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Abstract

The core of multiple-view geometry is governed by
the fundamental matriz and the trilinear tensor. In
this paper we unify both representations by first de-
riving the fundamental matriz as a rank-2 trivalent
tensor, and secondly by deriving a unified set of oper-
ators that are transparent to the number of views. As
a result, we show that the basic building block of the
geometry of multiple views is a trivalent tensor that
specializes to the fundamental matriz in the case of
two views, and is the trilinear tensor (rank-4 triva-
lent tensor) in case of three views. The properties of
the tensor (geometric interpretation, conitraction prop-
erties, elc.) are independent of the number of views
(two or three). As a byproduct, every two-view al-
gorithm can be considered as a degenerate three-view
algorithm and three-view algorithms can work with ei-
ther two or three images, all using one standard set
of tensor operations. To highlight the usefulness of
this paradigm we provide two practical applications.
First we present a novel view synthesis algorithm that
starts with the rank-2 tensor and seamlessly move to
the general rank-4 trilinear tensor, all using one set of
tensor operations. The second application 1s a camera
stabilization algorithm, originally introduced for three
views, now working with two views without any modi-
fication.

1 Introduction

The geometry of multiple views is governed by cer-
tain multi-linear constraints, bilinear for pairs of views
and trilinear for triplets of views — all other multi-
linear constraints (four views and beyond) are spanned
by the bilinear and trilinear constraints. The bilinear
constraint determines the “fundamental matrix” and
the trilinear constraints determine the “trilinear ten-
sor”. The fundamental matrix is a rank-2 3 x 3 matrix
and the trilinear tensor is a rank-4 trivalent tensor.
There are known properties of the fundamental ma-
trix, there are known properties of the trilinear tensor,
and there are known connections between the two —
for instance how to extract the fundamental matrix
from the trilinear tensor. There are algorithms (for
reconstruction, view synthesis, camera stabilization)
that are defined for concatenation of pairs of views,
and there are algorithms that are defined for concate-
nation of triplets of views. What is needed, therefore,
is a canonical representation, a single object with a

standard set of operators, that applies uniformly to
pairs or triplets of views. In other words, the unifi-
cation efforts that have appeared so far in the liter-
ature focus on the transformation groups (projective,
affine and Euclidean) represented by the camera ma-
trix, leading to a canonical framework [3, 15, 9] for
the geometry of two views. Given the recent progress
on multi-linear tensorial constraints across more than
two views, there 1s a need to make a similar unification
attempt but now across the temporal axis (number of
views), rather than on the spatial axis (transformation
groups).

The paper has two main results. First, we establish
a set of operators that are used to synthesize tensors
from one another. Second, we derive the geometry
of two views using those operators and show that the
familiar fundamental matrix is embedded in a rank-
2 trivalent tensor (of 27 coefficients). We show that
the properties of the rank-2 tensor are identical with
the known properties of the rank-4 trilinear tensor (of
three distinct views), and the set of operators apply
uniformly to both tensors. As a result, the geome-
try of multiple views is governed by a single tensorial
structure with a standard set of operators and is uni-
form with respect to the number of views — the only
change that occurs when the number of views is two is
that the rank of the tensor becomes 2 instead of 4, but
this does not have an effect on the manner in which
the tensor is used for applications.

Apart from the theoretical result, we show practi-
cal benefits of this unification step. First is the “cross-
platform” capability of algorithms to work both in the
case of two and three views, as the latter is simply a
generalization of the former. This results in the ability
to handle freely and seemlessly the geometry of two
and three images in a single framework. Instead of
existing two-views algorithms one can use three-view
based algorithms, taking advantage of the third view,
in case it is present, but working with two images as
well without modification, all due to the introduction
of the rank-2 tensor. To demonstrate these properties
we present two applications — a novel view synthesis
algorithm that highlights the simple handling of the
geometry of two or three images and a video stabi-
lization algorithm that works, as is, with two or three
images.



2 Background and Notations

We assume that the physical 3D world is repre-
sented by the 3D projective space P? (object space)
and its projections onto the 2D projective space P?
defines the image space. If € P3 varies over the
object space, represented by a tetrad of homogeneous
coordinates, and p € P? is its projection (represented
by a triplet of coordinates), then there exists a 3 x 4
matrix A satisfying the relation p =2 Az, where =2 rep-
resents equality up to scale and A is called the camera
matrix. Since only relative camera positioning can
be recovered from image measurements, the first cam-
era matrix can be represented by [I;0]. In a pair of
views, p = [I;0]& and p’ = Ax, the left 3 X 3 minor
of A stands for a 2D projective transformation of the
chosen plane at infinity and the fourth column of A
stands for the epipole (the projection of the first cam-
era center on the image plane of the second camera)
In particular, in a calibrated setting the 2D projective
transformation is the rotational component of camera
motion and the epipole is the translational component
of camera motion.

We will occasionally use tensorial notations, which
are briefly described next. We use the covariant-
contravariant summation convention: a point is an
object Whose coordinates are specified with super-
scripts, = (p',p?, ...). These are called con-
travarlant Vectors An element in the dual space
(representmg hyper-planes — lines in P?), is called
a covariant vector and is represented by subscripts,
ie, s; = (s1,82,....). Indices repeated in covari-
ant and contravariant forms are summed over, 1.e.,
pis; = plsi+pisa+...+p° Sn. This is known as a con-
traction. For example if pis a point incident to a line s
in P2, then p's; = 0. Vectors are also called 1-valence
tensors. 2-valence tensors (matrices) have two indices
and the transformation they represent depends on the
covariant-contravariant positioning of the indices. For
example, a! is a mapping from points to points, and
hyper-planes to hyper-planes, because alp’ = ¢/ and
als; = r; (in matrix form: Ap = ¢ and ATs = r);
a;; maps points to hyper-planes; and @’/ maps hyper-
planes to points. When viewed as a matrix the row
and column positions are determined accordingly: in

al and aj; the index i runs over the columns and j

runs over the rows, thus bk ] =cfis BA = C in ma-
trix form. An outer- product of two 1-valence tensors
(vectors), a; b, is a 2-valence tensor ¢! whose 1, j en-

tries are a;b/ — note that in matrix form C' = baT.
An n-valence tensor described as an outer-product of
n vectors 1s a rank-1 tensor. Any n-valence tensor can
be described as a sum of rank-1 n-valence tensors. The
rank of an n-valence tensor is the smallest number of
rank-1 n-valence tensors with sum equal to the tensor.
For example, a rank-1 trivalent tensor is a;b;c;, where
a;,b; and cj, are three vectors. The rank of a trivalent

tensor «;; is the smallest » such that,

r

gy = Zaisbjscks~ (1)

s=1

The tensor of vector products is denoted by €5 (in-
dices range 1-3) operates on two contravariant vectors
of the 2D projective plane and produces a covariant
vector in the dual space (a hne) EijkP ‘¢ = sp,, which
in vector formis s = p X ¢, 1.e., s is the vector product
of the points p and q.

Two views p = [[;0]x and p’ = Az are known
to produce a bilinear matching constraint whose co-
efficients are arranged in a 3 x 3 matrix F' known as
the “Essential matrix” of [8] described originally in an
Euclidean setting, or the “Fundamental matrix” of [2]
described in the setting of projective geometry (uncal-
ibrated cameras):

fij = Eiklvlkaé' (2)

where A = [a; V] (aé» is the left 3 x 3 minor of A, and v’
is the fourth column, the epipole, of A). The bilinear
constraint is f;;p'p" = 0.

Three views, p = [[;0]x,p’ = Ax and p”’ = Bz,
are known to produce four trilinear forms whose coef-

ficients are arranged in a tensor representing a bilinear
function of the camera matrices A, B:

al® = IpE — "] (3)
where B = [b,v"”]. The four trilinear constraints are:
p ]k =0 4
p'sfirie (4)
where sf are any two lines (5]1 and 5]2) intersecting at

p’, and 7} are any two lines intersecting p”’ (see Fig. 1).
Since the free indecis are p, p each in the range 1,2,
we have 4 trilinear equations (which are unique up to
linear combinations). By changing the order of the
views one can obtain at most 12 trilinear constraints
arranged in three such tensors. These constraints first
became prominent in [11] and the underlying theory
has been studied intensively since in [16, 6, 12, 4, 17,
7, 13].

The elements of agk satisfy certain properties. The
algebraic relations among the elements are described
in [4], and contraction properties in [16]. Among the
contraction propertles it will be useful for later to men-

tion that &paf (for any vector §) produces a 2D pro-

jective transformation (a homography) from image 1

. k
to 2 via some plane of reference, and n;a!" produces a

homography matrix from image 1 to 3 via some plane.
The orientation of the plane of reference is determined
by 6, and if we set 6 = (1,0,0),(0,1,0) and (0,0,1)
we obtain three homography matrices associated with
planes attached to the coordinate frame of the third
camera (in a calibrated setting the planes are normal
to the coordinate axes, see Fig. 2). If we denote these
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Figure 1: The trilinear tensor of three images relates a
point in the first image to lines in the second and third
images.
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Figure 2: The Three homography planes (dashed), re-
lated to the coordinate system of the third image, defining
homography matrices from the first image to the second.

homography matrices by Ey, F, F3, then the funda-
mental matrix of images 1,2 is the solution to the over-

determined linear system E]TF + FTE]» =0, and the

elements of the epipolar point v/ are the repeated gen-
eralized eigenvalues of pairs Fj;, ;. Finally, it has

been recently shown in [14] that the rank of ozg Fis 4
(we will return to tensor ranks later).

3 The Basic Tensorial Operators

The basic operation described next describes the
transformation a tensor of three views undergoes when
one of the cameras changes its position. In other
words, this operator can be used to create a chain of
tensors, each created from its predecessor in the chain.
Later, we will start from a Null tensor (all three views
are repeated) and create a chain that along the way
creates a representation of two views as a rank-2 triva-
lent tensor. )

Consider the tensor aﬁk of the views < 1,2,3 > (in
that order), and let the coordinate frame of camera
3 undergo a 2D transformation (say a rotation of the
coordinate axis), i.e., p” is replaced by R=1p”. Clearly,
the camera matrix B is replaced by RB and therefore

the tensor of the cameras [I;0], A and RB is ,Bfk =

kgl
7“1 ai since,

aif = rfal' = (rfth) = rf)al, (5)

where RB = [rfbi»;v“lrf]. Consider next translat-
ing the center of the third camera RB by a vector

t (see Fig. 3). Clearly, the new camera matrix is now
C = [rFbl; v“lrf +1*]. Therefore, the tensor 7% of the

cameras [I;0], A, C' is:
iF = ) — ('rf +8)a] = rfad' = tal. (6)
We have thus proved the following theorem:

Theorem 1 Given a tensor al” of camera positions

[I;0], A, B, then the tensor 'yf»k of camera positions
[I;0], A, C, where C is obtained from B by an incre-
mental change of coordinates R and translationt from
the position of the third camera has the form:

=l — ] M

Likewise, if we apply an incremental change to the
position of the second camera, rather than the third,

then the tensor 'yf»k will have the form:

i = ralt + i1t )

4 The rank-2 Trivalent Tensor of Two

Views
We will use the tensorial operators (eqns. 7 and
8) to create a chain starting from the (Null) tensor
of views < 1,1,1 > (all three views are repeated),
to tensor of views < 1,2,1 >, to tensor < 1,2,2 >

and finally to tensor ozgk of views < 1,2,3 >. All
the tensors of the chain are trivalent tensors, and of
interest are the tensors that represent only two distinct
views. -
The tensor 3" of views < 1,2,1 > can be derived
from the Null tensor using eqn. 8,
A = el -
= a0 + "7 If (9)
— U/] Izka

by the incremental motion A = [a,v’] from views <
1,1,1 > to views < 1,2,1 >. The elements of the
tensor are either 0 or the epipole v’.

Next, we apply an incremental motion of the the
third view going from tensor of views < 1,2,1 > to
tensor of views < 1,2,2 >. The incremental motion is
again A = [a,v'] and we use the operator described in
eqn 7 to obtain:

ol vl
af (V' 1) — v a] (10)

I
v af — o al

Jk o _
V; -



and 'y{k is the tensor of the image triplet < 1,2,2 >.

It can be readily verified that the elements of 'yg k are

composed of the fundamental matrix f;; = Eikw’ka},

—fij, and the remaining (nine) elements vanish. In
other words, we have derived a trivalent tensor repre-
senting the geometry of two views, and is composed
of the elements of the fundamental matrix.

Theorem 2 The rank of the trivalent tensor of two
views,
15k 1k 5

ik
7o=viei — g

15 2.

Proof: The 2D homography ag represents a family of
projective transformations determined by 4 parame-
ters (representing the orientation of the plane at infin-

ity) — the entire family produces the same tensor 77 k.
Among the 4-parameter family of homography matri-
ces, there 1s a subset 3-parameter family of rank-2 ma-
trices (these correspond to the 2D transformation from
image one to image two via a plane coplanar with the
camera center of the second view) that has the form
[c]z F where []; denotes the skew-symmetric matrix of
vector products and F' is the fundamental matrix (see
Corollary 1). Therefore, the minimal decomposition

of @l is into two rank-1 matrices. Choose a rank-2 ho-
mography matrix for which v’ is one of the eigenvec-
tors. This is possible because F'v' is a line coincident
with v’, thus choose ¢ as another line coincident with
v' thereby obtaining [c],Fv' = v/. Thus, it is always
possible to choose the following decomposition:

ag = )\1U§U/j + Asajzal?, (1)

i.e., by performing a Singular Value Decomposition
and choosing the first element of the decomposition
(the vector a;) to be one of the eigenvectors (v') of the

matrix al (see [5], pp. 71). Then, 'yﬁk is decomposed
to: ) )
'yZ]k = U/] ()\1 U;U/k —|— )\gaigak‘%)—
U/k()}wévm + Aoazal?) (12)
= A(viajza*t —v'*a;3a7?)

because the tensors v"J v/v’* and v"*v/v"7 have identical
k3 k3

elements, thus their difference vanishes. Hence, 'yg k
has a minimal decomposition of two rank-1 tensors.D

Theorem 3 the tensor 'y{k shares the same properties
as the general rank-4 tensor of three views.

Proof: From [16] we need to show that the contraction

properties hold. In other words, that &;7; k produces
a homography matrix for any vector é; second, the
connection between the repeated eigenvalues of pairs
of such homography matrices and the epipole v’.

Consider 6 = (1,0,0),(0,1,0) and (0,0,1). The E-
matrices we obtain are:

Eay = (l,0,0)k'ygk = al — '

i i

each of these matrices satisfies the general form of a
homography matrix: h! = Aa! + v"7n;, where X and n
represent the orientation and position of the reference
plane.

Next, we must show that the repeated generalized
eigenvalue of the pair E), E(;) is an element of the
epipole v/. Namely, that the following matrix is of
rank-1:

E(kf%llcE(l) = (Waf —vtal) - (13)
el — vl
= Wt = L) -
(o =)
1k

_ TN A |
= U/](ai_ﬁai)

A byproduct of these properties is that we can char-
acterize the family of rank-2 homography matrices:

Corollary 1 [c]x F, where ¢ = (1, ca, ¢3) is a general
3-vector, defines a family of homography matrices from
the first tmage to the second image due to a plane
passing through the center of projection of the second
camera.

Proof: Simply note that 2?21 ci By = [e]x F' where
[J» denotes the skew-symmetric matrix of vector prod-
ucts. The E|;) are rank-2 homography matrices, there-
fore their span is also a homography matrix, it is of
rank-2 because their span is represented by a product
with a rank-2 matrix [c],. []

The corollary extends the result of [9] that [v']« F
i1s a homography matrix to a family of homography
matrices [¢]x F' passing thru the center of projection
of the second camera.

Finally, note that the bilinear constraint follows

e .
from /" in the same manner as in the general rank-4

tensor: p's; rk'ygk = 0 describes a contraction with the
point p in the first view, some line s passing through
p’ and some other line r passing through p’ as well.
Thus, we get the same point-line-line interpretation
we get with the general rank-4 tensor.

The last tensor in the chain is to go from tensor
of views < 1,2,2 > to the general tensor of views <
1,2,3 >. This can be readily done using the operator
of eqn. 7.

To conclude, we have shown the basic “building
block” of stereo vision to be the trilinear tensor of
three cameras. Every other object, be it the epipole



or the fundamental matrix, is merely a degenerate case
of the general trilinear tensor. Since camera parame-
ters can be recovered directly from the trilinear tensor,
there 1s no need for the fundamental matrix, other
than to serve as a tool for constructing the rank-2
trivalent tensor in case only two, rather than three,
views are given. As a result algorithms developed un-
der the three-view paradigm will apply to all camera
configurations, be it two or three cameras.

5 Applications

This section presents two applications to highlight
two of the ideas advocated in this paper. The first ex-
ample highlights the simple and uniform way to treat
tensors (both rank-4 and rank-2) in order to obtain
new ones. There is no need to distinguish between
the geometry of two and three views. Specifically
we present an image-based rendering algorithm that
starts with a pair of images, related by a rank-2 tensor,
and generate a novel view by seamlessly moving from
the rank-2 tensor to the rank-4 tensor. The second
application demonstrates the generality of algorithms
developed in tensor context - they act the same both
for the case of two views and three views. We show
this on a stabilization algorithm originally developed
in the three-view framework.

5.1 Novel View Synthesis

Novel view synthesis, also referred to as image-
based rendering, aims at synthesizing novel views of a
scene from a given pair of images, without first recon-
structing the 3D model. This method can be faster
and more accurate to compute than building the 3D
model first. The trilinear tensor is an ideal candidate
for image-based rendering system, as it is numerically
stable and has no degenerate configurations. We use
the basic tensor operators described earlier and the
rank-2 trivalent tensor of two views to build new ten-
sors. Once a tensor is built we use equation 4 to re-
project the novel image. The algorithm is composed
of two stages - a preprocessing stage that is done once
and the actual re-projection scheme that is calculated
for every new image.

1. Preprocessing

(a) Compute dense correspondence between the
two model images.

(b) Recover the fundamental matrix of the two
model images.

(¢) Construct the rank-2 trivalent tensor <
1,2,2 > from the fundamental matrix ele-
ments.

(d) Recover the rotation angles between the first
two 1mages.

2. View Synthesis

(a) Accept camera motion parameters (rota-
tion/translation) from the second camera to
1ts new position.

(¢)

Figure 3: Original tensor o?* (a). Original tensor af-
ter rotation 'rlkozfl (b), The coordinate system of the third
camera has rotated. Original tensor after rotation and

translation 'rlkozfl — tkaf (c) The coordinate system of the

third camera has now translated along the x-axis.



(b) Apply equation 7 to compute the tensor of
the two model images and the novel image.
Use the rotation angles as recovered in the
preprocessing stage.

(¢) Render the novel view, using the point cor-
respondence between the two model images
and the tensor computed in the previous
step.

5.2 Implementation

In the following example two images of the head
were taken, one after the other, using a Canon VC-C1
digital camera. We than computed the optical flow be-
tween the two images (to obtain the dense correspon-
dence) and recovered the rank-2 tensor, as explained
earlier. Next the user specifies the new camera po-
sition in terms of rotation and translation from the
second image position. We generate the new tensor of
images 1,2 and the new image using equation 7. See
figure 4 for results. The full movie can be seen at the
attached web-page at http:www-seqg-1.html .

5.3 Video Stabilization

This application illustrates the “cross-platform” ca-
pability of three-view algorithms. As an example we
show how to convert a three-view stabilization algo-
rithm, originally presented in [10], to work with two
images only. The purpose of the stabilization algo-
rithm was defined to cancel rotation between succes-
sive frames. The original paper makes use of the fact
that the tensor is composed of three homography ma-
trices to establish a linear relation between the ele-
ments of the trilinear tensor to those of the rotation
matrix, in case the cameras are calibrated and the an-
gles are small. Formally, a very simple, closed-form,

expression relating the tensor aﬁk and Qx,Qy,Qy

(The angles of the rotation matrix from the first image
to the second) was derived

i3
o
i3 j2 -
a23 -+ a32 /A
J J
a3z —ay
i3
_0/1
i3 2 -
ot + o /K
2 3
J3 J2
a3z —ay

QX = det

Qy = det

2

o

i3 j2 -
b’ + o /K

Jj3 j2
3 — @y

QZ = det

j2
eI
aé?’—i—aéz (14)
73 j2
g — gy

K = det

where 0/22 stands for (@d? a2?, a3?), etc. This ex-
pression recovers directly and simply small rotations
from the trilinear tensor. The stabilization algorithm
proceeds as follows:

(a) (b)

(8)

Figure 4: The original two images ((a),(b)). Novel views
of the face ((c)-(g))-



1. Given three successive frames n,n+1,n+2, com-
pute the trilinear tensor.

2. Recover the small-angles rotation matrix between
frames n and n + 1 as expressed in equation 14.

3. Derotate frame n 4+ 1 using the inverse of the ro-
tation matrix recovered in the previous step.

5.3.1 The Two-View Stabilization Algorithm

In the two-view case the tensor used to recover the ro-
tation is a rank-2 trivalent tensor of two views, rather
than the general rank-4 trilinear tensor. Since the al-
gorithm makes use of tensor properties (in this case
the fact that the rank-4 trilinear tensor 1s composed
of three homography matrices) and since the rank-2
tensor posses this property as well, the algorithm can
go unchanged. For clarity we present the modified
algorithm:

1. Given two successive frames n, n+ 1, compute the
fundamental matrix.

2. Rearrange the fundamental matrix elements to
obtain the rank-2 tensor of two views.

3. Recover the small-angles rotation matrix between
frames n and n + 1 as expressed in equation 14.

4. Derotate frame n + 1 using the inverse of the ro-
tation matrix recovered in the previous step.

5.4 Implementation

We tested our method on gray scale images with a
resolution of 640 x 480 pixels. We computed the funda-
mental matrix between the two images and applied the
algorithm described in the previous subsection. Fig-
ure 5 shows the two input images as well as an average
image of the original images and an average image of
the two images after rotation cancellation. For veri-
fication we compared our results with the three-view
algorithm, by adding a third image. The recovered
rotation angles differed by less than 0.01 radians. The
visual result was indistinguishable.

6 Conclusion

We unified two-view, three-view and, as a result,
multi-view geometry with the trilinear tensor as the
connecting thread. This was done by developing a
basic tensorial operator that describes the change in
the tensor elements as a result of camera motion and
using it to create a chain of tensors that include the
epipole, the fundamental matrix - as a rank-2 triva-
lent tensor, and the rank-4 trilinear tensor in a single
framework. The rank-2 tensor of two views and the
rank-4 tensor of three views share the same properties
and are governed by a single set of basic tensorial op-
erators. As a result algorithms developed under the
three-view paradigm will apply to all camera config-
urations, be it two or three cameras. Apart from the
theoretical result, we showed two practical examples
that make use of this theory. An image-based render-
ing application that uses the basic tensorial operators

Figure 5: The original two images ((a),(b)). Average of
the original two images (c). Average of the two images
after rotation cancellation (d).

to seemlessly move from rank-2 tensor (representing
the geometry of two views) to rank-4 tensors (repre-
senting the geometry of three views), and an image-
stabilization algorithm that works unchanged for two
or three images.
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