
PRIVACY PRESERVING PATTERN CLASSIFICATION

Shai Avidan1 Ariel Elbaz2 Tal Malkin2

1 Adobe Systems Inc.
2 Department of CS, Columbia University

ABSTRACT

We give efficient and practical protocols for Privacy Pre-

serving Pattern Classification that allow a client to have his

data classified by a server, without revealing information to

either party, other than the classification result. We illustrate

the advantages of such a framework on several real-world sce-

narios and give secure protocols for several classifiers.

1. INTRODUCTION

Pattern classification is an important field within machine learn-

ing, dealing with the problem of classifying raw data into pre-

determined categories. Applications abound, including clas-

sifying blood samples as infected or not, classifying an e-mail

as being spam or not, recognizing images of human faces,

classifying an optical character into one of the 26 alphabet

characters, and many more.

However, an increasing number of applications involve

sensitive data, and require privacy of both the object to be

classified, and the raw data used by the classifier. In particu-

lar, a client may wish to have his data classified by a commer-

cial company without compromising the privacy of his data,

while the company does not want to release its classifier. For

example, the client would like to have his blood tested by the

company to find if he is HIV positive. Or, consider a client

(say, a bank) who would like to deploy a surveillance network

of cameras and microphones in his building, and outsource

the surveillance task to some outside company that will pro-

vide image and audio analysis tools to detect events such as

suspicious behavior, detecting known criminals or detecting

gun shots, without being able to snoop around. A different

mode of operation might be when a government agency is

interested in probing the records of a private company (e.g.,

a credit card company) to identify monetary transactions that

fit, say, suspicious criminal behavior. The suspicious behavior

profile is represented as a classifier that given money transac-

tions can determine if they are suspicious or not. Obviously,

the classifier itself can not be revealed to the private com-

pany. A final example involves collaboration between govern-

ments: the US government requires details of all passengers

on-board inbound flights to be disclosed to the US author-

ities immediately after take-off, while the EU supreme court

ruled this practice as violating the privacy rights of the passen-

gers. This problem can be solved if the US government could

classify passenger records and only obtain a binary answer to

the question: Are there suspicious passengers on-board this

flight? (where suspicious is defined by their own classifier,

involving different attributes).

In this paper, we study privacy preserving pattern classi-
fication, which addresses exactly the type of problems above;

It allows one party to classify their query using the classifier

of a different party, while maintaining privacy of all data.

2. CRYPTOGRAPHIC BACKGROUND

The notion of Secure multi-party computation originated from

the work of Yao [1], who defined the two-party problem of

computing a known function on the parties’ private inputs.

Perhaps surprisingly, Yao gave a protocol that solved this prob-

lem. Yao’s solution used a Boolean circuit for the function to

be computed, then have one party ’garble’ it, shuffling each

gate’s truth table and associating random strings with the 0

and 1 that usually go through a Boolean circuit’s wires (only

the output gates are left ungarbled). The other party then eval-

uates the garbled circuit, following random truth tables until

she reaches the output gates to get the real output. This tech-

nique solved the two-party problem, as long as the parties can

trust each other to ’follow the protocol’. Also, we note that its

complexity is linear in the size of the circuit, and thus from a

theorist point of view it is considered very efficient. However,

for real world application this method is not practical and is

much slower then the corresponding non-secure computation.

Soon afterward, Goldriech et al. [2] extended the problem to

the case of n > 2 parties, and gave a slightly different solu-

tion, which was was still too demanding to be of practical use.

See [3] for advanced and theoretical treatment of the problem.

Since then this field has became central to Cryptography

and received significant amount of research attention. Part

of the research effort went to showing stronger theoretical

results (security against parties allowed to cheat in various

ways, and using weaker cryptographic assumption). Another

direction was to make these protocols more practical and ef-

ficient. The goal in this line of research is to find an efficient

protocol for some specific problem, bringing the complexity

of the secure solution closer to the complexity of the stan-

1684978-1-4244-1764-3/08/$25.00 ©2008 IEEE ICIP 2008

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on June 10,2010 at 11:39:28 UTC from IEEE Xplore. Restrictions apply.

dard, non-secure, solution. Of particular interest for us are

those for secure dot-product and oblivious polynomial eval-

uation [4, 5], which also gave a practical secure protocol for

learning decision trees [6]. The Oblivious Polynomial Evalu-

ation (OPE) problem is when Bob’s input is some polynomial

P (x) of degree d, while Alice’s input is a value x, and she

wants to learn P (x), subject to Bob not learning her input

and Alice not learning Bob’s polynomial. This was later used

by [6] to devise an ID3 decision tree learning algorithm where

each party holds part of the training data, yet both parties are

interested in learning a decision tree that uses all the available

training data. In the end both parties learn the parameters of

the decision tree, but nothing about the training data of the

other party.

When analyzing secure multi-party computation proto-

cols, the security and correctness are usually analyzed to-
gether. The technique used is to compare the transcripts of the

protocol with the transcripts from interacting with a trusted

third party, who is trusted by all the parties involved in the

computation. The trusted third party is only getting the inputs

from all involved parties, computes the function, and gives

the respective outputs to the parties. It is easy to see that if

the transcripts are similar, than the protocol is both secure

and correct; the parties’ output is part of the transcript, so

correctness is trivial. Also, none of the involved computing

parties can learn anything after interacting with the protocol,

as compared to after interaction with the trusted party. On the

other hand, it is possible to have protocols that are secure and

correct, separately, but still allow malicious parties to achieve

things that should not be possible when interacting with the

trusted third party.

We assume that the parties are honest but curious, mean-

ing that they will follow the agreed-upon protocol but will try

to learn as much as possible from the data-flow between the

two parties. Put another way, one party is willing to trust the

other party but is concerned that virus attacks on the other

party will reveal the information. Finally, in complexity, one

shows the computational and communication complexity of

the secure algorithm.

3. CRYPTOGRAPHIC BUILDING BLOCKS

We give the necessary cryptographic building blocks we need

to derive the main protocols of the paper. For lack of space,

and due to their standard nature, we provide only informal

definitions.

3.1. Preliminaries

We will assume that computations are done over a prime field

F = Zp, for a proper choice of p. If the inputs are rational

numbers, we first scale them so we can represent them by

integers. Let s be an integer such that any intermediate value

of the computation is within the range [−s, s], and choose a

prime p > 2s.

For correctness, let x ∈ [−s, s] be the result of some com-

putation, and assume that Alice and Bob each hold a random

share of x, such that sA, sB are random and uniformly dis-

tributed in F , and sA + sB (mod |F |) ≡ x. Note that be-

cause x < |F |, we get that x (mod |F |) = x, and thus

sA + sB (mod |F |)=x.

Because the value of x is in the range [−s, s] and |F | >
2s, we can distinguish negative values from positive ones:

negative values are congruent to the range [p − s − 1, p − 1]
whereas non-negative numbers are congruent to [0, p−1] (and

similarly, it’s easy to compare numbers).

Most of the protocols we present give output to both Alice

and Bob, such that Alice and Bob get private shares that are

uniformly random in F , and their sum is congruent to some

desired output. Thus, neither Alice nor Bob learn anything

from the output of the protocol (since it is just a random ele-

ment in F). However, if both parties are honest, Bob can send

Alice his private share, and Alice can compute the desired re-

sult.

We design our protocols such that the inputs to the proto-

cols are also given as private shares. This approach allows us

to compose these protocols while keeping them private.

3.2. Oblivious Transfer

Oblivious Transfer is a cryptographic tool that allows Alice

to choose one element from a database of elements that Bob

holds, learning this element without revealing to Bob which

element was chosen and without learning anything about the

rest of the elements. The most common variant of OT is(
2
1

)
OT, where Bob has (v0, v1) and Alice chooses b ∈ {0, 1},

and after the OT Alice learns vb and nothing else, and Bob

learned nothing. OT can be built from any enhanced trapdoor

permutation (such as the RSA trapdoor permutation).

3.3. The Millionaire’s Problem

Alice and Bob would like to compare and find which one has

a larger number, without revealing anything else about their

inputs. This problem was introduced by Yao [1] who solved

it, assuming the existence of Oblivious Transfer. When the

inputs are two m-bit numbers, the communication complexity

of Yao’s protocol is O(m)
(
2
1

)
OT, and this can be done in

constant number of rounds.

3.4. Secure Dot Product

We are using dot product to compute the distance between

two points in F d. In our case Alice owns X ∈ F d and Bob

knows Y ∈ F d. At the end, Alice and Bob learns a and b,

respectively, such that a + b (mod F) = XT Y . This can be

solved using Yao’s protocol.

1685

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on June 10,2010 at 11:39:28 UTC from IEEE Xplore. Restrictions apply.

3.5. Oblivious Polynomial Evaluation

Oblivious Polynomial Evaluation (OPE) [4, 5], is a special

case of private computation where Alice has a private scalar

input x and Bob has a private input polynomial P , and they

want to privately compute P (x). Observe that OPE can be

naturally extended to handle multivariate polynomials

P (x1, ..., xN) and that a degree-1 multivariate polynomial de-

generates to a dot product.

4. PROTOCOLS FOR PRIVACY PRESERVING
PATTERN CLASSIFICATION

In this section we give a sequence of protocols for various

kernel functions. In all cases the general classifier assumes

the following form

H(x) = sign(
N∑

i=1

hi(x))

but the kernels hi(x) may be of different types. All the ker-

nels we consider assume the same structure. They involve a

dot-product of the data x, that is known only to Alice, with

some weight vector y, known only to Bob, followed by a

non-linear operation such as thresholding, Gaussian, sigmoid

or polynomial. Each kernel function hi(x) uses a different

weight vector yi and the classifier H(x) is a weighted sum of

kernel functions of the same type.

1. The threshold function:

h(x) =
{

α xT y > Θ
β otherwise

where α, β,Θ are scalars known only to Bob. This was

presented in [7] and is mentioned here for completeness

only.

2. The polynomial function (see Table 1):

h(x) = α(xT y + c)d

where α, c and d are scalars known only to Bob.

3. The Gaussian function (see Table 2):

h(x) = αe(γ||x−y||22)

where α and γ is a scalar known only to Bob.

4. The sigmoid function (see Table 3):

h(x) =
α

1 + e(xT y)

where α is a scalar known only to Bob.

In all cases, we give sub-protocols that let Alice and Bob

obtain additive shares sA,i and sB,i for hi(x). Alice and Bob

then accumulate their private shares to get sA =
∑N

i=1 sA,i

and sB =
∑N

i=1 sB,i, such that sA + sB =
∑N

i=1 hi(X).
Then Alice and Bob use the updated Millionaire protocol to

compare the sum of their values to 0, getting the sign of the

classification. In addition to these four classes of widely used

kernels we propose a method to approximate arbitrary kernel

functions using lookup tables. In some of these protocols we

use the Secure Polynomial Evaluation of [5]. For brevity, we

omit security and complexity analysis.

4.1. A Note on Secure Classification

There is an inherent tension between secure multi-party com-

putation and machine learning, in that one tries to hide his

classifier and the other tries to infer what the classifier is. In

the extreme case, Alice can use her secure computations with

Bob in a training stage, and have Bob label examples for her,

and Alice train her own classifier on these examples. This is

unavoidable, and in that sense, the best we can hope for is to

ensure that Bob will not learn anything about Alice’s data and

will not help Alice’s training algorithm, other than supplying

it with labeled examples.

Input: Alice has x ∈ F L

Input: Bob has a polynomial kernel function h(x) = α(xT y+ c)d

Output: Alice and Bob learn private shares rA + rB = h(x).

1. Alice and Bob use the inner product sub-protocol to get ran-

dom additive shares of xT y, such that rA + rB = xT y.

2. Bob defines the polynomial f(z) = α(z + rB + c)d

3. Alice and Bob use the OPE sub-protocol to get random ad-

ditive shares of f(rA), such that sA + sB = f(rA) =
α(rA + rB + c)c = α(xT y + c).

Table 1. Polynomial Kernel

4.2. Kernel Evaluation Using Lookup Tables

We now give a lookup table approach to kernel function eval-

uation, where a lookup table approximates the range of values

taken by the dot product xT y. If this range is small then it is

feasible to enumerate all possible values of the vector x, oth-

erwise Bob and Alice can agree on “binning” of the vector X
and proceed as follows. Let the classifier be of the following

form

H(x) = sign(
N∑

i=1

hi(xT yi))

where hi(xT yi) may be of an arbitrary kernel function

not of any type discussed above and let Alice and Bob map the

domainD into “bins” and generate the lookup table values for

each “bin”. A mapping function b : D → [K] maps each x ∈

1686

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on June 10,2010 at 11:39:28 UTC from IEEE Xplore. Restrictions apply.

Input: Alice has x ∈ F L

Input: Bob has a Gaussian kernel function of the form

h(x) = αeγ||x−y||22 .

Output: Alice and Bob learn private shares tA + tB = h(x).

1. Bob prepares the polynomial f1(z) = γz.

2. Alice and Bob use the OPE sub-protocol to get random addi-

tive shares of f(x2), such that rA + rB = γx2.

3. Alice computes erA , Bob computes erB , and note that erA ·
erB = erA+rB = eγx2

.

4. Alice and Bob use the inner-product sub-protocol to get ran-

dom additive shares of x and −2γy, such that sA + sB =
−2γxT y.

5. Alice computes esA , Bob computes esB , and note that esA ·
esB = esA+sB = e−2γxT y .

6. Bob computes eγy2
.

7. Bob prepares the polynomial f2(z1, z2) = erB z1 +

esB z2 + eγy2
,

8. Alice and Bob use the OPE sub-protocol (for multivariate

polynomials) to get random additive shares of f2(erA , erB),

such that tA+tB = f2(erA , erB) = erB erA +esB erB +

eγy2
= eγx2

+ e−2γxT y + eγy2
= eγ(x−y)2

Table 2. Gaussian Kernel

Input: Alice has x ∈ F L

Input: Bob has a sigmoid kernel of the form h(x) = α

1+ex
T y

Output: Alice and Bob learn private shares tA + tB = h(x).

1. Alice and Bob use the OPE sub-protocol to privately compute

the inner product of x and y, and get random additive shares

sA + sB = xT y

2. Alice computes esA , Bob computes esB

3. Bob selects rB at random, defines the polynomial f(z) =
rB(1 + z · esB)

4. Alice and Bob use the OPE sub-protocol to privately compute

f(esA) and get random additive shares uA +uB = rB(1+

ex
T y)

5. Bob sends uB to Alice. Alice now has vA = rB(1+ex
T y).

6. Alice defines the polynomial g(z) = z
vA

.

7. Alice and Bob use the OPE sub-protocol to privately compute

g(αrB), and get the random additive shares tA + tB =
α·rB

rB(1+xT y)
= α

1+ex
T y

.

Table 3. Sigmoid Kernel

D into an integer in the range [1,K] (which can be thought of

as the “bin index”). We also define b−1 : [K] → D that maps

each bin index into one element of D which we call the “bin

representative’, such that for any k, we have b(b−1(k)) = k.

See Table 4.

Input: Alice has x ∈ F L

Input: Bob has a general kernel h(xT y).

Output: Alice and Bob learn private shares of the approximation

rA + rB ≈ h(xT y).

1. Alice and Bob use OPE to obtain private shares sA, sB such

that sA + sB = xT y.

2. Bob chooses a value rB at random.

3. Bob constructs a table T with K entries; T (k) =
h(b−1(k) + sB) − rB .

4. Alice uses
(K

1

)
OT to select

rA = T (b(SA))

= h(b−1(b(SA)) + sB) − rB

≈ h(xT y) − rB

Table 4. General Kernel using Lookup Table

5. CONCLUSIONS

We presented several protocols for Secure data Classification

that allow two parties to evaluate a particular classifier on a

particular data point without revealing information, other than

the final outcome, to either party. In the future we plan to in-

vestigate ways to accelerate the protocols either by relying

on the large body of literature on accelerating secure proto-

cols or by taking advantage of domain specific knowledge. In

addition we are exploring ways to apply Secure Multiparty

Computations to general image processing tasks that might

benefit from a secure protocol.

6. REFERENCES

[1] A. C. Yao, “Protocols for secure computations,” in Proc. 23rd
IEEE Symp. on Foundations of Comp. Science, Chicago, 1982,

pp. 160–164, IEEE.

[2] Oded Goldreich, Silvio Micali, and Avi Wigderson, “How to

play any mental game or a completeness theorem for protocols

with honest majority,” in ACM Symposium on Theory of Com-
puting, 1987, pp. 218–229.

[3] O. Goldreich, Foundations of Cryptography: Volume 1, Basic
Tools, Cambridge University Press, New York, 2001.

[4] M. Naor and B. Pinkas, “Oblivious polynomial evaluation,” in

Proc. of the 31st Symp. on Theory of Computer Science (STOC),
1999, pp. 254–254.

[5] Y.C. Chang and C.J.Lu, “Oblivious polynomial evaluation and

oblivious neural learning,” in Advances in Cryptology — (ASI-
ACRYPT 2001). 2001, LNCS, Springer-Verlag.

[6] Y. Lindell and B. Pinkas, “Privacy preserving data mining,” in

Advances in Cryptology — (CRYPTO 2000), 2000.

[7] S. Avidan and M. Butman, “Blind vision,” in European Confer-
ence on Computer Vision, 2006, pp. 1–13.

1687

Authorized licensed use limited to: TEL AVIV UNIVERSITY. Downloaded on June 10,2010 at 11:39:28 UTC from IEEE Xplore. Restrictions apply.

