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Abstract

We propose a method for estimating the 3D structure and
the dense 3D motion (scene flow) of a dynamic nonrigid
3D scene, using a camera array. The core idea is to use
a dense multi-camera array to construct a novel, dense 3D
volumetric representation of the 3D space where each voxel
holds an estimated intensity value and a confidence mea-
sure of this value. The problem of 3D structure and 3D
motion estimation of a scene is thus reduced to a nonrigid
registration of two volumes–hence the term ”Scene Regis-
tration”. Registering two dense 3D scalar volumes does
not require recovering the 3D structure of the scene as a
pre-processing step, nor does it require explicit reasoning
about occlusions. From this nonrigid registration we accu-
rately extract the 3D scene flow and the 3D structure of the
scene, and successfully recover the sharp discontinuities in
both time and space. We demonstrate the advantages of our
method on a number of challenging synthetic and real data
sets.

1. Introduction

Structure and motion estimation from image data is of
fundamental importance in many vision and graphics appli-
cations, including 2D optical flow for image-based render-
ing, nonrigid volumetric registration of medical data sets,
object tracking, navigation, or virtual reality.

Our objective is to recover the 3D structure and the mo-
tion of a nonrigid 3D scene, captured with a calibrated dense
camera array (i.e., the baseline between each pair of adja-
cent cameras is small, see Fig.1). This problem received
considerable attention in the last decade and various algo-
rithms have been proposed to solve it. These algorithms use
multiple cameras to estimate the scene flow, where scene
flow is defined as the dense 3D motion field of a nonrigid
scene [24]. It follows directly from this definition that 3D
recovery of the surface must be an essential part of scene
flow algorithms, unless it is given a priori.

Most existing methods for 3D structure and scene flow
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Figure 1. (a), The ProFusion 5x5 camera array. The central camera
is the reference. (b), Linear stage with a Canon 5D Mark II DSLR.

estimation require establishing dense correspondence be-
tween pixels or regions of the same scene taken from dif-
ferent views at different time steps. The correspondence
problem brings with it several classical challenges, includ-
ing ambiguities due to a small field of view or low tex-
ture regions (the aperture problem), dissimilar appearance
of the scene over time or from different views, and image
noise. Another central difficulty in estimating dense corre-
spondence fields is the occlusion problem. That is, regions
visible in one image but having no counterparts in other, and
hence cannot be matched.

Extensive research has been carried out to address the
problem of correspondence in time and space, mostly in
the area of optical flow and stereo estimation. Most ex-
isting methods for scene flow or multi-view reconstruction
rely on a “photo-consistency” measure for evaluating the
visual compatibility of the correspondence across multiple
images. In addition, most of these methods define a “vis-
ibility model”, to determine the occlusion relationship be-
tween the recovered 3D points. The visibility model de-
termines which images should participate in the estimation
of the photo-consistency measure. The photo-consistency
measure and the visibility model interfere with each other
because errors in the photo-consistency measure affect the
visibility modeling and vice-versa. Thus, despite many ad-
vances in recent years [3, 18] handling occlusions and the
resulting discontinuities is still an open research problem.

Our approach sidesteps the need to recover or handle oc-
clusions and does not require explicit reasoning about flow
discontinuities, a requirement that adversely affects scene



Figure 2. The 3D space is discretized using a set of K fronto-
parallel planes, {πk}Kk=1, with respect to the central camera, C0.

flow methods. We represent the problem in a 3D volumet-
ric space that does not distinguish between real and free 3D
scene points. Specifically, we use a dense, calibrated and
synchronized multi-camera array to capture a dynamic non-
rigid 3D scene at two time steps. The set of images captured
by the camera array at each time step samples the light rays
in the scene. The captured data at each time step is then
represented with a discretized 3D volume, where each cell
stores the distribution of light rays passing through it. We
approximate this 3D vector field of light rays by a 3D scalar
volume. In particular, the set of light rays at each point is
reduced to a scalar and a confidence measure, estimated by
nonlinear filtering.

The proposed approach has a number of benefits. First,
we sidestep the need to reason about visibility, which is
taken care of automatically in the volumetric registration
step. Second, each voxel in our volume is assigned with our
confidence that there is a real 3D point there. This way we
do not have to commit to the 3D structure. Thus, we can
compute the flow between the two volumes, which repre-
sent the scene at two time steps, without explicit represen-
tation of the scene. Computing the flow in this volumetric
space amounts to matching two 3D scalar fields, a problem
that has been addressed in the past. Finally, the method is
scalable and, to the best of our knowledge, we are the first
to compute both 3D structure and scene flow from tens of
cameras.

Once correspondence in this space is estimated, we use
the confidence measure to extract both the scene flow and
the 3D structure, and successfully estimate the sharp dis-
continuities in both time and space.

2. Background
Due to the considerable body of work on flow and recon-

struction, we focus on research we consider most relevant
to ours. See [3, 18] for a recent overview and evaluation on
optical flow and multi-view reconstruction.

The seminal work of Horn and Schunck [9] on optical
flow estimation assumed a smooth deformation field. This

works well in many cases but fails around boundaries of
independently moving image regions. Since then a large
body of work focused on the problem of flow discontinuities
[17, 5, 7, 2, 1, 26, 20].

Using more than a single camera enables the estimation
of a three dimensional scene flow, as opposed to the two
dimensional optic flow which is simply the projection of
the scene flow onto the image plane of a camera. Vedula
et al. [24] compute the 3D scene flow from multiple images
by lifting the 2D optical flow between several image pairs
to 3D. However, they do not enforce consistency across the
flow fields. This was later addressed by Huguet et al. [10]
and Basha et al. [4] that simultaneously recover the depth
and motion. Some of the work on scene flow estimation
assumed a 2D parametrization of the problem [25], but re-
cently there is a growing body of literature that uses a 3D
parametrization for solving both 3D structure and 3D mo-
tion [14, 16].

Our work is also closely related to the problem of voxel
coloring, where the goal is to reconstruct a static 3D struc-
ture from multiple cameras [19]. Voxel coloring discretizes
the space into voxels and determines for each voxel if it is
occupied or not based on the mutual agreement of its pro-
jection on the images, as well as occlusion reasoning. Voxel
coloring assumes a certain arrangement of cameras and this
assumption was later removed by Space Carving [13] that
still makes hard decisions about voxel occupancy. Space
Carving was extended to deal with probabilistic space carv-
ing [6] as well as non Lambertian surfaces [27, 22] but all
extensions depends on photo-consistency and need to deal
occlusions. One way to adopt voxel coloring, or any of its
descendants, for our needs is to estimate the 3D structure
at each time step and then estimate the scene flow between
the two. Unfortunately, there is no guarantee that the 3D
structure estimations will be consistent and hence the scene
flow estimation might fail, as we show in the experimental
section.

Neumann et al. [15] proposed a new camera design to
deal with 3D motion estimation (as opposed to 3D recon-
struction). They first define a polydioptric camera which
is a generalized camera that captures a multi-perspective
subset of the space of light rays (dioptric: assisting vision
by refracting and focusing light). And then show that 3D
motion estimation of polydioptric cameras based on a light
field representation is independent of the actual scene. The
intensity of a light ray does not change over time in a static
scene with fixed illumination and therefore matching light
rays is possible.

We, on the other hand, consider a dynamic scene where
the correspondence between light rays is ill defined since
the intensity of a light ray can change due to nonrigid de-
formations. So instead of matching individual light rays, we
match 3D points where each point aggregates the distribu-
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Figure 3. 2D illustration of the volume representation; each point in the volume is represented by the set of intensities that are captured by
the camera array; shown are the intensities for of real scene point (a) that is visible in all cameras, for a point that is partially occluded (b),
and for point in the free space (c).

tion of light in multiple directions. This makes our approach
more robust to handling dynamic scenes.

3. The Method
We use a multi-camera array, consisting of N cameras,

to capture a dynamic non rigid scene at two different time
steps. The cameras are assumed to be calibrated, synchro-
nized, and each pair of adjacent cameras is assumed to have
small baseline.

Each set of images, captured at a single time step, is used
to construct a 3D volume, V (x), where every cell holds a
2D distribution of the light rays that pass through the point
x. We then approximate V (x) to obtain a scalar volume,
S(x), by applying a nonlinear filter to the captured light
rays at each scene point. In this scalar volume, occluding
surfaces are blurred out in the vicinity of the objects bound-
aries. Furthermore, S(x), which consist of real scene points
as well as points in the free space, is a piecewise continu-
ous representation with respect to all three dimensions (x,
y and z). This lets us perform a dense matching of the two
scalar volumes, St and St+1, computed at two time steps,
prior to recovering the 3D structure of the scene. By doing
so, we bypass the need to reason about occlusions or sharp
discontinuities in both the 3D structure and 3D motion field.

Finally, the computed flow between St and St+1 is used
to extract both the 3D structure and the 3D motion and to
recover the sharp discontinuities in both the depth and the
motion field. In the following we first describe the construc-
tion of S. Section 3.2 then describes how the volumes St

and St+1 computed at two consecutive time steps can be
registered.

3.1. 3D Representation

We discretize the 3D space using a set of K fronto-
parallel planes, {πk}Kk=1, with respect to the central cam-
era, C0 (see Fig. 2). For each plane, the images from all
N cameras are aligned to the reference view by computing
the homographies between the views, in a way similar to
the stereo parametrization used by Szeliski & Golland [21].

Formally, let V (x) be the volume:

V (x) = {γi | 0 ≤ i ≤ N − 1}, (1)

where γi is the intensity of the pixel that is the projection
of the 3D point x onto the ith camera (see Fig. 3 for 2D
illustration). This gives us a 2D distribution function of the
light rays passing through the point x and sampled by the
camera array. In practice, the 3D space is sampled by back-
projecting each pixel in the reference view onto each of the
planes, {πk}Kk=1. Namely, there is a known transformation
between each volume point, x, to a pixel in the reference
view.

Observe that γi represents the true intensity of the 3D
point only if it is a real scene point that is visible to the
ith camera (see Fig. 3(a)). In case the point is occluded in
the ith camera (see Fig. 3(b)) or in case it is a point in free
space, (see Fig. 3(c)), then γi is the intensity of an arbitrary
point.

Then why is V (x) a useful representation? To under-
stand this, consider the simple case of a scene that consists
of Lambertian background and foreground objects captured
by a dense camera array. A scene point that is visible in all
views would have a unimodal distribution centered around
the surface irradiance at that point. A 3D point that is lo-
cated in free space will not have such a unimodal distribu-
tion because random 3D points are projected to the various
cameras in the camera array. A 3D point that is occluded
in all views will behave in the same way a free 3D point
would (see Fig. 4). This reasoning should hold for scenes
with more objects as well. We will take advantage of the
fact that only real scene points are supposed to have a uni-
modal distribution.

In order to allow for an efficient and robust correspon-
dence estimation, we reduce the 2D distribution of rays at
each 3D point in V (x) to a single scalar S(x), which allows
us to use existing 3D matching techniques for computing
the 3D motion of every point in the 3D space.

Simple averaging of samples from all cameras, as is done
for example in voxel coloring [19] or synthetic aperture



photography [11], results in combining intensities of dif-
ferent 3D points in the scene. In particular, scene points
that are occluded in some of the cameras are likely to be
assigned a different intensity; hence, the matching between
the volumes is prone to errors. Instead, we take a more
robust measure that assigns a coherent intensity to scene
points, while blurring out points in the free space. We
demonstrate the advantages of our method over simple av-
eraging in the experimental section.

Following the discussion above, we assume that the
largest mode (i.e., the most frequent intensity value) of
V (x) corresponds to the true irradiance of x, in the case
that x is a scene point. However, if x is a point in free space,
or is completely occluded, choosing the intensity to be one
of the modes results in random noise. Fig. 4 shows a typ-
ical distribution of light rays, in terms of their correspond-
ing gray level histogram, for three pixels that correspond to
a visible scene point, partially occluded scene point and a
point in free space.

Given V (x) we wish to compute volume S(x) and con-
fidence C(x). Formally, we detect the modes of V (x) for
every point x using QuickShift [23] and obtain the follow-
ing:

m(x) = (m1,m2, ....)
T , (2)

n(x) = (n1, n2, ....)
T , (3)

where m(x) is the vector (of variable size) of the intensity
centers of the detected modes; n(x) is the vector of the car-
dinality of each mode (i.e., how many samples belong to
each mode). We denote m∗ and n∗ to be the intensity and
cardinality of the largest mode.

We determine the intensity of each 3D point, x, by aver-
aging the modes of V (x):

S(x) = ĉ(x)
T
m(x), (4)

where ĉ(x) = (ĉ1, ĉ2, ....) is a vector of weights. We set
the weight ĉi of mode i, according to its cardinality, ni, and
deviation from the intensity of the largest mode, m∗:

ĉi =
ni
Nx

(
µ

1√
(mi −m∗)2 + ε

+ 1− µ

)
, (5)

whereNx =
∑

i ni is the total number of cameras that view
the point x and ε = 0.001. To control the relative impact
of the intensity deviation, we set µ = n∗

Nx
∈ [0, 1]. It fol-

lows that a large mode which is close to m∗, will have high
weight. We found this heuristic choice to work well in prac-
tice.

A confidence measure is computed for each point, x,
by taking the ratio of the number of cameras in the largest
mode of the distribution compared to the total number of
cameras that view that point:

C(x) = µ =
n∗
Nx

. (6)

Figure 4. The histograms of the gray level values, as captured from
a twenty-five camera array, for: (A), a visible scene point, (B),
point in the free space, and (C), partially occluded scene point.

This way scene points will have a high confidence, because
we expect their distribution to be unimodal, while all other
points (i.e. those in free space or those that are occluded)
will have a very low confidence.

Following this procedure, each sampled volume V (x) is
reduced to a scalar-valued 3D volume S(x), and the corre-
sponding confidenceC(x). Now we are able to compute the
matching between the volumes computed at two successive
time steps t and t+ 1.

3.2. 3D Registration

Each of the two 3D scalar volumes St and St+1, can
be regarded as a sampling of a piecewise continuous vol-
ume with respect to all three dimensions (x,y, and z). This
property enables us to find the matching between the vol-
umes using nonrigid 3D registration techniques. In partic-
ular, we use the method of Glocker et al. [8], previously
used in the context of medical imaging. This method allows
the brightness constancy assumption to be imposed between
the source and target volumes (data term) and the smooth-

Figure 5. Synthetic datasets: (a-b), the reference view of each
dataset; (c-d), the corresponding depth maps; (e-f), side view of
the scene. The background translates in the depth direction.



a (Image) b (Confidence) c (Ground Truth) d (Robust) e (Average) f (Voxel Coloring)

Figure 6. Ground truth evaluation: The top row (b-f) shows depth results of a volume slice (frontoparllel plane) focused on the fore-
ground. The bottom row (b-f) shows optical flow results of a volume slice focused on the background. (a) Slices of the volume focused on
the foreground (top) and background (bottom). (b) The computed confidence map; high confidence points are colored in red; (c) Ground
truth of depth (top) and optical flow magnitude (bottom); (d) Robust scene registration; (e) Simple averaging (instead of robust) scene
registration; (f) Robust voxel coloring.

ness assumption on the 3D flow (smoothness term), using
arbitrary cost functions. A global objective functional is de-
fined to express these assumptions and then is reformulated
as a discrete labeling problem. In order to account for large
displacements and to achieve sub-pixel accuracy, a multi-
scale incremental approach is considered where the optimal
solution is iteratively updated. The discretized functional at
each level is efficiently minimized using the Markov Ran-
dom Field (MRF) optimization method of [12].

To use the method of Glocker et al.[8] let F(x) denote
the 3D flow between St(x) and St+1(x̂). That is,

F(x) = (u(x), v(x), w(x)), (7)

where u, v and w are the flow’s horizontal, vertical and
depth components, respectively. We chose the data cost to
be the weighted sum between the brightness constancy and
gradient constancy assumptions. That is,

EData(F) =
1

|ΩS |

(1− λ)
∑

x∈ΩS

|St(x)− St+1(x̂)| (8)

−λ
∑

x∈ΩS

∣∣∣∣ ∇St(x)

|∇St(x)| ·
∇St+1(x̂)

|∇St+1(x̂)|

∣∣∣∣


where x̂ = x + F(x), λ controls the relative weight be-
tween the terms and ΩS denotes the volume domain.

The smoothness term is given by the truncated L1 dis-
tance between the flow of neighboring volume points:

ESmooth(F) =
∑

x∈ΩS

∑
xn∈N (x)

min{||F(x)−F(xn)||1, η},

(9)

where N (x) is the neighborhood of point x, and η is
the truncation threshold. In practice, a truncation of the
smoothness term allows discontinuities in the flow F(x).

3.3. Depth and Optical Flow Estimation

After the volumetric registration stage, every point in the
volume is associated with an intensity value, a confidence
measure, and a 3D flow estimation. With these in hand, we
extract both the 3D structure and 3D motion of the scene
(scene flow) w.r.t the reference camera by assigning a depth
value for each pixel in the reference camera. That is, once
the depth value of each pixel is chosen, the optical flow and
depth value at the following time step are directly deter-
mined by the computed 3D flow.

Each pixel p = (x, y) in the reference camera I0 is as-
sociated with a set of K possible locations in the volume,
given by: {xi = (x, y, zi)}Ki=1, where {zi}Ki=1 are the dis-
cretized depth values that form the volumetric space. The
intensity, the confidence and the 3D flow of xi are respec-
tively given by:

{St(xi), Ct(xi),F(xi)}. (10)

We wish to find the optimal depth z∗ that minimizes the
difference between the intensity, I0(p), of pixel p in refer-
ence image I0 and the intensity St(x, y, z∗) in the volume.
We also assume that the optimal assignment should have
high confidence, so we want Ct(x, y, z∗) to be high. These
assumptions are formulated as a MRF multi-labeling opti-
mization problem where a label assignment `p associates
the pixel p with the point, x`p . Formally, the data term is
defined as a weighted sum of the above mentioned assump-
tions and is given by:

EData(L) =
∑
p∈Ω

|I0(p)− St(x`p)|+ α(1− Ct(x`p)), (11)

where L is the set of discrete assignments of all pixels,
α controls the relative impact of each of the terms, and Ω
denotes the reference camera domain.



A spatial smoothness term is added, expressing the as-
sumption that neighboring pixels have similar depth values.
That is,

ESmooth(`) =
∑
p∈Ω

∑
q∈N (p)

|`p − `q|, (12)

where N (p) is the neighborhood of pixel p. The total en-
ergy,

E(`) = EData(`) + β · ESmooth(`), (13)

is effectively minimized using graph cuts. We use a fairly
low value of β in our implementation.

Finally, given that the optimal assignment for each p is
z(`∗p), we define x∗ = (x, y, z(`∗p)). The optical flow of p
is given by (u(x∗), v(x∗)), and the new depth value at the
following time step is given by (z∗ + w(x∗)). The com-
puted optical flow and the depth maps at two time steps can
now be reprojected (using the camera intrinsic parameters)
in order to recover the exact 3D structure and 3D motion in
the perspective 3D space.

Observe that we were able to extract the optical flow and
the 3D structure without reasoning about visibility of 3D
points in the cameras. This is the key insight in extracting
the depth and optical flow from our volumetric space.

4. Experiments
We conducted a number of experiments on synthetic and

real data to evaluate several aspects of the proposed method.
First, we compare ourselves to other, state-of-the-art meth-
ods on synthetic data and find that we are more accurate.
Second, we show that our method can handle sharp discon-
tinuities in both shape and motion on both synthetic and
real-world scenes. In addition, in one experiment we use
1D camera array of 100 cameras to demonstrate the scala-
bility of our method.

We also analyze two key design decisions that we made.
The first decision we analyze is the reduction of the vector-
valued volume V (x) to scalar volume S(x) using Quick-
Shift, as opposed to simple averaging. We find that Quick-
Shift is more robust and leads to better overall accuracy (see
Fig.6(e)). The second design decision we analyze is the use
of our scene registration, i.e., performing a matching prior
to recovering the 3D structure of the scene. To this end, we
use a robust version of Voxel coloring, where photo consis-
tency is estimated using QuickShift, to estimate 3D struc-
ture at each time step independently and then register the
two volumes. We find that the results are not as good as our
method, because Voxel coloring does not guarantee consis-
tent 3D structure at both time steps, an inconsistency that
adversely affects the registration step.
Ground Truth Evaluation: We tested our method on two
challenging synthetic scenes that were rendered in OpenGL.
The scenes are viewed by a dense 1D array of 51 cameras,
and consist of a moving foreground that is placed at a dis-
tance of Z=200 in front of a background plane that is located

a b c
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Figure 7. Real dataset (Frame): (a,d) the reference view at time t
and t+ 1, respectively; (b) the slice from our 3D volume that cor-
responds to foreground object; (e) the computed confidence map
of (b), with high confidence points colored in red; (c) the estimated
depth map. (f) the magnitude of the optical flow estimated by our
method; (g) the magnitude of the optical flow estimated by [28].
(h) the flow map of our optical flow.

at Z=500, (the units are arbitrary). The foreground, i.e., a
frontoparallel frame in the first scene and a tilted plane in
the second scene, is moving 70 units in the depth direc-
tion w.r.t. the reference camera (See Fig. 5). Therefore,
large discontinuities and occlusions are introduced in both
the spatial and the temporal domains. In both experiments
the depth was discretized into twenty-five levels, and the
reference camera was the central one.

The results for the first experiment are presented in
Fig. 6. As Fig.6.(d) clearly demonstrates, we successfully
obtain accurate results for both the optical flow and the

RMS AAE
u v (deg)

Our method (N=51) 0.57 0.69 2.8
Our method (N=25) 0.60 0.78 3.25

Stones Our method (N=7) 0.68 0.79 3.34
S.F. [4] 1.32 1.80 3.32

O.F. [28] 2.03 1.86 5.83
Our method (N=51) 0.38 0.47 1.70
Our method (N=25) 0.39 0.48 1.70

Leaves Our method (N=7) 0.57 0.53 1.98
S.F. [4] 1.14 1.26 1.83

O.F. [28] 1.31 1.41 3.67

Table 1. The evaluated errors (w.r.t ground truth) of the extracted
optical flow computed with our method and comparison to the pro-
jection of the scene flow results of Basha et al.[4] and the opti-
cal flow results of Zach et al.[28].RMS error in the optical flow,
(u, v). Also shown is the absolute angular error (AAE).
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Figure 8. Real dataset (Giraffe): Please see caption of Figure 7
for the description of the subfigures.

depth. We quantitatively evaluated our results by comput-
ing the RMS and the AAE with respect to the ground truth.
To test the affect of the number of cameras on accuracy,
we evaluated our results with a smaller number of cameras
(N=25 and N=7). The computed errors of our results com-
pared to the errors of the multi-view scene flow method of
Basha et al.[4]1, and to the optical flow method of Zach
et al.[28] are summarized in Table 1, which demonstrates
the higher accuracy of our method.
Real Data: We tested our method on several real-world se-
quences that were captured by the 5× 5 camera array, Pro-
FUSION 25 (see Fig. 1(a)). The cameras are arranged with
12mm spacing and provide 640×480 images of raw data at
a rate of 25FPS. Due to the narrow baseline setup, the cam-
era array was placed at a distance of 1.5-2 meters from the
background. The cameras were calibrated independently
using OpenCV and the images were corrected for lens dis-
tortion and vignetting. In all the real-data experiment the
depth was discretized into thirty values and the images were
downsampled by a factor of two.

Our results for three datasets are presented in Fig. 7-9.
The first two datasets demonstrate large discontinuities in
depth and motion. In the second dataset (Fig. 8), larger mo-
tion is considered and hence significant occlusions in tem-
poral domain must be dealt with.

Fig. 7-9, show the recovered depth and the magnitude of
the estimated optical flow, for each of the first two datasets.
In addition, we present the 2D slice from the volume that
corresponds to the foreground object and its associated con-
fidence map. As can be seen, the foreground object is in fo-
cus while the rest of the scene is blurred out. Moreover, the
foreground object is assigned a high confidence as expected.

1Due to the high computational complexity of [4] the results were com-
puted from seven input views.
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Figure 9. Real dataset (Simon): Please see caption of Figure 7
for the description of the subfigures. The narrow figures to (f-g) is
a close-up of the boundary region.

However, a closer look shows that there are additional high
confidence regions that belong to the background. The rea-
son is the low variance of intensities in those regions. In
particular, these regions cannot be distinguished during the
clustering stage (despite the wrong depth value), and hence,
the 3D structure cannot be obtained from the confidence
alone. Nonetheless, since the depth and optical flow are ex-
tracted using the brightness constancy assumption (between
the volume and the reference camera) as well, we success-
fully obtain the correct solution.

The third dataset (Fig. 9) involves nonrigid motion of a
moving face. The recovered depth map shows that the depth
differences between parts of the face are recognized. This
is also shown in Fig. 9.(f), where the nose is assigned low
confidence.

In the last experiment we used a camera stage (see
Fig.1(b)) to capture a scene with several toys that move be-
hind a wire fence. At each time step we take 100 images,
of size 320 × 240, of the scene. Fig. 5 shows the results of
this experiment. As can be seen, we successfully recovered
the 3D motion of the toys, as well as the 3D structure of the
scene, despite sharp discontinuities (for example, the wire
fence).

5. Conclusions
Scene registration is a method for computing the struc-

ture and motion of a dynamic nonrigid scene, captured with
a camera array. A feature of our approach is that it does
not require explicit occlusion handling and improves the re-
construction of discontinuities both in space and time. The
key idea of our method is to convert the input sets of im-
ages into a novel volumetric space. In this volume both real
scene points and points in free space are represented by a
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Figure 10. Real dataset (Toy Story): (a),(b) the reference view at time t and t+1, respectively; Buzz, as well as the check-board, moved;
(c) the flow map of our optical flow; (d) the magnitude of our optical flow; (e) our depth map; (f) the estimated depth map using robust
Voxel Coloring.

scalar value and a confidence measure. With this represen-
tation the flow computation is reduced to a nonrigid regis-
tration of two 3D scalar volumes that does not require ex-
plicit reconstruction of the 3D scene structure or reasoning
about occlusions. Instead, the scene flow and structure can
be recovered easily after the volumetric registration. Exper-
iments on a number of challenging synthetic and real data
sets demonstrated the advantages of our approach. The ex-
periments also reveal that our method is scalable and can
successfully handle tens of cameras.

In future work, we intend to improve the the current
matching algorithm by taking into account full confidence
information. Also, we would like to extend the matching
algorithm to deal with different variants of 3D vector fields
such has higher dimensional light fields.
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