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Abstract

Locally Orderless Tracking (LOT) is a visual tracking
algorithm that automatically estimates the amount of local
(dis)order in the object. This lets the tracker specialize in
both rigid and deformable objects on-line and with no prior
assumptions. We provide a probabilistic model of the object
variations over time. The model is implemented using the
Earth Mover’s Distance (EMD) with two parameters that
control the cost of moving pixels and changing their color.
We adjust these costs on-line during tracking to account for
the amount of local (dis)order in the object. We show LOT’s
tracking capabilities on challenging video sequences, both
commonly used and new, demonstrating performance com-
parable to state-of-the-art methods.

1. Introduction

In visual tracking one often has to make an explicit or im-
plicit assumption about the type of the object being tracked,
treating it as either a rigid object or a deformable one. For
example, if tracking a rigid object, where the only appear-
ance change is due to rigid geometric transformations, it
is reasonable to use a method such as template matching
where pixel locations are fixed and governed by a geometric
transformation and similarity is reduced to per-pixel inten-
sity difference. If, on the other hand, the object is extremely
deformable, then tracking based on color histogram match-
ing might be more suitable reducing the similarity between
target and candidate to similarity between their color distri-
butions.

In this work we present Locally Orderless Tracking
(LOT), a novel visual tracking algorithm that uses a joint
spatial-appearance space and is able to estimate, on-line,
the amount of local (dis)order in the target. Thus if the
target is rigid and there is little or no local disorder then
LOT preserves spatial information like template matching.
However, if the target is nonrigid, LOT disregards spatial
information as in histogram matching.

The first contribution of our work is a new probabilistic
interpretation of the Earth Mover’s Distance (EMD) that we
name Locally Orderless Matching (LOM). Using LOM one
can calculate the likelihood of patch P being a noisy replica
of patch Q where noise can be introduced by change in the
spatial order of pixels in the patch, change in their appear-
ance, or both. In other words, LOM infers the probability
Pr(P |Q,Θ) where Θ are noise model parameters, some
of which control the cost of moving pixels spatially while
others control the cost of changing a pixels appearance, for
example due to illumination variation.

The second contribution of our work is introducing Lo-
cally Orderless Tracking which applies Locally Orderless
Matching to visual tracking. This is done, in a generative
approach, using particle filtering where particle likelihoods
are inferred using LOM. Particles are represented as signa-
tures in a joint spatial-appearance space, using superpixels
for better efficiency. Key to our approach is the noise model
used in LOM to regulate the cost of moving superpixels and
changing their appearance, and we show how the optimal
parameters of this noise model can be estimated on-line,
using maximum likelihood optimization, according to the
degree of ”rigidity” in the object.

2. Related Work
We are inspired by the work of Koenderink and Van

Doorn on the structure of locally orderless images [1] which
proposes an image representation method where the amount
of spatial order preserved globally and locally can be tuned
using two parameters. This representation was shown by
Ginneken and Haar Romeny [2] to be useful for applications
such as adaptive histogram equalization, noise removal and
segmentation. In our case, we wish to determine the opti-
mal extent of local disorder of the data for the purpose of
tracking.

In rigid object tracking one usually attempts to exploit
spatial information in the object by using template based
methods. In some cases the template is used in a simple
manner [3] while others use multiple templates and sparse



representations [4, 5, 6, 7]. These approaches offer good
stability and can handle occlusions and scale estimation but
are less suitable for handling non-rigid deformations and
dynamics such as out-of-plane-rotations.

When tracking deformable objects one often uses his-
togram representations [8] or discriminative methods that
treat the problem as a pixel-wise binary classification prob-
lem [9, 10, 11]. These approaches mostly disregard spatial
order, and can therefore handle difficult non-rigid transfor-
mations. However they are more prone to drift and are often
less stable especially at scale estimation or occlusion han-
dling. Some attempt to combine rigid and deformable ob-
ject approaches either by using mid level cues that capture
spatial information to some extent [12] or by heuristically
combining discriminative and generative components [13].
However these methods do not measure the extent of lo-
cal disorder in the data explicitly and adapt accordingly like
LOT.

The work most related to ours is that of Elgammal et
al. [14] that propose a tracker that uses a joint spatial-
appearance space and can specialize to either histogram
tracking or sum-of-square-difference (SSD) tracking by an
off-line adjustment of parameters. The proposed method is
significantly different in several ways. First and foremost,
due to the on-line parameter estimation which enables LOT
to specialize in rigid template tracking or deformable object
tracking on-line and secondly due to the use of particle fil-
tering and EMD instead of the kernel based gradient decent
approach of Elgammal et al.

The Earth Mover’s Distance (EMD) has a long history
in computer vision. EMD was first considered by Peleg et
al. [15] as an image similarity metric and popularized by
Rubner et al. [16] (who coined the name) for content based
image retrieval. A probabilistic analysis of EMD and its re-
lation with the Mallows distance was proposed by [17] al-
though that analysis differs from the proposed probabilistic
framework which introduces a noise process that governs
the ground distance in the EMD. Recently, Zhao et al. [18]
proposed a differential EMD approach that derives a gradi-
ent descent method to find the object location quickly using
the EMD as a similarity measure. However, the focus of
that paper is on using EMD to handle illumination changes,
the object is represented as a color signature and no consid-
eration is given to pixel location.

Superpixels[19] have been used in recent years for many
computer vision applications such as segmentation, classi-
fication [20, 21] and tracking [12]. In our work, similar to
[22], superpixels are used to reduce the computational cost
of EMD.

We refer interested readers to a thorough survey of the
vast work in visual tracking that can be found in [23].

3. Locally Orderless Matching
Locally Orderless Matching measures the similarity be-

tween two images or two image patches based on the EMD.
Pixels are represented in a joint spatial-appearance domain.
For appearance we use color values but other descriptors
such as local gradients or texture can also be used. For po-
sition pixel coordinates in a patch, normalized to the range
[0, 1], are taken. A pixel is represented as pi = (pLi , p

A
i )

where pLi = (x, y) is the pixels location and pAi ∈ Rk its
appearance.

We want to probabilistically explain a candidate patch P
as a noisy replica of the template Q. We begin by looking
at the pixel-wise inference problem, where patches P and
Q are treated as sets of pixels, and show that in this case
the problem is equivalent to a form of EMD optimization
problem. We then propose using signature representations
for P and Q, in which superpixels are used to cluster pixels
together, and claim the problem can now be formulated as
the signature EMD problem [16]. This is done in order to
reduce the computational cost of EMD and we justify by
bounding the error resulting from the related coarsening of
the representation.

Let us consider patches P and Q as sets of pixels. We
start with a probabilistic perspective of EMD and wish to
show that it measures the conditional probability of one set,
given the other set and model parameters. Formally, denote
the two sets by P = {pi}ni=1, Q = {qi}ni=1, and assume that
we have a probabilistic model stating the probability that a
specific element p ∈ P originated from a specific element
q ∈ Q, Pr(p|q,Θ), with Θ the model parameters. We want
to extend it to the conditional probability between the sets
Pr(P |Q,Θ).

The extension relies on a hidden 1:1 mapping between
elements of P and Q. Denote such a mapping by h :
{1, .., n} → {1, .., n} with h(i) = j meaning that element
pi was generated from element qj . We can get the probabil-
ity of P being generated from Q by marginalizing over the
possible hidden assignments (dropping Θ from the notation
as it is currently constant):

Pr(P |Q) =
∑
h

Pr(P |Q, h)Pr(h) (1)

Assuming a uniform prior over the h’s (no reason to assume
anything else) we have:

Pr(P |Q) =
1

n!

∑
h

Pr(P |Q, h) (2)

Approximating the average using maximum a posteriori
(MAP) estimation, i.e. assuming the sum is dominated by
the highest term (the best hidden map) we get:

Pr(P |Q) ∼ c ·max
h
Pr(P |Q, h) (3)



Dropping the constant c, assuming independence be-
tween the set elements and taking the logarithm we get:

logPr(P |Q) ∼ max
h
logPr(P |Q, h)

= max
h

∑n
i=1 logPr(pi|qh(i),Θ)

(4)

Proposition 3.1 Optimization problem (4) is the signature
EMD problem EMD(P,Q,d) for the following signatures and
ground distance:

P = {(p1, 1), (p2, 1), . . . , (pn, 1)}
Q = {(q1, 1), (q2, 1), . . . , (qn, 1)}
d(p, q) = −logPr(p|q,Θ)

(5)

Where the signatures are comprised of objects, e.g. (pi, wi),
each having a description pi and weight wi. In our case the
signatures are simply collections of all the pixels in patches
P and Q equally weighted.

Proof Starting with Equation (4) we have:

max
h

∑n
i=1 logPr(pi|qh(i),Θ) =

min
h

∑n
i=1−logPr(pi|qh(i),Θ) =

min
h

∑n
i=1 d(pi, qh(i))

(6)

where the mapping h can be expressed as a permutation
matrix F in which fij = 1 iff h(i) = j. Denoting dij =
d(pi, qj) the problem statement becomes:

min
∑
i,j fijdij

such that ∑
i fij = 1,

∑
j fij = 1, fij ∈ {0, 1}

(7)

If we put this integer linear programming problem in the
canonical form {min c · x|Ax = b, x ≥ 0} we find that the
matrix A is totally unimodular [24]. This in turn implies
that the linear programming problem in which we relax the
constraint fij ∈ {0, 1} to fij ≥ 0 has an integral optimum,
meaning the constraint can be relaxed without changing the
result.

The linear programming problem obtained by this relax-
ation is identical to the signature EMD with identical mass
presented by Rubner et al. [16].

min
∑
i,j

fijdij

such that
fij ≥ 0,

∑
i fij ≤ wqj ,

∑
j fij ≤ wpi∑

i,j

fij = min(
∑
i wpi ,

∑
j wqj )

(8)

To see this notice that for signatures with identical mass
the inequalities

∑
i fij ≤ wqj ,

∑
j fij ≤ wpi can be re-

placed by equalities and then the last constraint
∑
i,j

fij =

min(
∑
i wpi ,

∑
j wqj ) can be dropped.

In other words, conditional set probability, under 1:1 map-
ping and element independence assumptions, is equivalent
to signature EMD with singleton bins. However, the equiv-
alence naturally extends to conditional probabilities with P
and Q containing repeating elements and signature EMD
with general integer bin quantities.

Proposition 3.2 Let

P = {(p1, w
p
1), (p2, w

p
2), . . . , (pn1 , w

p
n1

)}
Q = {(q1, w

q
1), (q2, w

q
2), . . . , (qn2

, wqn2
)} (9)

be signatures for which we cluster repeating elements into
single objects increasing their weights accordingly (e.g. p1

appears wp1 ∈ N times in P , etc.). Solving the 1:1 pixel
matching problem for P and Q as formulated in equa-
tion (7) (which has m2 variables where m =

∑n
i=1 w

p
i )

is equivalent to solving the EMD problem (8) for P and Q
(which has n1 · n2 variables) i.e. both problems have the
same minima.

Proof sketch For all i, j in (7), we take all the vari-
ables {fk1j , . . . , fkwp

i
j} that correspond to wpi similar pix-

els (with singleton weights). We then collapse each set into
a single variable representing their sum gij =

∑wpi
l=1 fklj .

This can be done as their coefficients in the optimization ar-
gument

∑
ij

fijdij are the same. The wpi constraints of the

form
∑
j fklj = 1 can be replaced with a single constraint

demanding
∑
j gij = wpi , without changing the space of

feasible solutions. This can be done, in a similar manner, to
signature Q leading to optimization problem (8).

We see that when sets P and Q contain identical items it
lowers the computational cost of the 1:1 matching using
EMD formulation. Hence clustering similar items and re-
placing them with a single object is an attractive approxi-
mation to the likelihood. However this approximation de-
grades as the clustering becomes coarser. We can bound
this error in likelihood estimation as follows:

Proposition 3.3 Assume the ground distance d(p, q) is
a metric. Let P = {(p1, w

p
1), . . . , (pn1

, wpn1
)}, Q =

{(q1, w
q
1), . . . , (qn2

, wqn2
)} be two signatures and let P̂ , Q̂

be crude versions of P,Q such that any object in P̂ is cre-
ated by uniting objects in P and the same holds for Q̂,Q.
Denote by hp, hq the functions mapping each object P,Q to
its containing object in P̂ , Q̂. Then:

|EMD(P,Q, d)− EMD(P̂ , Q̂, d)| ≤∑n1

i=1 w
p
i d(pi, p̂hp(i)) +

∑n2

i=1 w
q
i d(qi, q̂hq(i))

(10)

In other words, the EMD approximation gap is bounded by
the sum of distances between the original cluster centers
and their cruder counterparts in the crude signatures. The
proof of proposition 3.3 is provided in the supplementary
material.



4. Noise Model
We have shown that Locally Orderless Matching at-

tempts to explain a set P as a noisy replica of set Q, un-
der some noise model with parameters Θ. We now turn
our attention to the choice of the noise model and ways
to estimate its parameters from the data. In general, any
distribution can be used as a noise model. One can use
prior knowledge, theoretical or empirical, about the noise to
make an educated choice. In particular we consider the case
of Gaussian noise for both location and appearance, assum-
ing independence between the two, i.e. Pr(p|q,ΘL,ΘA) =
Pr(pL|qL,ΘL) · Pr(pA|qA,ΘA).

4.1. Gaussian Noise

A Gaussian with zero mean and scalar covariance is con-
sidered for both appearance and location.

Pr(pL|qL) ∼ N(0,ΣL = σL · I)
Pr(pA|qA) ∼ N(0,ΣA = σA · I)

(11)

Denoting Θ = (σL, σA). The conditional probability is:

Pr(p|q,Θ) =
1

2πσ2
L

e
− ||p

L−qL||22
2σ2
L · 1

(2π)k/2σkA
e
− ||p

A−qA||22
2σ2
A

(12)
Ground distance in this case is:

d(p, q) =
1

2σ2
L

||pL − qL||22 +
1

2σ2
A

||pA − qA||22 +C (13)

Where C = k+2
2 log(2π) + 2log(σL) + klog(σA). This

model is simple and intuitive, closely related to Koen-
derink’s locally orderless image representation [1].

4.2. Parameter Estimation

Locally Orderless Matching with a Gaussian noise
model of the form discussed above has two parameters σA
and σL. Due to the independence assumed between ap-
pearance and location each parameter can be estimated sep-
arately using a Maximum Likelihood (ML) estimator and
p, q, σ, k will be used without the superscripts A,L. Recall
from propositions 3.1,3.2 that logPr(P |Q,Θ) ∼

∑
i,j

dijfij ,

where the fij providing the 1 : 1 mapping, are obtained
from the EMD solution. Maximum likelihood can hence be
obtained by differentiating

∑
i,j

dijfij with respect to σ and

comparing to zero. For dij = d(pi, qj) = 1
2σ ||pi − qj ||

2
2 +

k
2 log(2π) + klog(σ) we get:

σ2 =
1

k

∑
i,j

fij ||pi − qj ||22∑
i,j

fij
. (14)

Parameter estimation can be done using a Maximization-
Maximization (MM) scheme where we iterate between
EMD solution and parameter update until both converge
(convergence is guaranteed as both MM steps increase the
likelihood). Experiments showing we can correctly esti-
mate the noise parameters are provided in the supplemen-
tary material.

5. Locally Orderless Tracking

We are now ready to put all the pieces together. Locally
Orderless Tracking applies Locally Orderless Matching to
tracking. This is done in a Baysian approach using Particle-
Filtering (PF) [25] where the likelihood that a certain parti-
cle has originated from the tracked object is inferred using
Locally Orderless Matching. The overall algorithm is given
in Algorithm 1. Specific details are provided below .

To define the conditional probability between patches
Pr(P |Q,Θ) we only have to define the probabilistic noise
model for single pixels Pr(p|q,Θ). The ground distance
for the EMD is then defined as d(p, q) = −log(p|q,Θ) and
Pr(P |Q,Θ) is obtained by solving the EMD problem.

Solving an EMD problem can be a computationally chal-
lenging task, so instead of using raw pixel values we work
with superpixels. Specifically, target and candidate patches
are represented by signatures which are generated from su-
perpixels computed using TurboPixels [26] clustering built
in a region-of-intrest (ROI) which supports all the particles.
A signature consists of M clusters that reside in the signa-
ture support, i.e. a rectangle. Each cluster is represented
by its location, i.e. geometric center of mass, and average
appearance (e.g. average HSV values).

The target’s state at each frame is found using PF. A
signature is built for each of the N particles which are
rectangular image patches and the EMD is then calculated
between each of these candidate signatures {Pk}Nk=1 and
the target signature Q0 with ground distances as explained
above (calculated using the noise model parameters Θ). The
EMD scores {EMDk}Nk=1 are then used to set particle
weights according to πk = e−β·EMDk and the new target
state is taken to be the weighted sum over all particles. Fi-
nally, noise model parameters are updated as explained next
and new particles are drawn for the next iteration of the al-
gorithm.

Noise model parameters are updated based on the new
target state found. The EMD flow between the final can-
didate signature and the target signature Q0 is found pro-
viding the most probable 1 : 1 matching between source
and target signatures. Using this flow we estimate the noise
distribution parameters ΘML according to (14). These es-
timated parameters are then regulated using a prior ΘPrior

and a moving average (MA) process before producing the



final parameters Θn:

ΘMAP = ΘML+ΘPrior·wPrior
1+wPrior

Θn = (1− αMA) ·Θn−1 + αMA ·ΘMAP
(15)

Algorithm 1 Locally Orderless Tracking

Input: Frame I(n), target signature Q0 = {qi, wqi }
MQ0
i=1 ,

noise parameters Θ(n−1), particle states {X(n)
i }Ni=1

Output: New target state X
(n)
Target, updated parameters

Θ(n), new particle states {X(n+1)
i }Ni=1

1. Partition ROI in I(n) into superpixels ISP
2. For each particle X(n)

k do:

(a) Build signature Pk = {pki , w
pk

i }
MPk
i=1 using ISP

(b) Compute ground distances using (13):
{dk}ij = d(pki , qj) = −log(pki |qj ,Θ(n−1))

(c) Compute EMDk ← EMD(Pk, Q0, dk)
(d) Compute particle weight πk = e−β·EMDk

3. Normalize weights s.t
∑N
i=1 πi = 1

4. Find new target position X(n)
Target =

∑N
i=1 πiX

(n)
i

5. Build new target signature PT and compute EMD flow
fi,j ← EMD(PT , Q0, dT )

6. Update parameters Θ(n) according to (15).
7. Draw particles {X(n+1)

i }Ni=1 as explained in [25].

6. Experiments
This section presents experimental results. We begin

with the experimental setup followed by a demonstration of
the on-line adaptation capabilities. We then present qualita-
tive and quantitative results on challenging sequences both
commonly used and new comparing LOT with state-of-the-
art methods.

6.1. Experimental Setup

For our experiments we use HSV color space for ap-
pearance description. Both appearance and location spaces
are normalized to the range [0, 1]. Cluster weights are
determined according to the fraction of pixels associated
with them in the signature (thus ensuring a total signature
weight of 1). The state vector includes position and scale
i.e. Xi = {xi, yi, wi, hi}. We use N = 250 particles
and particle weighing parameter β is set to 10 in order
to better differentiate between particle scores. The noise
model parameters Θ = {σA, σL} are initialized according
to σAprior = 0.05, σLprior = 0.1. Prior weights for noise
parameter updating, as explained in section 5, are initial-
ized to wσpriorA

= wσpriorL
= 0.25. The ML estimator is

calculated according to (14) and the MA parameter is fixed

Sequence IVT OAB MIL VTD LOT
Dog 87 57 45.5 70 97.4
Shop 36.4 20.9 20.9 35 34.6
Girl 15.4 26.2 25 93.4 67.6
Human 88.8 26.2 25 64.6 97.6
Skating 3.8 8.8 9.8 11.5 29.4
Lemming 16.2 37.1 37.6 54.3 73.8
David 83.1 9.7 19.3 18.8 10
Sylv 45.7 31 73.2 93.4 67.6
Face 99 75 54.5 70.1 44.4

Table 1. Quantitative comparison, for 9 commonly used se-
quences, showing the percent of frames for which the PASCAL
criterion was a0 > 0.5. Best result are in bold preface. It can be
seen that LOT (the proposed method) is comparable to the state-
of-the-art as it gives the best results in 4 out of 9 sequences and is
in second place in 2 additional sequences.

to αMA = 0.3. All parameters are kept fixed for all ex-
periments. We use the target signature extracted in the first
frame as our target template. We note that estimating the
noise parameters effectively control the space of templates
that can match this target template and thus can be viewed
as a form of constrained model update.

In this configuration our hybrid Matlab-Mex implemen-
tation runs at ∼ 1 sec per frame for a target window size of
about 50x50 pixels on a standard PC.

6.2. On-line Parameter Update with Toy Example

We first demonstrate the on-line noise parameter update
capabilities of LOT using a 500 frame toy-example of a
LEGO target subject to both appearance and localization
noises. Figure 1 shows 4 sample frames from this sequence
and also the behavior of the noise parameters σL and σA
throughout the sequences.

The target is first subject to an illumination change. LOT
detects the appearance change and increases the appearance
noise parameter σA while maintaining perfect tracking. As
the illumination returns to normal the value of σA decreases.
Next the target is rotated about its origin. Modeling only 2D
translation (and not rotation) this rotation is effectively lo-
calization noise albeit not a Gaussian noise. As before the
target is tracked perfectly while LOT estimates and adapts
the value of σL on-line increasing σL as the rotation an-
gle increases and then decreasing σL as the target is rotated
back. Towards the end of the sequence the algorithm cor-
rectly tracks target scale changes without altering the noise
parameters which is a desired behavior.

6.3. Results for Commonly Used Sequences

We evaluate our performance on 9 challenging se-
quences used in recent publications [4, 5, 27, 6, 7, 12, 13].
We compare LOT’s performance with 4 state-of-the-art



Frame 1 Frame 135 Frame 290 Frame 420 Parameter Estimation

Figure 1. Parameter estimation for the LEGO sequence: (Right) Noise parameter values, σL (Dashed-Red) and σA (Solid-Blue) per frame
showing their on-line update.(Left) Four sample frames. First the target is illuminated with a strong light causing an appearance change
handled by increasing σA. Next the target is rotated and since we only model 2D translation (w/o rotation) this creates localization noise
which is handled by a large σL variation. Finally the target moves away from the camera causing a scale change which is correctly tracked
without significant noise parameter changes.

tracking algorithms with publicly available implementa-
tions: Visual Tracking Decomposition (VTD)[7], Multiple
Instance Learning (MIL)[27], Incremental Visual Tracking
(IVT)[5] and Online AdaBoost (OAB)[11].

We adopt the widely used PASCAL VOC[28] criterion
which quantifies both the centering accuracy as well as the
scale accuracy. The criterion is a0 =

area(Bp∩Bgt)
area(Bp∪Bgt) where

Bp and Bgt denotes the predicted and ground truth bound-
ing boxes accordingly. Successful tracking is considered as
a0 > 0.5 (50%). We note that some of the sequences were
re-annotated in order to provide ground truth for each frame
that also accounts for scale changes disregarded in some of
the original annotations.

Quantitative results are presented in Table 1 where it can
be seen that LOT’s performance is comparable to the state-
of-the-art algorithms. LOT provides best performance in 4
out of 9 sequences (Dog, Human, Skating and Lemming) it
measures up to IVT and VTD for Shop and holds second
place for Girl. The remaining 3 sequences (David, Sylv and
Face) are gray-scale sequences. LOT can run in both color
and gray-scale (e.g. Dog), however using color appearance
representation (i.e. HSV ) makes gray-scale more challeng-
ing as it leaves the algorithm with only a single appearance
channel. This makes coping with severe global and local
illumination changes a difficult challenge and it is mainly
for this reason that LOT’s performance degrades on the last
3 sequences where it ranks fifth and last in David, third in
Sylv and last in Face. Although VTD and IVT produce bet-
ter results for some sequences, looking at the entire dataset
it can be seen that no other method provides better over-
all performance than LOT. We believe that MIL and OAB
have poorer performance mainly due to their lack of scale
adaptability.

Figure 2 presents sample frames from two sequences
(Dog and Skating) qualitatively showing LOT’s ability to
cope with difficult appearance changes such as massive
scale changes and out-of-plane-rotations.

Sequence IVT OAB MIL VTD LOT
DH 8.9 47.8 45.5 69.4 92.3
Shirt 0.5 66.7 32.5 79 88.1
Train 2.7 3.4 2.3 2.9 69.6
UCSDPeds 26.4 42.5 31.8 60.5 73.9
Boxing 7.3 18.75 18.4 21.2 70.1

Table 2. Quantitative comparison, for 5 new sequences, show-
ing the percent of frames for which the PASCAL criterion was
a0 > 0.5. Best result are in bold preface. It can be seen that LOT
(the proposed method) outperforms the other methods producing
significantly better results on this set of challenging sequences.

6.4. Results for New Sequences

In this part we present additional results on 5 challeng-
ing new sequences. The videos include gray-scale and color
examples with both static and moving cameras. The tar-
gets in these sequences are subject to many appearance
changes due to deformations, pose changes, out-of-plane-
rotations, massive scale changes, motion blur and illumina-
tion changes.

A quantitative comparison, based on the PASCAL crite-
rion, between LOT and the four state-of-the-art methods is
presented in Table 2. It can be seen that LOT outperforms
the other tracking methods producing significantly better re-
sults for all these sequences.

Sample frames from three of the sequences are presented
in Figure 3.

The first, 481 frame long, sequence shows a Down-Hill
(DH) bike ride. As the rider jumps and moves in and out
of shade a lot of motion blur, deformations and illumina-
tion changes are created. IVT drifts after the first jump ,
MIL and OAB keep tracking but eventually also drift. Only
VTD and LOT are able to track the rider until the end of the
sequence.

The second, 951 frame long, sequence we captured is of
a T-shirt undergoing severe non-rigid deformations and mo-
tion blur. All 4 competing algorithms are unable to track the
target through the severe non-rigid deformations and loose



Frame 270 Frame 825 Frame 977 Frame 1154 Frame 1343

Frame 1 Frame 135 Frame 245 Frame 603 Frame 707

Figure 2. Sample frames from two sequences: Dog and Skating . The different algorithms are: IVT in Yellow, OAB in Cyan, MIL in Red,
VTD in Magenta and LOT (The proposed algorithm) in Green.

track at some point. Only LOT with its inherent ability to
explain non-rigid deformations tracks the shirt through the
entire sequence.

The third, 900 frame long, sequence was taken from the
PETS-2006 dataset1. It shows a man walking around a busy
train station making many pose changes and undergoing
several occlusions. Although LOT does not have an explicit
mechanism for handling occlusions it can handle partial oc-
clusions by tracking the remaining visible part of the target
which often captures the full target color statistics. In this
sequence the first partial occlusion occurs around frame 35
causing IVT, OAB and MIL to drift. A second occlusion
at around frame 60 throws VTD off track as well. LOT is
able to overcome these 2 occlusion by shrinking and match-
ing to the remaining visible part of the target. It continues
tracking the man for the entire length of the sequence while
overcoming pose changes and additional occlusions.

The forth, 261 frame long, gray-scale, sequence taken
from the UCSD crowd dataset2 shows two people walking
and fighting. We track both people as a single target. This
crowd target undergoes non-rigid deformations as the peo-
ple draw nearer and apart and as they fight with each other.
Although all the methods are able track the targets location
throughout most of the sequence with only minor glitches,
LOT produces significantly more accurate results.

The fifth and last is a, 352 frame long, boxing sequence.
At the beginning of this sequence only LOT is able to cor-
rectly track the boxer through the difficult pose changes. All
methods drift between frame 200-225 due to a rapid move-
ment followed by an occlusion however LOT is able to lock
back on at frame 281 and continue tracking the target until
the end of the sequence.

1http://www.cvg.rdg.ac.uk/PETS2006/data.html
2http://www.svcl.ucsd.edu/projects/peoplecnt/index.htm

7. Conclusions

Locally Orderless Tracking is a new visual tracking al-
gorithm that estimates and adapts, on-line, to the rigidity of
the tracked object. The algorithm is governed by a small set
of parameters Θ that are estimated on-line allowing it to go
from rigid template matching on one end to histogram-like
tracking on the other, or be anywhere in between. At the
heart of this framework lies Locally Orderless Matching,
a new probabilistic interpretation of EMD that rigorously
shows how EMD can be used to infer the likelihood that
patch P is a noisy replica of patch Q with noise parame-
ters Θ. We have shown how these noise parameters can be
estimated from the data at hand and also presented results
demonstrating this on-line estimation and adaptation. Fi-
nally we have shown that LOT’s performance is comparable
to state-of-the-art methods on a wide range of commonly
used and new videos presenting superior performance in
many cases.

The framework developed in this work is generic to any
noise model and appearance space, future work is intended
to look into different noise models and appearance represen-
tations that might be better suited for specific applications.
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