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Abstract

We consider the problem of reconstructing the 3D
coordinates of a moving point seen from a monocu-
lar moving camera, i.e., to reconstruct moving objects
from line-of-sight measurements only. The task is fea-
sible only when some constraints are placed on the
shape of the trajectory of the moving point. We coin
the family of such tasks as \trajectory triangulation".
In this paper we focus on trajectories whose shape is a
conic-section and show that generally 9 views are suf-
�cient for a unique reconstruction of the moving point
and fewer views when the conic is a known type (like a
circle in 3D Euclidean space for which 7 views are suf-
�cient). Experiments demonstrate that our solutions
are practical.

The paradigm of Trajectory Triangulation in gen-
eral pushes the envelope of processing dynamic scenes
forward. Thus static scenes become a particular case
of a more general task of reconstructing scenes rich
with moving objects (where an object could be a single
point).

1 Introduction
We wish to remove the static scene assumption in

3D-from-2Dreconstruction. This paper introduces an-
other stage in a new paradigm we call \trajectory
triangulation" that pushes the envelope of processing
\dynamic scenes" from \segmentation" to 3D recon-
struction.

Consider the situation in which a 3D scene contain-
ing a mix of static and moving objects is viewed from
a moving monocular camera. The typical question
addressed in this context is that of \segmentation":
can one separate the static from dynamic in order to
calculate the camera ego-motion (and 3D structure of
the static portion)? this question is basically a robust
estimation issue and has been extensively (and suc-
cessfully) treated as such in the literature (cf. [6, 5]).
A byproduct of the robust estimation is the segmenta-
tion of the scene to the static and dynamic portions,

or to the portions corresponding to multiply moving
objects.

However, consider the next (natural) question in
this context: can one reconstruct the 3D coordinates
of a (single) point on a moving object? Unlike the
segmentation problem, the reconstruction problem is
not feasible, unless further constraints are imposed. In
order to reconstruct the coordinates of a 3D point, the
point must be static in at least two views (to enable
triangulation) | if the point is moving generally then
the task of triangulation is not feasible. Note that the
feasibility issue arises regardless of whether we assume
the ego-motion of the camera to be known or not.
Knowledge of camera ego-motion does not change the
feasibility of the problem.

The feasibility status changes when we constrain
the trajectory of the moving point to belong to some
(parametric) family of trajectories. We call the topic
of reconstructing moving points, whose motion (in 3D)
is constrained parametrically, from general multiple
2D projections as \trajectory triangulation". In the
sequel we assume that the camera ego-motion (pro-
jection matrices) is known. We acknowledge the di�-
culty of recovering the camera ego-motion in general,
and under dynamic scene conditions in particular, but
believe it to be reasonable in view of the large body
of theoretical and applied literature on the subject.
Thus, we treat the problem of ego-motion as a "black-
box" and a �rst layer in a hierarchy of tasks that are
possible in a "3D-from-2D" family of problems.

In this paper we extend the notion of \linear trajec-
tory triangulation" (see section below) to second-order
trajectories (See Figure 1). In other words, we inves-
tigate the problem of a point moving along some 3D
conic trajectory and show that the reconstruction can
be done in a practical manner. Extensions and future
work are discussed in Section 5.
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Figure 1: (a) "Trajectory Triangulation" along a line [1]. A point is moving along a line while the camera is moving. (b)
"Trajectory triangulation" along a planar conic. A point is moving along a planar conic while the camera is moving.

2 Related Work

The problem of trajectory triangulation of a point
moving along some straight line path was discussed
in [1]. Also related to the problem addressed in this
paper, conic trajectories, is the problem of \orbit de-
termination" in astro-dynamics (cf. [3]). We briey
discuss below these two related sources.

The case of a linear trajectory (straight-line path)
has a simple geometric intuition: the projection of a
moving point gives rise to a collection of 3D rays which
are the lines of sight to the moving point. Because
the trajectory of the moving point is a straight line
the collection of rays form a \linear line complex", i.e.,
they have a common intersecting line (the trajectory of
the moving point) as their kernel. Thus, the problem
formulation is to �gure out the conditions (number of
views) for a unique kernel and to follow it with an
algebraic solution.

The algebraic method for recovering the kernel is
based on representing the kernel (the trajectory of the
moving point) with its Plucker coordinates. One can
then show that each projection provides a linear equa-
tion for the kernel, and thus 5 equations are necessary
for a unique solution (with 4 views one can obtain
two solutions using the quadratic constraint of plucker
representation). So, 5 views are su�cient to linearly
recover for the trajectory of a point moving on a line.
Further details and implementation can be found in
[1].

The problem of orbit determination in astrodynam-
ics is about determining the orbit (conic section, typi-
cally elliptic) of body A around body B under a grav-
itational �eld. A branch of this problem includes the

Figure 2: In keplerian motion a body sweeps equal areas
in equal time.

determination of an orbit from directional measure-
ments only (lines of sight). However, the assumption
of motion under a gravitational �eld constrains not
only the shape of the trajectory (conic section) but
also the law of motion along the trajectory | in this
case the motion is Keplerian, which is to say that equal
areas are swept during equal times (See Figure 2).

Our work on determining a conic trajectory from
line of sight measurements (trajectory triangulation
over conics) di�ers from the classic work on orbit de-
termination by that the motion of the point along the
trajectory is arbitrary. In other words, the only as-
sumption we make is about the shape of the trajectory
(conic section) while the motion of the point along the
trajectory is unconstrained. Therefore, what we wish
to recover are the following parameters: the position



of the plane on which the conic resides (3 parame-
ters) and the position, shape and type of the conic (5
parameters). Once these parameters are recovered it
becomes a simple matter to determine the 3D coordi-
nates of the moving point at each frame of the image
sequence.

3 Trajectory Triangulation over Con-
ics

As mentioned above we wish to recover | from
measurements of line-of-sight only (2D projections of
the moving point) | 8 parameters in general: 3 for
the position of the plane on which the conic resides
on, and 5 for the conic itself. Once these parameters
are recovered the 3D coordinates of the moving point
can be recovered by intersecting the line-of-sight with
the conic section.

We propose two methods for recovering the param-
eters. The �rst method performs a 2D optimization
(based on conic �tting) on some arbitrary virtual com-
mon plane. The method is very simple, but can only
deal with general conics | a-priori constraints on the
shape of the 3D conic cannot be enforced due to the
projective distortion from the conic plane to the vir-
tual common plane.

The second method is slightly more complex as the
optimization is performed in 3D (projective or Eu-
clidean) but enables the enforcement of a-priori con-
straints on the shape of the conic when the cameras
are calibrated. Numerical stability is greatly enhanced
when a-priori information is integrated into the esti-
mation process. We will derive the second method for
the case of calibrated cameras and when the conic in
3D is a circle. The extension to general conics follows
in a straightforward manner but will not be derived
here.

3.1 Method I: 2D Optimization on a
Common Plane

We denote the 3D position of the moving point and
the camera matrix (projection matrix) at time i; i =
1::k by Pi = [Xi; Yi; Zi; 1]T andMi = [Hi ; ti], respec-
tively. The image measurements are thus pi �= MiPi.
Our goal is to recover the 3D points Pi, given the
uncalibrated camera matrices Mi and the image mea-
surements pi. This can be formulated as a non-linear
optimization problem in which 8 parameters are to be
estimated. The 3 parameters of the normal to the
plane n and the 5 parameters of the conic as de�ned
(up to scale) by a symmetric 3� 3 matrix C.

Let the sought-after plane on which the conic re-
sides on be denoted by �. Let Ai be the 2D homog-
raphy from image i to some common arbitrary plane
(image plane i = 1 ifM1 = [I; 0]) through the plane �,
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Figure 3: Sketch of method I. The true plane is shown in
bold, the guessed plane is shown with dashed lines. Choos-
ing a di�erent plane a�ects the projection of the points on
the �rst image (or common plane in general). If the plane
is not the correct one, then the points on the �rst image
will not form a conic.

i.e., Aipi, i = 1; :::; k must be a conic on the common
plane (see Fig. 3). The following relation must hold:

Ai = (knkHi+ tin
>)�1:

Therefore, each view provides one (non-linear) con-
straint:

p>
i
A>
i
CAipi = 0; i = 1; :::; k:

Since the total number of parameters are 8, and each
view contributes one (non-linear) equation, then 8
views are necessary for a solution (up to a �nite-fold
ambiguity) and 9 views for a unique solution. It is
possible to solve for n and C by means of numerical
optimization, or to use an interleaving approach de-
scribed below:

1. Start with an initial estimate of n.

2. Compute p̂i = Aipi, where Ai = (knkHi+tin)
�1.

3. Fit a conic C to the points p̂i.

4. Search over the space of all possible n to minimize
the error term:

minn; err(C; p̂i))

There are a number of points worth mentioning.
The minimization is over 3 parameters only due to
step 3 of conic �tting. A large body of literature is



devoted to conic �tting and the numerical biases as-
sociated with this problem (cf. [5, 2, 4]). The er-
ror term in step 4 is also an important choice: the
algebraic error p>Cp between a point p and a conic
C is least recommended because of numerical biases.
In our implementation, for example, we have chosen
to minimize the distance to the polar line Cp, i.e.,
err(C; p) = dist(Cp; p). Finally, the search in step
4 is achieved (in our implementation) by Levenberg-
Marquardt optimization using numerical di�erentia-
tion. Using Matlab, the optimization step consists of
simply calling the leastsq function.

To summarize, this approach has the two advan-
tages. It is simple and is carried over the 2D plane
only. The disadvantages are, �rst, that the method
does not facilitate a-priori constraints on the shape of
the conic, and second, the method involves a conic �t-
ting (and evaluation) stage which could be challenging
on the numerical front.

3.2 Method II: Conic �tting in 3D

In this method the objective function is minimized
in 3D space and is designed such that it can express
a-priori shape constraints, when available and when
cameras are calibrated. The general idea is that a
conic in 3D is represented by the intersection of the
plane � and a quadric surface. By de�ning a suit-
able coordinate system of the quadric surface one can
obtain an 8 parameter objective function. In case of
calibrated projection matrices and if a-priori informa-
tion about the type of conic is given, say a circle, then
the quadric surface representation can be simpli�ed
further. We will derive here a special case in which
the sought-after conic is a circle in 3D.

In the case of a circle, we wish to represent the
arrangement of a sphere and a cutting plane. We ex-
pect the total number of parameters to be 6 (three for
n and 3 for representing a circle in the plane), yet a
sphere is de�ned by 4 parameters. Therefore an addi-
tional constraint is necessary and this is obtained by
constraining the plane � to coincide with the center of
the sphere. The details are below.

Let pi and Mi be the projection and camera matri-
ces of frame i = 1; :::; k as de�ned previously. In case
the cameras are calibrated, then the projection matri-
ces represent the mapping from an Euclidean coordi-
nate system to the image plane, i.e., Mi = Ki[Ri ; ui]
where Ri; ui are the rotational and translational com-
ponents of the mapping, and Ki is an upper-diagonal
matrix containing the internal parameters of the cam-
era (focal length, aspect ratio, principle point). For
our needs, since we assume Mi to be known, we can
still denote Mi by the composition Mi = [Hi ; ti] as

was done previously (thus, at this juncture it doesn't
really matter whether the camera are calibrated or
not). Let the 3D coordinates of the moving point P
be denoted (as before) by Pi = [Xi; Yi; Zi]T at time
i = 1; :::; k. We �rst represent Pi as a function of n as
follows:

�ipi =MiPi: (1)

Which after substitution becomes:

�ipi = [Hi ti]

�
Pi
1

�
(2)

�iH
�1

i
pi = Pi +H�1

i
ti (3)

thus, Pi as a function of Mi and pi becomes:

Pi = �iH
�1

i
pi �H�1

i
ti: (4)

Next, we know that the moving point resides on the
plane �, thus

Pin+ 1 = 0: (5)

After substitution we obtain

�i =
(H�1

i
ti)Tn� 1

(H�1
i
pi)Tn

: (6)

Taken together, eqn. 4 and �i above, give rise to:

Pi =

2
4 Xi

Yi
n1Xi+n2Yi+1

�n3

3
5

in whichXi; Yi are functions of n (and Zi is eliminated
by being expressed as a function of Xi; Yi;n).

Let the center of sphere be at the coordinates Pc =
[Xc; Yc; Zc] and its radius R, thus the points Pi satisfy
the constraint:

(Xi �Xc)
2 + (Yi � Yc)

2 + (Zi � Zc)
2 � R2 = 0 (7)

which can be written as

[PT

i
1]Q

�
Pi
1

�
(8)

The 4� 4 symmetric matrix Q is given by:

Q =

0
BB@

1 0 0 q1
0 1 0 q2
0 0 1 q3
q1 q2 q3 q4

1
CCA

where

q1 = Xc;

q2 = Yc;

q3 = Zc;

q4 = X2
c + Y 2

c + Z2
c �R2

(9)



Since the center of the circle Pc is on the plane � we
have:

Zc =
n1Xc + n2Y c+ 1

�n3
(10)

so we need to solve for the three parameters q1; q2; q4.
Taken together, each view provides one (non-linear)
constraint (Eq. 7) over 6 parameters n and q1; q2; q4.
Thus, 7 views are necessary for a unique solution.
As with Method I, it is possible to solve for the sys-
tem over 6 parameters or to adopt an interleaving ap-
proach:

1. Start with an initial estimate of n.

2. Compute the point P̂i from eqn. 4 and 6.

3. Solve for q1; q2; q4 (linear least-squares). Pc; R fol-
low by substitution.

4. Search over the space of all possible n to minimize
the error term:

minn; (dist(P̂i; Pc)� R)2; i = 1; :::; k

where the search is done using numerical optimization
(leastsq function of Matlab).

4 Experiments
We have conducted a number of experiments on

both synthetic and real image sequences. We report
here a typical example of a real image sequence exper-
iment.

A sequence of 16 images was taken with a hand-
held moving camera viewing a small Lego piece on a
turntable. The Lego piece is therefore moving along a
circular path. The �rst, middle and last images of the
sequence are shown in Fig. 4. The projection matri-
ces were recovered from matching points on the static
calibration object (the folded chess-board in the back-
ground). The corners of the chess-board were the con-
trol points for a linear system for solving for Mi for
each image. The linear solution is not optimal but
was good enough for acheiving reasonbale results for
the trajectory triangulation experiments. A point on
the Lego cube was then (manually) tracked over the
sequence and its image positions pi was recorded.

We tested both methods I,II. In general, the 3D-
based optimization (method II) always converged from
any initial guess of n (the position of the plane �).
Fig. 6a shows the conic due to the intial guess that
was used for this experiment, for example. The 2D-
based optimization (method I) was more sensitive to
the intial guess of n, and Fig. 5a shows a typical ini-
tial guess. The remaining displays in Figs. 5 and 6

(a)

(b)

(c)

Figure 4: The original image sequence. (a),(b) and (c) are
the �rst, middle and last images, respectively in a sequence
of 16 images. The camera is moving mainly to the left
while the Lego cube traces a circle on the turntable.



show the projection of the �nal conic (following con-
vergence of the numerical optimization) on the �rst,
middle and last images of the sequence. In method
II, the reconstructed points in 3D de�ne a circle (as
it was constrained to begin with) of a radius 5% o�
from the ground truth, and around 4o in orientation.
In method I, the resulting conic had an aspect ratio of
0.9 (recall that we solved for a general conic), radius
roughly 8% o�, and orientation of the plane was 6o

o�.
To summarize, both methods generally behave well

in terms of convergence from reasonable intial guesses.
Method II was much less sensitive to the initial guess
(converged in all our experiments) and generally pro-
duced more accurate results.

5 Summary and Future Research
We have introduced a new approach for handling

scenes with dynamically moving objects viewed by a
monocular moving camera. In a general situation,
when both the camera and the target are moving with-
out any constrains, the problem is not solvable, i.e.,
one cannot recover the 3D position of the target even
when the camera ego-motion is known. In previous
work we have shown that by assuming that the tar-
get is moving along a straight 3D line the problem
of recovering the target's trajectory is uniquely solved
given at least �ve views of the moving target. In this
paper we have extended the family of trajectories to
include conic sections as well. In this context we have
introduced two methods. The �rst method performs
the optimization on some arbitrary virtual plane and
is very simple. However, it can only deal with gen-
eral conics only | a-priori constraints on the shape of
the 3D conic cannot be enforced due to the projective
distortion from the conic plane to the virtual common
plane. The second method performs the optimization
in 3D. The advantage of the second method is that un-
der calibrated cameras it is possible to enforce a-priori
constraints on the shape of the conic. For example, we
have derived the equations necessary for recovering a
3D circular path.

We believe that future work on the family of tra-
jectory triangulation tasks may include the following
directions:

� Sliding-window linear or conic trajectory �tting.
A reconstruction of a generally moving point can
be decomposed onto smaller sub-problems in case
many (dense) samples of the moving point are
avilable (like in continous motion).

� A uni�cation of static and dynamic reconstruc-
tion. It is possible to estimate whether a point is

static or moving simply by the size of the kernel in
the case of linear trajectory triangulation. A one-
dimensional kernel corresponds to a striaght-line
path, whereas higher dimensional kernels corre-
spond to a single point (static situation).

� The possibility of recovering both the camera ego-
motion and the trajectory (linear or conic) of the
point. The task is of a multi-linear nature (for
the linear trajectory triangulation) and thus there
may be an elegant way of decoupling the system
as is done in the static case.

� Handling more complex trajectories by tracking
multiple points. If a su�cient number of points
are tracked on a rigid body than the full motion of
the object (relative to the camera ego-motion) can
be recovered. It may be interesting to investigate
the possible trajectory shapes when fewer points
are available | such as two points.

References
[1] S. Avidan and A. Shashua. Trajectory triangula-

tion of lines: Reconstruction of a 3D point moving
along a line from a monocular image sequence. In
Proceedings of the IEEE Conference on Computer
Vision and Pattern Recognition, June 1999.

[2] F.L. Bookstein. Fitting conic sections to scattered
data. In Computer Graphics and Image Process-
ing, pages (9):56{71, 1979.

[3] P.R. Escobal. Methods of Orbit Determination.
Krieger Publishing Co., 1976.

[4] K. Kanatani. Statistical bias of conic �tting
and renormalization. In IEEE Transactions on
Pattern Analysis and Machine Intelligence, pages
16(3):320{326, 1994.

[5] P. Meer and Y. Leedan. Estimation with bilinear
constraints in computer vision. In Proceedings of
the International Conference on Computer Vision,
pages 733{738, Bombay, India, January 1998.

[6] Torr P.H.S., Zisserman A., and Murray D. Motion
clustering using the trilinear constraint over three
views. In Workshop on Geometrical Modeling and
Invariants for Computer Vision. Xidian University
Press., 1995.



(a) (b)

(c) (d)

Figure 5: Using 2D conic �tting (method I) to recover the planar conic section. The results are shown by projecting the
recovered planar conic (and the 3D points traced along the conic) on several reference images from the sequence. (a) shows
the initial guess with the �rst image as the reference image. (b),(c), (d) shows the the results of the 2D conic �tting when
the reference image is the �rst, middle and the last images of the sequence, respectively. The resulting conic had an aspect
ratio of 0.9, radius roughly 8% o�, and orientation of the plane was 6o o�.
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Figure 6: Using 3D sphere �tting (method II) to recover a planar conic section. The results are shown by projecting the
recovered planar conic (and the 3D points traced along the conic) on several reference images from the sequence. (a) shows
an extereme initial guess with the �rst image as the reference image. (b),(c), (d) shows the the results of the 3D sphere
�tting when the reference image is the �rst, the middle and the last images of the sequence, respectively. The resulting
radius of the circular path was 5% o� from the ground truth, and around 4o o� in orientation.


