two binary masking vec-
tors mentioned above. In this case, the masking matrix is a
rank-

�
binary matrix whose rows correspond to the features

and its columns correspond to the basis vectors. Hence, a
feature selection algorithm amounts to choosing a subset
of the rows of the masking matrix, while a basis selection
method corresponds to choosing a subset of the columns of
the masking matrix. Finding both corresponds to choosing
a subset of both rows and columns of the masking matrix.
So, instead of finding the binary vector masks in sequence
we can now opt to find both of them simultaneously.

In fact, we opt for more. Estimating the feature mask
and the basis mask simultaneously implicitly implies that
the chosen feature is used by all the selected basis vectors
and vice-versa. We have no freedom to attach particular
features to particular basis vectors.

Our solution is to extend the masking matrix from a rank-�
binary matrix to a general rank binary matrix. Such a ma-

trix will let us specifically define which feature should be
used by which basis vector. So in the spirit of feature or ba-
sis selection we are now interested in element selection, an
algorithm that will choose particular elements of the mask-
ing matrix. This is a refinement of feature and basis selec-
tion algorithms that choose an entire row or column in the
masking matrix, as figure 1 illustrates.

The problem of finding a binary mask vector that will
correspond to the optimal subset (either feature subset or ba-
sis subset) requires exhaustive search over all possible sub-
sets and is NP-hard [8]. Hence, many algorithms on subset
selection focused on finding sub-optimal approximations to
the problem.

We solve the element selection problem using a variant
of the sequential forward selection algorithm, a standard
technique in the subset selection literature [10], and to ac-
celerate computations we use probabilistic sampling. The
result of our algorithm is an extremely sparse masking ma-
trix that combines feature and basis selection seamlessly.
However, our definition of sparseness is a little different
than the common one. Usually, in sparse coding one is in-
terested in choosing a small number of basis vectors to “ex-
plain” the test pattern, but each basis vector is not sparse.
We, on the other hand, might find a solution in which many
basis vectors are used, but each of them is very sparse.

In this paper we focus on accelerating the run time per-
formance of SVM classifiers, that are among the best per-
forming classifiers available today for various applications
[3, 12, 16]. For our purpose, the support vectors are the ba-
sis vectors from which we would like to select a subset, as
well as choosing a feature subset. We show that the num-
ber of support vectors, as well as, the number of features
can be reduced considerably with a just slight reduction in

classification power.
There are two ways to use our method. In case our solu-

tion is good enough it might replace the original SVM clas-
sifier altogether. In case our solution is not accurate enough,
our method can be used to construct very fast rejectors that
will reject most of the patterns and leave only a small frac-
tion to the full scale SVM classifier.

2 Background and notations

We give a brief description of feature selection and SVM
methods. The interested reader is referred to [19, 5, 2] for
further information.

We denote vectors using bold face fonts � to distinguish
them from scalars � , matrices are denoted by bold capital
letters � . In the equations we assume the image data to be
vectorized.

2.1 Feature Selection

Feature selection algorithms search for the optimal subset
of features for the problem at hand. In classification prob-
lems it is assumed that a small number of features is suffi-
cient to solve the problem. Moreover, because of the curse
of dimensionality it was often observed that many irrelevant
or redundant features might actually harm the performance
of the classifier. Since the problem is combinatorial in the
number of features, greedy sub-optimal solution are often
used. The simplest ones involve forward or backward selec-
tion algorithms, in which at every step one feature is added
(or removed) from the current feature subset [2]. Exten-
sions include the floating search method that combines for-
ward and backward selection [13], branch-and-bound [11]
that exhaustively search all possible subsets but relies on the
monotonicity assumption to quickly discard large portions
of the search space.

Feature selection algorithms are usually categorized as
either filter or wrapper methods [7]. Filter methods are a
preprocessing step that is done before the induction pro-
cess takes place. The feature subset is selected according
to some heuristic criteria that is believed to be connected to
the true objective function that the induction process tries
to optimize. Wrapper methods, on the other hand, use the
induction procedure as a subroutine and select features that
directly affect it. Filter methods are faster to compute, but
wrapper methods are considered more accurate.

2.2 Support Vector Machines

Given a data set �����	��
�	�������� of � examples ��������� with la-
bels
������� � �"! � � , SVM finds the separating hyperplane

(a) feature selection (b) basis selection (c) element selection

Figure 1: The Masking Matrix. The masking matrix is a binary matrix that unifies feature selection and basis selection
methods. (a) In feature selection methods a subset of all the rows is chosen to have the value 1, the rest of the rows have the
value 0. (b) In basis selection methods a subset of all column is chosen to have the value 1, the rest of the columns have the
value 0. (c) In element selection a combination of features and basis elements is selected.

that maximizes the margin between the two classes. Classi-
fying a test pattern # is given by

$&% #�')(+*-,/. %102 3 4�5�6
387 % #:9�;�<='>'

where ;�< are the support vectors, 6
3

are their weights, and
7 %@? 9 ? ' is the kernel function. The support vectors are a sub-
set of the original training data that are closest to the sepa-
rating hyperplane.

The linear combination of support vectors implicitly rep-
resent the separating hyper-plane in some high dimensional
feature space. If we can find a representation of this hyper-
plane with a smaller number of support vectors, then we can
accelerate the run-time performance of SVM. Reduced set
methods aim at reducing the run-time complexity of SVM
by using a reduced set of support vectors. There are two
methods for computing the reduced set [4]. The first in-
volves selecting the most “important” support vectors from
the given set of support vectors. The second method in-
volves constructing a set of newly synthesized support vec-
tors that will approximate the original set.

In the first case we are given a set of support vectors;�<BAC(ED ?�?F? GIH , that we need to approximate with only a
subset of it. Put formally, we wish to approximate

J % #�'K(ML&N2 3 4�5 6
3 7 % #:9O; < '

with JQP % #�'K(RL&S2T 4�5VU T
7 % #:9�;>WX'

where
GIY[Z\G]H

, by minimizing ^�^ J % #`_ J P % #�'�^�^ a . Note
that the weights in the reduced set are modified to account
for the selection of a subset of support vectors.

Instead of choosing from the given set of support vectors,
one might construct a new set of support vectors. Now the

goal is to find a new set of support vectors b 3dcfe�g Ad(D ?F?�? G]Y and their weights U
3 A�(hD ?F?�? G]Y

JQP P % #�'K(L S2T 4�5iU T
7 % #:9ObXWj'

where
GIYkZlGIH

and ^F^ J % #�'i_ J P P % #�'-^F^ a is minimized. This
problem is solved by iterative non-linear optimization that
adds new support vectors one by one.

The former of the two methods corresponds to the binary
basis selection discussed here, but the latter is considered
more accurate.

Romdhani et al [15] suggested the sequential SVM eval-
uation, where after evaluating each support vector a deci-
sion is made weather to accept, reject or keep on evaluating
the SVM expansion.

3. The Masking Matrix
Assume that you are given a set of basis vectors that give
the solution to some classification task and your goal is to
find a subset of features and vectors that will approximate
this solution. To put things in context, assume that a full
SVM solution was obtained and we are now interested in
selecting a subset of support vectors, as well as a subset of
features, that will maintain, or even surpass the performance
of the original SVM solution. To do this, one resorts to fea-
ture selection or basis selection algorithms that search for
a binary mask vector that will determine which features or
basis vectors should participate in the learning process. Put
formally, in feature selection, we look for a binary vectorm (%n$ 5 9 ?F?�? 9 $ g ' $ 3 c[o�p 9-Drq s.t.

Jts % #�'K(02 3 4�5�6
3 7 %=u)% #:9 m 'j9 u)% ; < 9 m '>' (1)

will minimize ^�^ J % #�'v_ Jkw % #�'-^F^ a where the
u)% #:9 m ' operator

projects the vector # to a low dimensional space according

to the binary mask vector x . In basis selection we look for a
binary vector y{zh|8}��v��~�~F~��"}X����}X�&�[����� � � s.t.

�t� |=����z �� �F����� �n}X����|=�:�O���=� (2)

will minimize �F� � |����& �Q� |=������� � .
Now, let ��z�x���y be a masking matrix, then the feature

selection equation 1 becomes:

�t� |=���Kz �� �F����� � ��|��)|=�:��� � �j�>�)|n� � �O� � �>� (3)

where ��� are the columns of the masking matrix and since
the rank of the masking matrix is one, then it follows that
all the columns are equal to each other. Similarly, the basis
selection equation 2 becomes:

�t� |=����z �� �F��� � �n������|��f������|=�:�O����� (4)

Note that ���/��|n� � �����v��� � � because � is a rank-
�

binary matrix. Thus, the masking matrix captures, in a
single framework, all the information needed for feature
selection and basis selection. Taken together we can give
the following definition of the masking matrix.

Definition 1 (The masking matrix) The masking matrix� of �I -dimensional basis vectors is a)¡¢� binary matrix,
whose elements are denoted by �£�¥¤ . ���¦¤�z �

if feature §
is used by basis vector ¨ , otherwise � �¦¤ z©� . The columns
of � are denoted by �«ª . The joint feature-basis selection
expressed by the masking matrix is given by:

�Q¬ |=���Kz �� �F��� � �n������|��f������|=�)|��:���f�=�j�>�)|����	�O�f�F��� (5)

The ������|�� � � operation determines if basis vector §
participates in the expansion while the elements in �l�
determine which features in the basis vector should be
used. It is important to include the ������|��l��� term to cancel
basis functions since the kernel function ��|=�:���/� might not
be zero.

We might try and optimize
�k¬

directly, with respect to
the generalization error of the classifier, or we might try to
minimize its difference from a known optimal solution (i.e.
minimize ��� � |=���� � ¬ |=���-�F� �). In any case, the masking
matrix captures all there is to know about which features
and which basis vectors should be used.

it can readily be seen that feature selection and basis se-
lection are special instances of the masking matrix. In fea-
ture selection we have that �z®x���¯ , where ¯ is a

� ¡°�

vector of ones. In basis selection, on the other hand, we
have that �±z²¯³��y , where ¯ is a k¡ � vector of ones. The
masking matrix representation reveals the assumptions we
make in feature or basis selection algorithms and suggest
ways to extend them. For instance, instead of fixing y or x
to be

�
we might search for a joint feature-basis selection

algorithm by estimating directly a rank-
�

binary matrix � ,
instead of searching for y and x independently.

But why limit ourselves to a rank-
�

masking matrix? A
rank-

�
masking matrix indicates that the same feature must

be used in all the basis vectors. But it might be the case
that different features are needed for different basis vectors.
Such a situation can not be handled by feature selection or
basis selection algorithms as it requires interaction between
the two. This interaction is possible with the masking ma-
trix. Trying to find the masking matrix directly allows us to
recover the interactions between features and basis vectors.
We give an algorithm to estimate the masking matrix in the
next section.

4 The element selection algorithm
We modify a standard feature selection algorithm for esti-
mating the masking matrix. To avoid confusion we term it
element selection. This is a forward selection, greedy algo-
rithm that chooses elements that help optimize some objec-
tive function. In fact, our algorithm is equivalent to standard
feature selection algorithms only that we work in a different
space. While feature selection algorithms work in the “row”
space of the masking matrix and basis selection algorithms
work in the “column” space of the masking matrix, our el-
ement selection method work in the “element” space of the
masking matrix.

In particular our objective function is to approximate the
full SVM expansion, as given in the following equation:� zµ´ �{¶ ·´�¸ (6)

That is, we are given the full design matrix ´ and weights

� and we need to find an approximated matrix
·´ and ap-

propriate weights ¸ . The approximated matrix
·´ is given

by: ·� �¥¤ z+��|=�)|�� � ���£ªO�X���)|=yVª��O��ªO�>� (7)

So, our approach is first to approximate the full design
matrix ´ with the approximated matrix

·´ and then calcu-
late the weights ¸ .

Our solution is to use a greedy sequential forward selec-
tion, which is a standard procedure in feature and basis sub-
set selection literature [2, 17]. In each step we choose the
next element that minimizes the approximation error and
once the desired number of elements is selected we calcu-
late the new weight coefficients.

Here is an overview of the algorithm. It takes as input the
matrix of basis vectors ¹ and their weights � , the matrix of
training data � , as well as the desired number of elements º
and it outputs the masking matrix � as well as the weights¸ , of the selected basis vectors.

Algorithm 1 Element Selection
Input: ¹ - basis vectors� - training set vectors

� - weight vector of original basis vectorsº - number of elements to choose
Output: � - masking matrix of selected elements¸ - weight vector of (sparse) basis vectors
Initialize the masking matrix ��»z��
# Construct the design matrix ´��¥¤¼z+��|����	�>y ª �
Calculate expected labels

·½·½ z�´ �# Add º elements to the masking matrix �
For §:z �d¾ º ,

Find next element
[row,col] = chooseNextBestElement |n´`���°��¹����¿��\|=ÀÂÁvÃ1�OÄjÁÂ�n��z �
Orthogonalize ´·´ = sparseKernelMatrix |��«�O¹Å�O�¿�Æ z ·´{Ç �:È ´´Éz�´Ê ·´ Æ

end
Solve for new weights¸«z ·´{Ç � ·½

In our case, the matrix ¹ contains the support vec-
tors, as obtained by solving the SVM problem (each
column in ¹ corresponds to one support vector) and� is the matrix of the training data (again, each col-
umn of � corresponds to one training example). The
function Ä-ËVÁÂÁrÌ�ÍvÎ«Í���º@Ï]ÍÂÌ�º@Ð1�nÍ���Í���ºj|n� uses the functionÌ>Ñi�/ÀÂÌ�ÍvÒ°Í�Àv��Ív�nÓ²�/º	Àv§���|n� with different elements and re-
turns the element that best approximates the full design ma-
trix ´ , where The function Ì�Ñi��ÀrÌ�ÍvÒ°Í�Àv��Ív�nÓ²�/º	Àv§8��|n� cal-
culates the approximated kernel matrix using equation 7.
We then remove the contribution of the selected element
from the matrix ´ and repeat the process.

This algorithm is expansive to compute. It costs ÔÕ|=�IÖ@ /�
iterations to add one element, where is the number of fea-
tures and � is the number of basis functions. Back of the
envelope calculation will show that if we have

� ���� support
vectors, each of size ×���� pixels, we need ÔÕ|�×�����������/� it-
erations to find just a single element. Finding the first

� ��
elements will take ÔÕ|�×�����������O���/� . We therefor propose a
probabilistic speedup.

4.1 Probabilistic speedup
Two observations guide us in the probabilistic speedup.
First, that it is too expansive to try each and every element
as a potential candidate to be added to the element subset.
Second, we can use only part of all the training patterns to
evaluate each selected element.

It was shown by [17] (pp. 180) that we can find, with
high probability, the maximum of � random variables, in a
small number of trials. More specifically, in order to obtain
an estimate that is with probability ��~ Ø�Ù among the best ��~ ��Ù
of all estimates, a random subsample of size ��Ú@Û"Ü�Ý ÜOÞ��Ú@Û"Ü�Ý ß�Þ ¶ ÙrØwill guarantee nearly as good performance as if we consid-
ered all the random variables. Assume we already have an
element subset of �° � elements and we need to pick the�` àº>Ë element. If one is willing to assume that element
subsets of size � are random variables then randomly sam-
pling 60 elements to be added to our current subset of �I �
elements will give us, with high probability, a good element
subset of size � . In practice, we sample á� elements on ev-
ery step of the algorithm and pick the best one. Secondly,
for each element we evaluate it on only a portion of all the
training samples, to speed up calculations. That is, in the
function Ä-ËVÁÂÁrÌ�ÍvÎ«Í��Vº@Ï]ÍÂÌ�º@Ð1��Í���Í���ºj|8� we randomly sam-
ple

� �³â of the data to evaluate each new element. Once
an element is selected we need to remove its contribution
from the entire design matrix and so we must orthogonalize
the design matrix Ò . Finally, a useful heuristic that proved
to be quite effective was to run the element selection algo-
rithm in chunks. Each time we estimated the next, say, 10
elements ahead, but repeated the procedure for several times
and picked the best chunk of 10 elements before proceed-
ing.

5. Experiments
We tested our method on two datasets, one of vehicles and
one of faces.

The vehicle image dataset consisted of
� ��Ùrã�Ø training

images and
��ä ã�ã � test images, each consisted of roughlyå Ù�� vehicle images and the rest were non-vehicle images.

The size of the images is
å �C¡ å � pixels. We trained a RBF

SVM classifier on the data set and obtained a SVM solution
with

å Ø× ä support vectors. We then ran our element selec-
tion algorithm and compared it to the second variant of the
reduced set method of [4], as discussed in subsection 2.2.
This method constructs a new set of support vectors and
weights that approximates the original set of support vec-
tors. This method is not pure basis selection as each re-
duced set vector is synthesized not selected, nevertheless it
represents the state-of-the-art in accelerating run-time SVM
classification.

Figure 2 shows the results on the vehicle test set. As
can be seen, the 400 element set classifier is comparable to

5 10 15 20 25 30 35

0.7

0.75

0.8

0.85

0.9

0.95

1

false detection %

C
la

ss
ifi

ca
tio

n
%

ROC curve

2943 svs
50 rsv
10 rsv
5 rsv
400 elements
200 elements

Figure 2: Vehicle Dataset: Comparing element selection
Vs. reduced set method. We show the ROC curve for the
full set of

å ×/Ø ä support vectors (bold solid line), compared
to three reduced sets of Ù � � and Ùr� support vectors from
bottom to top, respectively (all in dashed lines), and two el-
ements sets, one with

å �� elements and the other with ×/��
elements (both in solid line). An element set of ×/�� ele-
ments is equivalent to a single support vector. Hence, the×��� element set is equivalent to the Ù reduced set in terms
of classification power but uses much less memory.

the 5 reduced set vector classifier. However, the element-
set classifier requires roughly 400 kernel operations, be-
cause almost each element belonged to a different support
vector, compared to only 5 required by the reduced set
method. In terms of memory requirements the element se-
lection method stores only 800 numbers (400 elements and
400 weights) compared to

å ����ÙÕzæÙ È ×/��t!àÙ numbers to
be stored in the reduced set method. The large number of
kernel operations might be quite expansive to compute but
it can be solved by using a lookup table. In a separate ex-
periment we found that a look-up table of size 16K entries
can replace the actual use of the exponent function, without
noticeable difference in classification performance. In case
of polynomial kernels there is no need for lookup table in
the first place.

It will require a very large number of elements to re-
place the reduced set method. However, the element selec-
tion method can be quite effective in rejecting patterns. For
instance, the

å �� element set can correctly reject about çr�/â
of the negative patterns while falsely rejecting less than

å â
of the positive patterns.

In a second experiment we tested how fast does the ele-
ment selection algorithm improves. Figure 3 show that the
first few elements give a very large improvement, but after
about

å Ùr� elements the improvement is negligible.
Next, we tested our method on the face classification

problem. The training set consisted of 9666 images of size

0 50 100 150 200 250 300 350 400
0.4

0.5

0.6

0.7

0.8

0.9

of elements

cl
as

si
fic

at
io

n
sc

or
e

Classification score

Figure 3: Vehicle Dataset: We show the classification score
as a function of the number of elements used. The � -axis
measures the number of elements and the
 -axis measures
the classification score, where we define the classification
score as the breakeven point where the percentage of false
positive is equal to the percentage of false negative.

å ×k¡ å × pixels each. ×/ááá of them were faces, the rest were
non-faces. The test set consisted of a different set of 9666
images of size

å ×è¡ å × pixels and it, as well, consisted
of ×�á�áá face images and Ùr���� non-face images. We then
used é)ê]Ó©� � ÛXë�ì [6] to train an RBF SVM on the data and
achieved a classifier with

� × ä × support vector and Ø�Ù�â suc-
cess rate in classifying both positive and negative examples
on the test set.

Figure 4 show the results on the face test set. As can be
seen, for comparable classification score the element selec-
tion method uses only ×��³â of the memory used by the re-
duced set method. Again, almost for every element we have
a weight coefficient to store. As before, the method is prob-
ably more useful for rejection than replacing the reduce-set
method. In the case of the face database it can be seen thatã�³â of the negative patterns can be correctly rejected with
false negative rate of less than

å â .

A second experiment tested how fast does the element
selection algorithm improves for the face dataset. Figure 5
show that the first few elements give a very large improve-
ment, but after about

å Ùr� elements the improvement is neg-
ligible.

6. Acknowledgment

I would like to thank Mike Jones, from MERL, for supply-
ing me with the face database and the MobilEye research
team for supplying me with the vehicle database.

2 4 6 8 10 12 14 16 18 20

0.75

0.8

0.85

0.9

0.95

1

false detection %

C
la

ss
ifi

ca
tio

n
%

ROC curve

1434 svs
100 rsvs
10 rsvs
576 elements
200 elements

Figure 4: Face Dataset: We show the ROC curve for the full
set SVM of 1434 support vectors (bold solid line), two re-
duced set methods of

� � and
� ��� reduced sets (dashed line).

The dashed line of the
� ��� reduced set coincide almost en-

tirely with the full set of support vectors. In addition, we
show two element sets of

å ��� and Ù/çÂá elements (solid line).
Note that an element set of Ù�çÂá elements is equivalent to a
single support vector. Hence, the Ù�çrá element set is equiv-
alent to the

� � reduced set in terms of classification power
but uses much less memory.

7. Summary and Conclusions
We unified feature selection and basis selection algorithms
using the masking matrix. The masking matrix is a natural
representation that treats features and basis vectors alike.
Moreover, we showed that the masking matrix represen-
tation leads to more general subset selection algorithms in
which different features can be assigned to only part of the
basis vectors. The problem is NP-hard and we gave a prob-
abilistic greedy algorithm for solving it.

In the current paper we focused on accelerating the run-
time performance of SVM classification. In our experi-
ments we found that the sparse basis/feature selection can
serve as an excellent rejector that can reject up to ã�³â of the
negative patterns with less than the memory requirements
used by a single basis function.

Future research directions will focus on recovering a
rank-constrained masking matrix, which implies that there
are several prototypes of feature subsets to choose from and
each basis vector can choose only one of them. Another
direction will be to integrate the element selection strategy
into the reduced set method. This way, when a new vector
will be added to the reduced set we will use feature selec-
tion to find a subset of the features that can approximate the
dot-product when using the full vectors to the dot-product
using just a subset. Finally, we would like to include the
recovery of the masking matrix as part of the SVM process,

0 100 200 300 400 500 600

0.5

0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1
Classification score

of elements

cl
as

si
fic

at
io

n
sc

or
e

Figure 5: Face Dataset: We show the classification score
as a function of the number of elements used. The � -axis
measures the number of elements and the
 -axis measures
the classification score, where we define the classification
score as the breakeven point where the percentage of false
positive is equal to the percentage of false negative.

not as a post-processing step.

References
[1] J. Bins and B. Draper. Feature Selection from Huge

Feature Sets. In Int. Conf. on Computer Vision, volume
2, pages 159 165, Vancouver, CA, 2001.

[2] A. Blum and P. Langley. Selection of relevant features
and examples in machine learning. Artificial Intelli-
gence, 97:245 271, 1997.

[3] L. Bottou, C. Cortes, J. S. Denker, H. Drucker, I.
Guyon, L. D. Jackel, Y. LeCun, U. A. Muller, E.
Sackinger, P. Simard and V. Vapnik. Comparison of
classifier methods: a case study in handwritten digit
recognition. In Proceedings of the 12th International
Conference on Pattern Recognition and Neural Net-
works, Jerusalem, pages 77-87, IEEE Computer Soci-
ety Press, 1994.

[4] C.J.C. Burges. Simplified support vector decision rules.
In L. Saitta, editor, Proceedings, 13th International
Conference on Machine Learning, pages 71-77, San
Mateo, Ca, 1996.

[5] C.J.C. Burges. A Tutorial on Support Vector Machines
for Pattern Recognition. Data Mining and Knowledge
Discovery, 2(2):121-167, 1998.

[6] T. Joachims. Making Large-Scale SVM Learning Prac-
tical. In Advances in Kernel Methods - Support Vec-

tor Learning, B. Schlkopf and C. Burges and A. Smola
(ed.), MIT Press, 1999.

[7] John, G. Kohavi R. and Pfleger, K. Irrelevant features
and the subset selection problem. In Machine Learning:
Proceedings of the Eleventh International Conference,
Morgan Kaufmann, pp. 121-129, 1994.

[8] R. Kohavi and G.H. John, Wrappers for Feature Subset
Selection , Artificial Intelligence Journal, 97(1-2):273-
324, 1997.

[9] S.Z. Li, L. Zhu, Z.Q. Zhang, A. Blake, H.J. Zhang and
H. Shum. Statistical Learning of Multi-View Face De-
tection. In Proceedings of the 7th European Confer-
ence on Computer Vision, Copenhagen, Denmark, May
2002.

[10] T. Marill and D.M. Green, On the Effectiveness of Re-
ceptors in Recognition Systems , IEEE transactions on
Information Theory, 9:11-17, 1963.

[11] P. Narendra and K. Fukunaga. A Branch and Bound
Algorithm for Feature Subset Selection. IEEE Transac-
tions on Computer, C 26(9):917 922, 1977.

[12] E. Osuna, R. Freund and F. Girosi. Training Support
Vector Machines: An Application to Face Detection.
In IEEE Conference on Computer Vision and Pattern
Recognition, Puerto Rico, pages 130-136, 1997.

[13] P. Pudil, J. Novovicov, and J. Kittler. Floating Search
Methods in Feature Selection. Pattern Recognition Let-
ters, 15(11):1119 1125, 1994.

[14] J.O. Rawlings. Applied Regression Analysis.
Wadsworth & Brooks/Cole, Pacific Grove, CA, 1988.

[15] S. Romdhani, P. Torr, B. Scholkopf, and A. Blake.
Computationally Efficient Face Detection. In Inter-
national Conference on Computer Vision, Vancouver,
2001.

[16] B. Scholkopf. Support Vector Learning. R. Olden-
bourg Verlag, Munich, 1997.

[17] B. Scholkopf and A. Smola. Learning with Kernels
Support Vector Machines, Regularization, Optimiza-
tion and Beyond. MIT Press, Cambridge, MA, 2002.

[18] Yang, Y., Pedersen J.P. A Comparative Study on Fea-
ture Selection in Text Categorization Proceedings of
the Fourteenth International Conference on Machine
Learning (ICML’97), 1997, pp412-420.

[19] V. Vapnik. The Nature of Statistical Learning Theory.
Springer, N.Y., 1995.

[20] P. Viola and M. Jones. Rapid Object Detection using
a Boosted Cascade of Simple Features. In IEEE Con-
ference on Computer Vision and Pattern Recognition,
Hawaii, 2001.

[21] J. Weston, S. Mukherjee, O. Chapelle, M. Pon- til, T.
Poggio, and V. Vapnik. Feature selection for SVMs. In
Proc. Advances in Neural Information Processing Sys-
tems (NIPS’00), pages 668- 674, 2000.

