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Abstract

The recently discovered “trilinear tensor” has
been shown to play a similar role to the “funda-
mental” matrix, but with three views instead of
two views, in representing the relative motion
parameters of an observer moving in the 3D
projective world. The issue of a general repre-
sentation for any number of views remains an
open problem. The main result presented here
is the closed-form concatenation of any number
of views. The concatenation operation shows
that N tensors are sufficient for representing a
set of N +2 views, i.e., the tensor of any triplet
of views from the set can be generated in closed-
form from an arbitrary collection of N tensors
over this set. These concatenation operators
may be useful in the context of image synthe-
sis, image mosaicing and video compression.

1 Introduction

The obvious representation of a 3D scene is with a 3D
model. Every image is then related to the 3D model
by 1ts viewing parameters. As reconstruction of such 3D
model from 2D views proves to be difficult to achieve, al-
ternative approaches represent 3D scenes as collections
of 2D images [8: 15]. The unavailability of the 3D model
creates a need to find new means to represent the rela-
tions between 1mages. Kumar et al. [15] create a mosaic
image composed of all images warped to the same im-
age coordinate system. Alternative approach proposed
by Laveau and Faugeras [8] represent the relationships
by fundamental matrices between every pair of images,
using N (N —1)/2 such matrices, that can be represented
by 18 + 11(N — 3) independent parameters [9].

Our approach represents the relations among images
by trilinear tensors, rather than by fundamental matri-
ces. The trilinear tensor is the extension of the funda-
mental matrix (of two views) to the case of three views.
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We show that all N(N—1)(N—2) possible tensors (a ten-
sor for each ordered triplets of views) can be represented
by N — 2 tensors. This is done by introducing simple
matrix operators which generate new tensors from given
ones without resorting to image measurements.

We use tensors for several reasons. First, our experi-
ence is that using tensors is usually more accurate than
using fundamental matrices. Second, the fundamental
matrix can be linearly computed from a given tensor. In
addition, tensors may offer direct methods towards new
image generation from a given small number of views.
New image generation using two fundamental matrices
is described in [1; 6], and the use of tensors is described
in [11] (see also [2] for a comparative study as well).

We show that using tensors to generate new tensors
provide basic tools for a relatively wide range of appli-
cations ranging from (i) better estimation of the tensors
themselves, (ii) representation of a multitude of views,
and (iii) manipulation of views for purposes of anima-
tion, recognition and compression.

2 Trilinear Tensor: Preliminaries

Consider two perspective views ¥, ¢’ of a 3D scene. Let
P be a point in 3D projective space projecting onto
matching points p € ¥,p’ € ¥’ in 2D projective plane.
The relationship between the 3D and 2D spaces is rep-
resented by the 3 x 4 matrices, [I,0], [4, '], i.e.,

[1,0]P
[A,v]P (1)
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We may adopt the convention that p = (z,y,1)7, p’ =
(#',y,1)7, and therefore P = (z,y,1,p). The coordi-
nates (z,y), (¢'y’) are matching points (with respect to
some arbitrary image origin — say the geometric center
of each image plane). The vector v’ is the translational
component of camera motion and is the view of the cen-
ter of projection of the first camera in view ¥’. The ma-
trix A is a 2D projective transformations (collineation,
homography matrix) from ¢ to ¢ induced by some plane
in space (the plane p = 0). In a calibrated camera set-
ting the plane p = 0 is the plane at infinity and A is
the rotational component of camera motion and p = 1/z



where z is the depth of the point P in the first camera
coordinate frame. For more details on the representation
and methods for projective reconstruction see [4; 7; 10;
13: 9: 3.

Let 52_ be the elements of the matrix

=1 0 2
Tlo -1y |-
It can be verified by inspection that Eq. 1 can be repre-
sented by the following two equations (I = 1,2):

psiv’" + plsial =0, (2)

with the standard summation convention that an in-
dex that appears as a subscript and a superscript is
summed over (known as a contraction). Superscripts
denote contravariant indices (representing points in the
2D plane, like v') and subscripts denote covariant indices
(representing lines in the 2D plane, like the rows of A).
Thus, af is the element of the k’th row and 1’th column
of A, and v'* is the k’th element of v'.

Similarly, the camera transformation between views
and " is

p = [B,v"]P

be the elements of the matrix

-1 0 2
r= 0 —1 o |°

Likewise, let 77"

and likewise,

m_11J
priv

+ph bl =0, (3)

Note that k& and j are dummy indices (are summed over)
in Equations (2) and (3), respectively. We used different
dummy indices because now we are about to eliminate p
and combine the two equations together. Likewise, I, m
are free indices, therefore in the combination they must
be separate indices. We eliminate p and obtain a new
equation:

(skv™)(p

and after grouping the common terms:

(7)o sha) = 0,
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I m i/ 1k17 i _ky _
sy (Vb — v a) = 0,

and the term in parenthesis i1s the trilinear tensor:

a;

J - bg_ //]af.

i,5,k=1,2,3 (4)

And the tensorial equations (the trilinearities) are:

s rmpzo/k =0

, ()

Hence, we have four trilinear equations (note that {,m =
1,2). Tn more explicit form, these functions (referred to
as “trilinearities”) are:

2" alPp — 2" aPPp 4 2ol — altpt =0,
y'ei®p’ =y ap’ 42 ey — ai?p' =0,
T a23p2 T ya33p2 _|_y a31p2 _ ZleZ — 0’
y'ap — 'y oy +y o — ai?p’ = 0.

Since every corresponding triplet p, p’, p” contributes
four linearly independent equations, then seven corre-
sponding points across the three views uniquely deter-
mine (up to scale) the tensor oz‘gk. More details and
applications can be found in [11].

Another detail that will be useful later is that cer-
tain contractions of the tensor yield collineations (ho-
mography matrices) as follows: The three 3 x 3 matrices
Ey = a}* (the contraction ejal ¥ where e = = (1,0,0)7),
FEy = a%, and F3 = a3* are collineations from v to
v’ induced by three dlstmct planes (whose orientation
is determined by B, v"), recovered up to a global com-
mon scale factor. Similarly, the matrices W, = a‘gk are
three collineations from v to 9" of three distinct planes
(whose orientation is determined by A, ). For example,
the “fundamental” matrix F' between v and 1’ can be
linearly determined from the tensor by:

E;"F+FTE;=0

which yields 18 linear equations of rank 8 for F. More
details can be found in [14].

The final detail we will need is related to invariance
Given two collineations — homography
matrices A, and A, — of two distinct planes w1, ma, we
define an invariant k, referred to as “projective depth”,
that satisfies:

of two views.

P = (Ar, + KAz )p (6)

In the case the same two planes are fixed, i.e., for any
two views we calculate the collineations due to m; and
s, then k is invariant to all motion parameters of both
views and reflects a projective measurement of the scene.
In particular if we switch the two views and recompute
the homography matrices (of the same two planes), &
will remain unchanged. Further details can be found in

[10].

3 Tensorial Transfer Operators

Given views v;,¢; and v denote by T{; ; ) the corre-
sponding tensor. Note that we are recycling the indices
1, J, k used before as the indices of the tensor.

Consider the transformation of the tensor as we change
the order of views. It is common knowledge, and clearly
seen from the way the tensor is derived, that if we switch
between views v; and vy, i.e., the tensor Ti; r ;), then
the tensor T{; ; ») simply undergoes a rearrangement of

.. R ik

the indices, i.e., the coefficients o
kj

a;”.

are replaced with



However, if we change the role of the first view, then
the resulting tensor is no longer a rearrangement of the
original. It appears we have three separate sets of 27
coefficients, one for each image playing the role of the
first image [5]. Recall that, for the fundamental matrix,
switching the two images means transposing the funda-
mental matrix.

p/TFp:()@pTFTp/IO

What we show next is the extension to the three views
case, namely that there 1s a simple, closed form, trans-
formation among the three sets of 27 coefficients (i.e.,
among the three tensors). This goes as follows.

Assume we wish to compute the tensor Tis 3y from
tensor Tiy 23). We have seen in the previous section
that each tensor can be rearranged (contracted) to yield
three homography matrices, denoted by FEq, Fs, E'5. Let
E; denote the homography matrices of T{; 5 3y and G
the homography matrices of tensor T( 1 3). Thus each
FE; is a collineation from 1 onto -, associated with a
plane whose orientation is determined by v3 (the exact
manner in which the orientation depends on 3 can be
found in [14], but is not important here). Likewise, each
G; is a collineation from %5 onto ¥, but since 13 has
not changed, these collineations correspond to the same
planes as F; do. Therefore,

G; = E;! j=1,2,3.
What is left is to find the undetermined scale factors.
Since tensors are defined up to a global scale, we can
set G1 = EY ! and we need to find two scale factors. In
order to do that we use the “projective depth” invariance
described in the previous section, as follows: Let p € 9
and p’ € 5. Then,

p/ = (El + K:EZ)pv

and

p = (G1 + AeGa)p,
where A is the desired scale factor. Thus,

(E1pxp")T (p’ X Eap)
[[p” X Eapl[?
(E7'p'xp)T(px B3 'p!)
llpx ES " p’||2

We can repeat this process between F; and E3 and find
the scale factor for GG3. Finally, the pair p,p’ need not
come from a real correspondence, but can be generated:
for example, let p = (1,1,1)7 be some arbitrary point
in the first image, then the point p’ = (E1 + E2 + E3)p
constitutes a legitimate matching point. This is true
because a linear combination of homography matrices is
an homography matrix [12].

We have, therefore, described a closed-form formula
for transforming a tensor T{; ; x) to tensor Ti;; ry. And
we have,

Theorem 1 (Tensor Permutation)
The tensor 1(; ;) can be obtained from tensor T; ;)
via transformation of its coefficients alone.

We are ready now to define two unitary operators on
tensors:

Definition 1 Let Oq5 be the operator that applies to a
tensor T(; ; xy and returns the tensor Ti; ; 1y. Similarly,
let Oa3 be the operator that applies to a tensor Ti; ;1)
and returns the tensor T(; . ;). Namely,

O12(Tii ko)) = Tk
O23(Tti j 1)) = Tl k)

We derive next a binary operator on tensors which will
constitute our last operator. First, definition:

Definition 2 (Tensorial Transfer) Let x; be a bi-
nary operator that applies to T(; ; xy as the first operand
and to T(; 1y as the second operand, and returns the
tensor Ti; r1y. Namely,

Tii ey %5 Tiikpy = Tii g 1y-

The binary operator x;, referred to as the “tensorial
transfer” operator, is derived very similarly to the way
Theorem 1 was derived. The homography matrices of
tensor T{; ; ) are from ; onto ¢;, where the planes are
determined by t. These are the product of the corre-
sponding homography matrices of T(; ; ry (from +; to ;)
and of the homography matrices of Oa3(7(; x1y) (from ¥;
onto ¢;). The planes are fixed because they are deter-
mined by ¥ which hasn’t changed. The scale factors can
be determined using the projective-depth invariance, as
before. Finally, T(i,k,l) = OZB(T(i,l,k))~

We are ready now for our main result which shows
how to concatenate x; across N + 2 views and thereby
obtain a complete representation with N tensors (instead
of N(N —1)(N — 2) tensors).

Theorem 2 Given N + 2 views, N tensors of arbitrary
triplets (no two of which are identical), are sufficient to
generate all other tensors of the set of views by means of
the three operators O12, Oa3 and X ;.

Proof: We prove by induction on n = N 4+ 2. When
n = 1 (three views), we have six possible tensors all of
which can be obtained from one of the tensors by the
two unitary operators O15 and Oass.

Base Step (n=2): Let the four views be numbered
1,...,4and let Ty 5 3y and T{5 3 4) be the two given ten-
sors. Since we can generate any internal permutation of
three views by the unitary operators, we only need to
show that we can generate T{y 34y and T{y 5 4y:

T(1,2,3) X3 T(2,3,4) = T(1,3,4)
O23(T(1,2,3)) %3 O12(T{2,3,4)) = T(1,2,4)-

A similar procedure can be applied for every other pair
of tensors.



Induction Step: Assume induction principle holds for
n, we wish to prove the claim for n + 1. We are given
an (n + 1)’th tensor Ti; ; ,41) for some arbitrary ¥, ¢;,
0 < 1,5 < n. We wish to generate all the new tensors
Tz,yn+1) for all 0 <z, y < n (the rest are generated by
internal permutations using unitary operators). This is
done as follows:

Tiy,i,5) %i T jnt1) = Tiy,g,n+1)
Tiwijy %i Tiijnt1) = Tiw jnt1)
012(Tiy jn+1)) = T(j,y.n+1)
O23(Tijy n+1)) = T(jn+1,y)

Tz, jn+1) %5 Tiin41,9) = Tiont1,y)
023(Tizn+1,9)) = T yn+1)s

where the existence of Ti, ; ;y and T, ; ;) come from the
induction principle on n, because i, j, z,y < n. |:|

4 Applications

The unitary and binary tensorial operators derived in
the previous section enables one to store a single ten-
sor for each additional view, and to have all additional
computations done in the “tensor space” rather than in
the 1mage space. For example, for the sake of numer-
ical stability 1t 1s recommended to compute tensors of
views that are as far apart as possible (large base-line),
however, for several tasks of interest one is interested in
accumulating a “sliding window” of views, 1.e., compute
tensors Tiy 2 3y, T(2,3,4), T(4,5,6)--- The tensorial opera-
tors allow us to compute tensors from farther apart views
and then derive from them the sliding-window tensor ar-
rangement. One advantage of a sliding-window is the
possibility to perform an extended Kalman filter (EKF)
on the contribution of new views.

Another application of these operators is the possi-
bility to create tensors of views that have few or none
matching points in common. This situation arises in
practice when one wishes to process a large sequence of
views, for purposes of video animation, video indexing,
and video compression. Most, if not all, of the methods
for handling 3D-from-2D geometry would not be suitable
for long sequences (unless one is willing to “chain” image
measurements along the sequence which will inevitable
become numerically unstable). Therefore, the tensorial
operators are potentially a strong tool in this context
because the inter-relation between distant views may be
captured without the necessary “book-keeping” of what
image point is seen in what view.

We leave further details and implementation of these
applications for future work. Preliminary tests have so
far demonstrated the feasibility of these applications.

5 Summary

This paper has presented unitary and binary operators
on trilinear tensors for purposes of concatenating the

relative geometry of triplet of views. As a byproduct we
have shown that given N 42 views, N tensors associated
with arbitrary triplets of views are sufficient to generate
all other tensors of the set of views.

The material presented in this paper is important for
the task of image synthesis from a set of model images
of a 3D scene — a topic with growing interest in the
current literature. Previous work in this area is either
limited to three or four views, or is limited to concate-
nation of fundamental matrices. Therefore, this paper
presents first results on extending the manner in which
a sequence of N views can be internally represented for
visual processing.
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