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Abstract

Manifold Pursuit (MP) extends Principal Component
Analysis to be invariant to a desired group of image-plane
transformations of an ensemble of un-aligned images.

We derive a simple technique for projecting a mis-
aligned target image onto the linear subspace defined by
the superpositions of a collection of model images. We show
that it is possible to generate a fixed projection matrix which
would separate the projected image into the aligned pro-
jected target and a residual image which accounts for the
mis-alignment. An iterative procedure is then introduced
for eliminating the residual image and leaving the correct
aligned projected target image.

Taken together, we demonstrate a simple and effective
technique for obtaining invariance to image-plane transfor-
mations within a linear dimensionality reduction approach.

1 Introduction

The “appearance based” paradigm in visual recognition
aims at capturing the statistical regularities and redundan-
cies shared by a set of images. It uses the notion of di-
mensionality reduction of an input image space, in a Linear
Coding style, to achieve this goal. Experience shows that
for certain applications, and if certain conditions are met,
the Linear Coding dimensionality reduction can achieve im-
pressive performance with a very simple and computation-
ally efficient machinery (cf. [19, 15, 5]).

In its most general form, one would like to represent a
target image

�������
as a linear superposition of basis images�
	 �����

: ���������� 	�� 	 � 	 �����
�
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where
�

varies over the two-dimensional plane. The spec-
trum of proposed methods in this context differ in the
way the basis images

� 	 ���
are recovered from a given set

of model images ��� ������������� ��� ��� . These include Principle
Component Analysis [16, 18, 19], Independent Component
Analysis [7, 3], Projection Pursuit [13], Radial Basis func-
tions [10], Factorial coding [2, 11] — for a recent review
see [8].

Principal Component Analysis (PCA) is commonly used
in this context. It assumes that the set of model (and target)
images lie in a low dimensional subspace spanned by the
eigenvectors (the basis images) of the correlation matrix of
the model images.

The strength of PCA comes from its efficient computa-
tional mechanism, the fact that it is well understood, and
from its general applicability. For example, in Vision ap-
plications it has been used for the representation and recog-
nition of faces [18, 19], recognition of 3D objects under
varying pose [15], tracking of deformable objects [5] and
for representations of 3D range data of heads [1].

However, dimension-reducing techniques, like PCA, are
sensitive to image plane transformations. Consider for ex-
ample Fig. 1. Five images of correctly aligned and scaled
human faces were taken (data set courtesy of the Yale U.
face data-base). We then introduce small translations (order
of few pixels) to each of the images, and then attempt to
reconstruct one of the images (in its original location) as a
superposition of the five translated model images. One can
clearly see that the lack of invariance is a serious impedi-
ment to the representation of a class of objects.

Our goal is to make PCA invariant to image-plane trans-
formations, while maintaining the clarity and spirit of PCA
and without resorting to a complex algorithm.

Previous approaches to the problem include EigenTrack-
ing [5] that modifies optic-flow equations to work with
PCA, Tangent-Distance [17] and its multi-resolution exten-
sion [20] where the distance between two images is replaced
by the distance between the tangent to the image manifolds,
and probabilistic approach [9, 14] that separate images into
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Figure 1. Image Coding using PCA depends on correct
alignment. (a)-(e) The five images are misaligned by no
more than 5 pixels. (f) Projecting the original first image
(without translation) on the eigenspace result in the ghost
effect seen here.

appearance and deformation.
Our approach to the problem is two fold. First, is to in-

crease the dimensionality of the representation (number of
basis images

� ���
), but in a tightly controlled manner. We

show that for small transformations the variability of the
input model images live in a linear subspace whose dimen-
sion is bounded: for the group of translations the bound is 3
times the dimension of the ensemble without the invariance
property, and for general affine transformations the bound
is 7. Second, since for large transformations the variabil-
ity space is no longer embedded in a linear sub-space, we
derive a method we call “Manifold Pursuit” (MP) for pro-
jecting a target image onto the non-linear manifold.

2 Manifold Pursuit

We shortly describe PCA as an introduction to MP.

2.1 A short introduction to PCA

Let � �! ��� �"������� �#�%$ be an &('*) matrix whose columns
are the model images (each spread as a vector, where &
is the number of pixels of the image). Let � �,+.-0/21
be the Singular Value Decomposition (SVD) of � , i.e., the
columns of

+
are the eigenvectors of �3� 1 and the columns

of
/

are the eigenvectors of � 1 � , and
-

is a diagonal ma-
trix containing the singular values. Near zero singular val-
ues correspond to eigenvectors of �3� 1 that represent near
zero variability of the data (columns of � ), hence can be

discarded. As a result, the column space of
+

spans a lin-
ear sub-space that best represents the statistical variability
of the data. The projection matrix

+4+51
projects any target

image
�����

(spread as a vector 6 ) onto the linear subspace:76 �8+4+ 1 6 . The columns of
+

are called the Principle
Components of the ensemble, and in the context of Vision
applications are called “eigenimages”. The quality of the re-
projection depends a great deal on the assumption that both
images of the database and the target image are aligned. Vi-
olating this assumption degrades the quality of reprojection.
We introduce MP to relax this constraint.

2.2 Manifold Pursuit

Let �9� �������"������� ��� ����� be a set of model images where the
index vector

�
is two dimensional

�(�!�;: � �<:#=>� . An image�������
belongs to the manifold expressed by superpositions

of the model images under some group of transformations
if the following holds:

��������� �� 	�? � �
	 � 	 ���*@BAC���C�ED

	 �<�
(1)

where
AF���C�GD.�

is a vector function
AH�I��J � �KJL=�� represent-

ing the group of transformations acting on
�

with a set of
parameters denoted by the vector

D
. For example, in case

the invariance we desire is image-plane translation, thenAC���M�N��O � �GO = � ; and when we desire invariance under affine
transformations, then

AF�����P��Q
@SRK: � @UT�: = �GVW@UX>: � @UJ#: = �
where

DY�P��Q#�ERL�GTL�EVZ�EX[�KJ9�
.

The transformation
AC���

is applied independently to every
model image, i.e., each model image � 	 ��� can undergo an
arbitrary transformation (represented by the choice of

D 	
)

throughout the linear superposition. Thus, the parameters
that are relevant for the representation of the target image�������

are the scalars � 	 and vectors
D 	

.
Assuming small transformations, i.e.,

D 	
are infinitesi-

mal, and considering the first-order Taylor expansion of the
right-hand side of eqn. 1 we have that

� ���\@BAC���C�ED.�G��] � �����^@HD 1 � D �
where � ��� is a model image and �9_a`cb%db D is the vector of
partial derivatives

� � _fe ��������� ��_Lg � , and where

� _ih � ��j e J �Gk h @ �#j<l J = k h
For example, for the group of translations the expansion be-
comes:

� ���*@BAC���C�GD.�<�� � ��:#�W@HO � �#m e @HO
= �nm>l � (2)

and for the affine group the expansion becomes:

� ���\@BAC���C�EDo�<�p� � ��:#�W@HQ �#m e @qRK: � �#m e @T�: = �nm e @rV �#m>l @X�: � �#m>l @rJ#: = �#m�l � (3)



Therefore, for the invariance under pure translation, in-
stead of applying PCA on the original matrix &s'\) whose
columns are the model images � 	 (spread as vectors), we
should apply PCA on an &t'vu[) matrix � :

� �P �9� � �9�Gw e � �9�<w l ��������� ��� � ����w e � ����w l $ � (4)

and for the affine group the &('*xy) matrix:

� �z {������� � 	 � �#m e �<: � �#m e �<: = �#m e � �#m>l �G: � �nm>l �G: = �nm>l ������� $ �
(5)

The eigenimages of � (eigenvectors of �3� 1 ) span the
subspace of model images under the invariance of small
image-plane transformations. In effect, the small transfor-
mation assumption allows us to represent the manifold of
variability of each model image with the tangent to the man-
ifold represented by the superposition of functions of first-
order partial derivatives of the model image. The only price
we pay is to enlarge the set of basis images (the principle
components) required for representing the object class un-
der the desired invariance group.

We handle large transformations using Newton iterations
and “image warping”within a coarse-to-fine framework. In
each Newton iteration we project the target image onto the
linear subspace represented by the principle components of� , then we modify (warp) the model images and recompute
their derivatives. This procedure is guaranteed to converge
to a local minima. To help converging to a global minima
the same procedure is performed in a coarse-to-fine manner,
using a Gaussian Pyramid [6] of the basis images.

3 The Case of Aligned Model Images

In the case of un-aligned model images we need to re-
evaluate the projection matrix in each iteration — making
the proposed technique computationally expensive. Now
we consider a different variant of the same problem: we
assume the model images are aligned but allow the target
image to be mis-aligned. This might be useful in the case
of face detection followed by identification, where detec-
tion module might find the head position up to some trans-
lational/rotational ambiguity and thus the target image will
not be aligned with the model images.

The advantage of assuming an aligned model set is that,
as shown next, the projection matrix will need to be eval-
uated only once thereby reducing the computational cost
considerably. We consider the following problem:

�����*@BAC���C�GD 	 �G��� �� 	�? � �
	 � 	 ����� (6)

where
AC���C�ED|�

is defined as in the previous section. For
simplicity we will start with a translational model

AF���v�

��O � �EO = � . From the arguments of the previous section, the
translated target image is spanned by the model images and
their derivatives (as a first approximation):76 � � � � 1 � ��} � � 1 6
where 6 is the target image

�����
spread as a vector, and � is

the &s'Su~) matrix defined below:

� �z � � �"������� � � � � � w e �"������� � � w e � � � w l �"�������"� � � w l $ � (7)

The vector
76 is the projection of the un-aligned target image

onto the subspace spanned by the model images and their
first partial derivatives. Let � ��� � 1 � � } � � 1 6 be the co-
efficients of representing

76 in the new basis spanned by the
columns of � , and let

76 � 6�� @ 6�� � where

6 � � � ����� �%�~����� �4�*�G� Q &
�%� � ��������� � �~�
and

6 � � � � ��������� �E�i�[��������� �E�2�*�G� Q &
�%� � w e ��������� � � w e � � � w l �"��������� � � w l � �
where � 	 ��� � denote the sub-matrix consisting of columns�

through � , and � 	 ��� � denote the sub-vector consisting of
entries

�
through � . Since � has a linearly independent

column space, 6�� � 6�� � are uniquely defined. We have there-
fore a residual image 6 � � and an image 6 � in the subspace
spanned by the original (aligned) model images. Let

O � �GO =
be the least-squares optimized translation between the im-
age

� � ��� and the original target image
�����

— for example
using the gradient-based approach described in [4]. We will
use

O � �EO = to warp
�����

towards to
� � ��� and project the warped

image again onto the subspace spanned by the columns of� — thus gradually reducing the residual image
� � � ��� .

The projection matrix remains fixed, and so the process
involves repetitive projections using a fixed projection ma-
trix while finding the “best” image-plane transformation be-
tween “one half” of the projection and the original target
image.

There is no need to utilize the entire projection matrix as
we are interested only in 6"� . Thus, let � � consist of the first )
columns of � (i.e., the original aligned model images) and� � � �� �� � 1 � � } � � 1 $������ � . We then have that 6 � � � � � � � 6 .
Therefore the computational cost for obtaining 6 � is propor-
tional to the number of model images ) rather than the en-
larged space ( u~) for translational model and xy) for Affine
model).

To summarize, the method for projecting an unaligned
target image

�����
onto the subspace of model images� � �����"������� � � ��� is as follows:

1. Let � � �� � � �"������� � � $ be the matrix whose columns
are the model images spread as vectors, and let � be
defined as in eqn. 7 (i.e., the matrix whose columns
are the model images and their first partial derivatives).
Let � � � �� �� � 1 � � } � � 1 $��K��� � , i.e., the first ) columns
of
� � 1 � � } � � 1 .



(a.1) (b.1) (c.1) (d.1) (e.1) (f.1)

(a.2) (b.2) (c.2) (d.2) (e.2) (f.2)

(a.3) (b.3) (c.3) (d.3) (e.3) (f.3)

Figure 2. A sample of projection results. The first three columns show the three (aligned) model images of three persons (out of
15 people of the dataset). The variation covers facial expressions and illumination. The fourth column shows a shifted target image
and the projected image using MP is shown in the fifth column. The sixth column shows, for comparison, the result of projection
using PCA.

2. Let 6 � � � � � � � 6 .
3. Find

O � �GO = which minimize � 	;� � ����� � � � ����� � � � �O � � � �(O = � = .
4. Warp the image

�����
with

O � �GO = and go to Step 2. The
process ends when the residual displacement

O � �EO = is
sufficiently small.

The process above is implemented within a coarse-to-
fine framework (as explained in the previous section) where
in each level of the pyramid the procedure above is applied.

4 Implementation Results

We applied MP for identifying frontal images of human
faces under variability of facial expressions and illumina-
tion conditions. We used the Yale U. image-set consisting
of aligned frontal human faces covering 9 images per per-
son over 15 distinct people. Fig. 2 shows a sample of the
images in the data set.

We selected three images per person as the model im-
ages, i.e., an aligned target image would be matched to a
model (a person) if the distance to its projection onto the
linear subspace spanned by the three model images is the
smallest over all the 15 models. The first three columns of
Fig. 2 show the model images of three persons in the data

set. The remaining 6 images per person formed the testing
set for our experiment.

Each image of the test set was then shifted (translated) by
a measure of up to 20% of the image size (approximately 15
pixels in the horizontal and vertical axes) and then projected
onto the three model images (per person). The fourth col-
umn of Fig. 2 shows a test image for each of the three per-
sons in the figure. The fifth column shows the reconstructed
image (the projection) using MP. Note that the shift was re-
covered during the projection process. For comparison, the
sixth column shows the projection, using PCA, of the test
image (of column 4) onto the the model images — note the
“ghost” effect due to the mis-alignment of the test image
and the model set.

Table 1 compares the identification success over the test
images shifted by various magnitudes. The rows of the ta-
ble correspond to the range of the shift applied to the orig-
inal dataset. The second column shows the percentage of
correct identification when using PCA and, as expected
from the results of the previous figure, the performance de-
grades rapidly with increasing shift magnitude. The third
and fourth columns show the identification performance us-
ing MP when the model images are unaligned (shifted de-
liberately in the experiment) and when the model images
are aligned (yet the test image is un-aligned). Note for ex-
ample the fourth column: the identification performance is
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Table 1. Identification statistics over the test images
shifted by various magnitudes. The rows of the table cor-
respond to the range of the shift (in pixels) applied to the
original dataset. The columns correspond to the use of
PCA, MP using an un-aligned model set of images, and
MP with an aligned model set. Note that the identification
performance degrades rapidly with increasing shift magni-
tude (second column) compared to the largely invariant per-
formance to shift magnitude with MP (fourth column).

largely invariant to the magnitude of shift.

5 Summary

Manifold Pursuit is a simple and efficient method for
representing an object class using linear dimensionality re-
duction methodology while maintaining invariance over a
desired group of transformations. The method consists of
two components: (i) enlarging the set of principle compo-
nents by including functions of first-order derivatives of the
model images, and (ii) performing the projection iteratively
within a Gaussian Pyramid, thus implementing Newton it-
erations for projecting the target image onto the non-linear
manifold.

We presented two definitions of the problem, the first
when the model images are unaligned with each other and
the second when the model images are aligned but the
target image is un-aligned. The advantages of the sec-
ond approach is in that the projection engine remains fixed
throughout the iterative process thereby introducing a sim-
ple and computationally efficient method.

The simplicity of the approach enables the saving of ex-
haustive search when matching a candidate image region to
a model under a group of image-plane transformations.
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