
IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998 293

Novel View Synthesis by
Cascading Trilinear Tensors

Shai Avidan and Amnon Shashua, Member, IEEE

Abstract—We present a new method for synthesizing novel views of a 3D scene from two or three reference images in full
correspondence. The core of this work is the use and manipulation of an algebraic entity termed the trilinear tensor that links point
correspondences across three images. For a given virtual camera position and orientation, a new trilinear tensor can be computed
based on the original tensor of the reference images. The desired view can then be created using this new trilinear tensor and point
correspondences across two of the reference images.

Index Terms—Image-based rendering, trilinear tensor, virtual reality, image manipulation.

——————————���F���——————————

1 INTRODUCTION

HIS paper addresses the problem of synthesizing a
novel image from an arbitrary viewing position given

two or three reference images (registered by means of an
optic-flow engine) of the 3D scene.

The most significant aspect of our approach is the ability
to synthesize images that are far away from the viewing
positions of the sample reference images without ever ex-
plicitly computing any 3D information about the scene.
This property provides a multi-image representation of the
3D object using a minimal number of images. In our experi-
ments, for example, two closely spaced frontal images of a
face are sufficient for generating photorealistic images from
viewpoints within a 60 degree cone of visual angle—further
extrapolation is possible, but the image quality degrades.

We propose a new view-synthesis method that makes
use of the recent development of multilinear matching con-
straints, known as trilinearities, that were first introduced
in [42]. The trilinearities provide a general (not subject to
singular camera configurations) warping function from
reference images to novel synthesized images governed
directly by the camera parameters of the virtual camera.
Therefore, we provide a true multi-image system for view
synthesis that does not require a companion depth map nor
the full reconstruction of camera parameters among the
reference cameras, yet is general and robust.

The core of this work is the derivation of a tensor op-
erator that describes the transformation from a given tensor
of three views to a novel tensor of a new configuration of
three views. Thus, by repeated application of the operator
on the seed tensor of the reference images with a sequence
of desired virtual camera positions (translation and orien-
tation), we obtain a chain of warping functions (tensors)
from the set of reference images (from which the seed ten-
sor was computed) to create the desired virtual views. We
also show that the process can start with two reference

views by having the “seed” tensor be comprised of the ele-
ments of the fundamental matrix of the reference views. A
shorter version of this paper appeared in [4].

1.1 Novelty Over Previous Work
The notion of image-based rendering systems is gaining
momentum in both the computer graphics and computer
vision communities. The general idea is to avoid the com-
putationally intensive process of acquiring a 3D model fol-
lowed by rendering and, instead, to use a number of refer-
ence images of the object (or scene) as a representation from
which novel views can be synthesized directly by means of
image warping.

The work in this area can be roughly divided into three
classes:

1)� image interpolation,
2)�off-line (Mosaic-based) synthesis, and
3)�on-line synthesis.

The first class, image interpolation, is designed to create
“in-between” images among two or more reference images.
This includes image morphing [8], direct interpolation from
image-flows (“multidimensional morphing”) [10], [37], im-
age interpolation using 3D models instead of image-flow
[12], and “physically correct” image interpolation [40], [41],
[55]. All but the last three references do not guarantee to
produce physically correct images and all cannot extrapo-
late from the set of input images—that is, create novel
viewing positions that are outside of the viewing cone of
the reference images. For example, Seitz and Dyer [41] have
shown that one can interpolate along the base-line of an
image pair and obtain physically correct images (unlike
flow-based interpolation [10], [37]). Their approach pro-
ceeds by first rectifying the images, interpolating along the
epipolar lines (which are parallel after the rectification), and,
then, inverting the rectification for the final rendering. Un-
fortunately, only images along the line connecting the two
model images can be generated in this way and the user is
not allowed to move freely in 3D space.

Instead of flow-field interpolation among the reference
images, it is possible to interpolate directly over the plenoptic

1077-2626/98/$10.00 © 1998 IEEE

²²²²²²²²²²²²²²²²

•� The authors are with the Institute of Computer Science, The Hebrew Uni-
versity, Jerusalem 91904, Israel. E-mail: {avidan, shashua}@cs.huji.ac.il.

For information on obtaining reprints of this article, please send e-mail to:
tvcg@computer.org, and reference IEEECS Log Number 106982.

T

294 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

function [1]—a function which represents the amount of light
emitted at each point in space as a function of direction. Le-
voy and Hanrahan [31] and Gortler et al. [19] interpolate
between a dense set of several thousand example images to
reconstruct a reduced plenoptic function (under an occlu-
sion-free world assumption). Hence, they considerably in-
crease the number of example images to avoid computing
optical flow between the reference images.

In the second class, the off-line (mosaic-based) synthesis,
the synthesis is not created at run time—instead, many
overlapping images of the scene are taken and then
“stitched” together. The simplest stitching occurs when the
camera motion includes only rotation—in which case the
transformation between the views is parametric and does
not include any 3D shape (the transformation being a 2D
projective transformation, a homography). This was clev-
erly done by [13] in what is known as “QuickTime VR.”
Szeliski and Kang [51] create high-resolution mosaics from
low-resolution video streams, and Peleg and Herman [35]
relax the fixed camera constraint by introducing the projec-
tion manifold. A drawback of this class is that one cannot
correctly simulate translational camera motion from the set
of reference images.

The major limitation of the aforementioned techniques is
that a relatively large number of reference images is re-
quired to represent an object. The third class, on-line syn-
thesis, along the lines of this paper, reduces the number of
acquired (reference) images by exploiting the 3D-from-2D
geometry for deriving an on-line warping function from a
set of reference images to create novel views on-the-fly
based on user specification of the virtual camera position.
Laveau and Faugeras [30] were the first to use the epipolar
constraint for view synthesis, allowing them to extrapolate,
as well as interpolate, between the example images. Epipo-
lar constraints, however, are subject to singularities that
arise under certain camera motions (such as when the vir-
tual camera center is collinear with the centers of the refer-
ence cameras), and the relation between translational and
rotational parameters of the virtual camera and the epipolar
constraint is somewhat indirect and, hence, requires the
specification of matching points. The singular camera mo-
tions can be relaxed by using the depth map of the envi-
ronment. McMillan and Bishop [33] use a full depth map
(3D reconstruction of the camera motion and the environ-
ment) together with the epipolar constraint to provide a
direct connection between the virtual camera motion and
the reprojection engine. Depth maps are easily provided for
synthetic environments, whereas, for real scenes, the process
is fragile, especially under small base-line situations that
arise due to the requirement of dense correspondence be-
tween the reference images/mosaics [20]. The challenges
facing an “optimal” on-line synthesis approach are, therefore:

Implicit Scene Modeling: To reduce, as much as possible, the
computational steps from the input correspondence field
among the reference images to useful algebraic struc-
tures that would suffice for generating new views. For
example, it is likely that the base-line between reference
views would be very small in order to facilitate the cor-
respondence process. Thus, computing the full set of
camera parameters (or, equivalently, the depth map of

the scene) is not desirable as it may produce unstable es-
timates, especially for the translational component of
camera motion (the epipoles). It is thus desirable to have
the camera parameters remain as much as possible im-
plicit in the process.

Nonsingular Configurations: To rely on warping functions
that are free from singularities under camera motion. For
example, the use of the fundamental matrix, or concate-
nation of fundamental matrices, for deriving a warping
function based on epipolar line intersection (cf. [18]) is
undesirable on this account due to singularities that arise
when the camera centers are collinear.

Driving Mode: The specification of the virtual camera posi-
tion should be intuitively simple for the user. For exam-
ple, rotation and translation of the camera from its cur-
rent position is prevalent among most 3D viewers.

None of the existing approaches for on-line synthesis
satisfies all three requirements. For example, [30] satisfies
the first requirement at the cost of complicating the driving
mode by specifying control points; using depth maps pro-
vides an intuitive driving mode and lack of singularities but
does not satisfy the implicit scene modeling requirement.

We propose an approach relying on concatenating
trilinear warping functions that leave the scene and the
camera parameters implicit, does not suffer from singulari-
ties, and is governed by the prevalent driving mode used
by most 3D viewers.

2 CASCADING TENSORS

The view synthesis approach is based on the following
paradigm: Three views satisfy certain matching constraints
of a trilinear form, represented by a tensor. Thus, given two
views in correspondence and a tensor, the corresponding
third view can be generated uniquely by means of a warp-
ing function, as described below in more detail. We then
derive a “driver” function that governs the change in tensor
coefficients as a result of moving the virtual camera. We
begin with basic terminology; more advanced details can be
found in the Appendix.

2.1 Notations

A point x in the 3D projective space 33 is projected onto the

point p in the 2D projective space 32 by a 3 × 4 camera pro-
jection matrix A = [A, v′] that satisfies p > Ax, where > rep-
resents equality up to scale. The left 3 × 3 minor of A, de-
noted by A, stands for a 2D projective transformation of
some arbitrary plane (the reference plane), and the fourth
column of A, denoted by v′, stands for the epipole (the pro-
jection of the center of camera 1 on the image plane of cam-
era 2). In a calibrated setting, the 2D projective transforma-
tion is the rotational component of camera motion (the ref-
erence plane is at infinity), and the epipole is the transla-
tional component of camera motion. Since only relative
camera positioning can be recovered from image measure-
ments, the camera matrix of the first camera position in a
sequence of positions can be represented by [I; 0].

AVIDAN AND SHASHUA: NOVEL VIEW SYNTHESIS BY CASCADING TRILINEAR TENSORS 295

In the case of three views, we adopt the following conven-
tion: The relationship between the 3D and the 2D spaces is
represented by the 3 × 4 matrices, [I, 0], [A, v′], and [B, v′′], i.e.,

p = [I, 0]x

 p′ > [A, v′]x

 p′′ > [B, v′′]x,

where p = (x, y, 1)Á, p′ = (x′, y′, 1)Á, p′′ = (x′′, y′′, 1)Á are
matching points with image coordinates (x, y), (x′y′), (x′′, y′′).

We will occasionally use tensor notations as described
next. We use the covariant-contravariant summation con-
vention: A point is an object whose coordinates are speci-

fied with superscripts, i.e., pi = (p1, p2, ...). These are called
contravariant vectors. An element in the dual space (repre-
senting hyperplanes—lines in 32), is called a covariant

vector and is represented by subscripts, i.e., sj = (s1, s2,).
Indices repeated in covariant and contravariant forms are

summed over, i.e., pisi = p1s1 + p2s2+ ... +pnsn. This is known
as a contraction. An outer-product of two 1-valence tensors

(vectors), aib
j, is a 2-valence tensor (matrix) ci

j whose i, j

entries are aib
j—note that, in matrix form, C = baÁ.

A vector can be represented by its symbol, say p′, or by

its tensor form p′j (the range of the index is assumed known
by context). An element of a vector can be represented by
its designated symbol (if it exists), say p′ = (x′, y′, 1)Á, or by

its tensor form p′j = (p′1, p′2, p′3). Likewise, a matrix can be

represented by its symbol, say B, or by its tensor form bi
k ,

and its elements by designating values to the indecis: b2
3 is a

scalar and bk
2 is the kth row of B.

2.2 The Trilinear Tensor
The trilinear tensor is a 3 × 3 × 3 array of 27 entries de-
scribed by a bilinear function of the camera matrices A, B:

7 i
jk j

i
k k

i
jv b v a= ′ − ′′ , (1)

where a bi
j

i
k, are the elements of the homographies A, B,

respectively, and v′, v′′ are the epipoles of the first image in
the second and third images, respectively (see the Appen-
dix for derivation).

The Fundamental matrix F = [v′]xA, where []x is the
skew-symmetric matrix defining the cross-product opera-
tion, can also be embedded in a trivalent tensor

)i
jk j

i
k k

i
j ljk

liv a v a F= ′ − ′ = e , (2)

where Fli are the elements of F and eljk is the cross-product

tensor e
 ljkujvk = u × v. Further details can be found in the

Appendix.

2.2.1 The Trilinear Tensor for Reprojection
Let sj be any line coincident with p′, i.e., sjp′j = 0, for exam-
ple, the horizontal (−1, 0, x′) and vertical lines (0, −1, y′)
span all other lines coincident with p′. Let rk be any line co-
incident with p′′. Then, the tensor acts on the triplet of
matching points in the following way:

p s ri
j k i

jkµ ρ7 = 0 , (3)

where sj
µ are two arbitrary lines (sj

1 and sj
2) intersecting at

p′, and rk
ρ are two arbitrary lines intersecting p′′. Since the

free indices are µ, ρ each in the range 1, 2, we have four
trilinear equations (unique up to linear combinations), as
can be seen in Fig. 1.

The tensor consists of 27 coefficients and, since each
matching point contributes four linearly independent
equations, one needs at least seven matching points across
three images to linearly recover the trilinear tensor. Once
recovered, the tensor can be used for reprojection because,
given two reference images and a tensor, the third image is
uniquely determined and can be synthesized by means of a
warping function applied to the two reference images, as
follows. Let p,p′ be given, then, since p si j i

jkµ7 is a point that

coincides with all lines passing through p′′, then

p s pi
j i

jk kµ7 ≅ ′′ , (4)

which provides a set of four equations for p′′ (i.e., a redun-
dant set). This process is referred to as “reprojection” in the
literature. There are alternative ways of performing repro-
jection without recovering a 3D model, such as by inter-
secting epipolar lines using the Fundamental matrix [18];
however, those are sensitive to degenerate situations (like
when the three camera centers are collinear). The tensor
reprojection approach is free from singularities of camera
positions and is, therefore, a preferred choice. Comparative
studies of various approaches for reprojection using alge-
braic invariants can be found in [7], [42], where [7] con-
cludes that all approaches do well under “favorable”
viewing geometry (low amount of noise and camera centers
are far from being collinear)—and, in challenging situations,
the tensor reprojection approach performs the best.

Fig. 1. Each of the four trilinear equations describes a matching be-

tween a point p in the first view, some line s j
µ
 passing through the

matching point p′ in the second view and some line rk
ρ
 passing through

the matching point p′′ in the third view. In space, this constraint is a
meeting between a ray and two planes.

296 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

In image-based rendering, we would like to obtain the
tensor (the warping function) via user specification of loca-
tion of virtual camera, rather than by the specification of (at
least) seven matching points. If one knows (or recovers) the
full relative orientation (rotation and translation) between
the first two views 1, 2, then insertion of relative orientation
between views 1 and the desired view 3 in the tensor equa-
tion (1) would provide the desired tensor for warping
views 1, 2 onto 3 (see, for example, [14]). One can, however,
create the desired tensor without knowing the full motion
between views 1, 2 by introducing the “tensor operators”
described next.

2.3 The Basic Tensor Operator
The basic tensor operator describes how to modify (trans-
form) a tensor so as to represent a new configuration of
three cameras. We are particularly interested in the case
where only one camera has changed its position and orien-
tation. Thus, by repeated application of the operator on a
seed tensor with a sequence of desired virtual camera posi-
tions (translation and orientation), we obtain a chain of
warping functions (tensors) from the set of acquired images
(from which the seed tensor was computed) to create the
desired virtual views (see Fig. 2).

Consider four views generated from camera matrices [I; 0],
[A; v′], [B; v′′], and [C; v′′′], i.e., the 3D projective represen-
tation of the object space remains unchanged or, in other
words, the homography matrices A, B, C correspond to the
same reference plane π (if at infinity, then A, B, C are the
rotational component of camera motion). The tensor of
views 1, 2, 3 is 7 i

jk and we denote the tensor of views 1, 2, 4

as *i
jk ,

*i
jk j

i
k k

i
jv c v a= ′ − ′′′ . (5)

We wish to describe * as a function of 7 and the incre-
mental camera motion from camera 3 to 4. Let the motion
parameters from camera 3 to 4 be described by a 3 × 3 ho-
mography matrix D (from image plane 3 to image plane 4)
and translation t. Due to the group property of homogra-
phy matrices (since the reference plane π is fixed), C = DB
and, hence, we have:

*

7

i
jk j

l
jk

i
l k

i
j

i
k

i
jl

l
k k k

i
j

v d b v a

d d v v a

= ′ − ′′′

= + ′′ − ′′′

4 9
4 9

and, since t = Dv′′ − v′′′, we have the following result:

* 7i
jk

l
k

i
jl k

i
jd t a= + . (6)

Given a “seed” tensor 7 i
jk and a user specified camera mo-

tion D, t from the last view to the desired view which is
compatible with the projective representation of the object
space (i.e., the matrix D and A are due to the same reference
plane), then the formula above will generate a new tensor
*i

jk that can be used to reproject the first two model views
(views 1, 2) onto the desired novel view. The seed tensor
can be a trilinear tensor of three views, or the tensor em-
bedding)i

jk of the Fundamental matrix. In other words,
the process can start with two model views or with three
model views—once it has started, the subsequent tensors
are of three views (the first two views and the novel views).

What is left to consider is how to ensure that the homo-
graphies A and D are due to the same plane. There could be
two approaches. One approach is to have the user specify
where some physical plane seen in the two model views
should be in the novel view. A possible algorithm can be as
follows:

1)�Compute the seed tensor 7.
2)�Accept from the user four coplanar points defining

some (virtual or physical) plane π and use them to
compute the homography matrix A from the system
of linear equations Ap > p′ for each pair of matching
points.

3)�Accept from the user the translation vector t and the
projections of four coplanar points from the plane π
on the novel view. The four points, are enough to con-
struct the homography D and, as a result, recover the
new tensor * from (6).

4)�Use the new tensor * together with the dense corre-
spondence between the two model images to synthe-
size (reproject) the novel view.

This algorithm has the advantage of avoiding the need
to calibrate the cameras at the expense of assuming the ex-
istence of a plane in the 3D scene and a somewhat indirect
user interface. Similar methods for specifying the novel
camera position by means of specifying few image control
points were suggested by [30], [41].

The second alternative, which is the one we preferred, is
to try and estimate the plane at infinity, i.e., the rotation,
between the two model images (to be described later). As a
result, the homography matrix D becomes the rotational
component of camera motion and the process of specifying

Fig. 2. We generate tensor <1, 2, 4>, that relates images 1, 2 with
some novel image 4, from the seed tensor <1, 2, 3> and the virtual
camera motion parameters [D, t] from image 3 to image 4. Tensor <1,
2, 3> relates images 1, 2, and 3 and is computed only once at the pre-
processing stage. Tensor <1, 2, 4> is computed every time the user
specifies a new [D, t]. We use tensor <1, 2, 4> to render the novel
image (image 4) from reference images 1, 2.

AVIDAN AND SHASHUA: NOVEL VIEW SYNTHESIS BY CASCADING TRILINEAR TENSORS 297

the position of the novel image is simplified and more in-
tuitive for the user. Our assumptions of the internal camera
parameters are mild (the principal point is assumed to be at
the center of the image and the focal length is assumed to
be the image width), yet the algorithm is robust enough to
produce “Quasi-Euclidean” [34] settings which result in
plausible novel views.

To summarize, we start with the seed tensor of the refer-
ence images and modify it according to the user specified
position D, t of the virtual camera position. The modified
tensors, together with the dense correspondence between
two of the model images, are used for rendering the novel
images, as can be graphically seen in Fig. 3.

3 IMPLEMENTATION

To implement the method presented in this paper, one
needs several building blocks:

•� dense correspondence between a pair of images,
•� robust recovery of the seed tensor (either the trilinear

tensor for three reference images or the fundamental
matrix, in its tensor form, for two reference images),

•� a correct reprojection mechanism,
•� handling Occlusions.

A large body of work is devoted to the problem of find-
ing dense correspondence between a pair of images [32],
[9], recovery of the trilinear tensor [42], [47], [17], [52], [25],
[15], and recovery of the fundamental matrix [16], [23]. Any
of the methods described there can be used with our algo-
rithm. Here, we give our implementation.

3.1 Dense Correspondence
We obtain dense correspondence using a Lucas-Kanade
style optical-flow [32] embedded in a hierarchical frame-
work [9]. For every pixel, we estimate its motion (u, v) us-
ing the well known equation:

I I I

I I I
u
v

I I
I I

x x y

x y y

x t

y t

2

2

�
��

�
��
�� �� =

−
−
�
��

�
�� ,

where Ix, Iy, It are the sum of derivatives in the x, y-
directions and time, respectively, in a 5 × 5 window cen-
tered around the pixel. We construct a Laplacian pyramid
[11] and recover the motion parameters at each level, using
the estimate of the previous level as our initial guess. In
each level, we iterate several times to improve the estima-
tion. This is done by warping the first image toward the
second image, using the recovered motion parameters, and
then repeating the motion estimation process. Typically, we
have five levels in the pyramid and we perform two to four
iterations per level. The initial motion estimation at the
coarsest level is zero.

3.2 Robust Recovery of the Seed Tensor
The seed tensor is recovered from the reference images and,
since the number of reference images may be either two or
three, slightly different algorithms are needed. We describe
the procedure for recovering the Fundamental matrix and
inform the reader when it deviates from the algorithm for
recovering the trilinear tensor. The steps for computing the
Fundamental matrix/tensor are:

•� Find Matching Points: The method we use is a vari-
ant of Harris corner detector [21]. For every pixel in
the first image, we compute the “optic-flow” matrix

I I I

I I I
x x y

x y y

2

2

�
��

�
��

,

where Ix, Iy are the sum of derivatives in the x− and
y−directions, respectively, in a 5 × 5 window centered
around the pixel, and extract its eigenvalues. We se-
lect points with their smaller eigenvalue above some
predefined threshold. (Usually, we set the threshold to

 (a) (b)

Fig. 3. View synthesis for two or three reference images. In both cases, the process is divided into two parts. The preprocessing stage is done only
once and the actual rendering is done for every image. (a) Three model images. (b) Two model images.

298 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

be about seven gray-level values. Since we sum the
square values over a 5 × 5 window, we require the
smallest eigenvalue to be larger than 1,225 = 72

* 5 * 5.)
We track them from the first image to the second image
and back to the first image. (In case of three model im-
ages, we track the points from the first image to the
third, via the second image and vice-versa.) Points that
return, at the end of the loop, to their original position
(up to distance of one pixel) are accepted.

•� Robust Estimation of the Trilinear Ten-
sor/Fundamental Matrix: The previous stage usually
produces several hundreds points, referred to as
“good” points, which are then normalized to ensure
good numerical solution [23]. This normalization con-
sists of applying a similarity transformation so that
the transformed points are centered at the origin and
the mean distance from the origin is 2 . The nor-
malized “good” points are used for computing the
tensor in a robust statistics manner [36] to avoid the
effects of outliers. The robust estimation is done by a
repetitive lottery of a subset of seven “good” points
(in case of three model images) or eight “good” points
(in case of two model images), recovering the funda-
mental matrix (trilinear tensor, for three model im-
ages), and verifying the quality of the fundamental
matrix (trilinear tensor) on the remaining set of good
points. The quality of the fundamental matrix is
measured by the distance of the points in the second
image from their epipolar line (for three model im-
ages, the quality of a tensor is measured by the dis-
tance of the projected third point and the actual third
point). Only points with error of less than a specified
threshold (typically, one pixel) are considered. The
best fundamental matrix (trilinear tensor) is the one
with the largest number of supporting points, and we
compute it again in a usual least-squared manner,
using all the points that supported it.

Finally, in case of only two model images, we need
to convert the recovered fundamental matrix into a
tensor form, as described in the Appendix.

3.3 Recovering the Rotation
We recover the small-angles rotation matrix between two
model images directly from the tensor, under the assump-
tion that the principal point is in the center of the image
and that the focal length is equal to the width of the image.
This assumptions proved to be sufficient for our method to
recover a reasonable approximation to the correct rotation
matrix (one can use either 7 or) depending on whether
two or three model views are used).

Ω

Ω

Ω

X

j

j j

j j

Y

j

j j

j j

Z

j

j j

j j

K

K

K

= +
−

�

�
���

�

�
���

=
−

+
−

�

�
���

�

�
���

= +
−

�

�
���

�

�
���

det

det

det

7
7 7
7 7

7
7 7
7 7

7
7 7
7 7

2
3

2
3

3
2

3
3

2
2

1
3

2
3

3
2

3
3

2
2

1
2

2
3

3
2

3
3

2
2

K

j

j j

j j
= +

−

�

�
���

�

�
���

det
7

7 7
7 7

2
2

2
3

3
2

3
3

2
2

, (7)

where 7 2
2j stands for 7 7 72

12
2
22

2
32, ,4 9 , etc., and the vector

Ω = (ΩX, ΩY, ΩZ)Á is the rotation axis, and the magnitude of
the vector is the magnitude of the rotation around this axis.
Large angles can be recovered by iteratively computing

7 7i
jk

j
l

i
lkn n n

A
() () ()+

=
1

, where Aj
l

i
lkn n() ()

,7 are the recovered

rotation matrix in the previous iteration and the previous
tensor, respectively. This method was first presented in [39]
for the purpose of video stabilization.

3.4 Reprojection Process
The reprojection process is performed every time we wish
to generate a novel view. First, we compute the new tensor,
of the first two model images and the novel view and, then,
use (4),

p s pi
j i

jk kµ7 ≅ ′′

to obtain the coordinates of the point in the novel view,
which is a set of four equations with three unknowns (since
p′′ = [ux, uy, u]T is 2D homogeneous coordinate) which we
solve in a least-square manner.

To overcome the forward mapping problem, we split the
problem into smaller backward mapping tasks as follows:
We map rectangles of size n × n pixels in the source images
to quadrilaterals in the target image and then compute the
backward mapping from the destination to the source im-
age [56] as can be seen if Fig. 4. This method gives a nice
trade-off between speed and quality by changing the size of
the rectangle. Fig. 5 demonstrates the quality of the results
for n = 1, 2, 5, 10.

 (a) (b)

Fig. 4. Forward mapping is decomposed into smaller backward map-
ping problems. The corners of a rectangle in the source image are
mapped to a quadrilateral in the destination image and a backward
map is computed for all the pixels in the quadrilateral. (a) Source im-
ages. (b) Destination image.

AVIDAN AND SHASHUA: NOVEL VIEW SYNTHESIS BY CASCADING TRILINEAR TENSORS 299

 (a) (b)

 (c) (d)

Fig. 5. Performing forward mapping with rectangles of size n × n pixels.
The larger n is, the faster the reprojection performs. See text for more
details. (a) n = 1, (b) n = 2, (c) n = 5, (d) n = 10.

3.5 Handling Occlusions
The image-based rendering algorithm described above does
not handle visibility issues, i.e., the surface is assumed
transparent. It is possible to use a simple “projective Z-
buffering” procedure for enforcing the constraint that the
surface is opaque (cf. [30], [38], [46]). If two pixels are re-
projected onto the same cell, we simply choose the one
close to the epipole in image 1 corresponding to the projec-
tion of the new center of projection onto image 1. The
epipolar points can be recovered linearly from the tensor
7 i

jk [47]. Note that we recover the epipolar points only for
resolving visibility problems, not for reprojection, thus, in-
accuracy in the epipoles would not affect the accuracy of
reprojection. It is also important to note that the “projective
Z-buffering” is not always guaranteed to correctly resolve

visibility problems, as a more rigorous treatment is needed
for the general case [29], nevertheless, the procedure is
fairly robust in practice.

4 EXPERIMENTS

4.1 Capturing the Images
In the examples below, we followed the following guide-
lines: The two images were taken with a single camera that
was moving a few centimeters between shots. The motion
of the camera is designed to avoid creating occluded areas
between the images. The object is placed at about 50 cm
from the camera and fills most of the viewing area. We
found that short base-line between the images greatly en-
hances the quality of the correspondence and that our
method is robust enough to generate synthesized images
that are far away from the original viewing cone. Lighting
conditions are normal and include either daylight or even
fluorescent light. The camera types used varied from the
standard indy-cam to scanned images from a 35mm camera.

4.2 Experimental Results With Real Images
The tensor-based rendering method was implemented on
real images of both artificial and natural objects. In each
example, a “movie” was created by specifying a set of key
frames, each by a rotation and translation of the virtual
camera from one of the model images. The parameters of
rotation and translation were then linearly interpolated (not
the images, only the user-specified parameters) to the de-
sired number of frames. Also, we handled visibility prob-
lems, to obtain better results. In all the cases presented, we
assumed the principal point of the camera to be at the cen-
ter of the image and the focal length to be the width of the
image. In the first example, two images of an African statue
(260 × 480 pixels each) were captured using a standard
indy-cam without calibration procedure or controlled light.
The object is about 10 cm in height and was placed some 30 cm
in front of the camera. We ran the preprocessing stage,
which takes about 30 seconds on an SGI Indy machine, and
then defined a set of key frames by moving the virtual cam-
era in 3D space. Next, we interpolated between the pa-
rameters of the key frames to obtain the parameters for the
entire “movie.” We computed the novel trilinear tensor for
each novel image and then reprojected the virtual image.
The reprojection process takes about 5 seconds with rectan-
gle size of 1 × 1 pixels for the warping stage. Some of the
generated images can be seen in Fig. 6. We repeated the
process with two human subjects. For the first subject, the
camera was at about 80 cm from the subject and the size of
the captured images was 576 × 576 We repeated the same
procedure described for the African statue and present the
result in Fig. 7. For the second subject, the camera was at
about 50 cm from the person and the captured images were
of size 230 × 288. The results can be seen in Fig 8. In another
test, we have downloaded a pair of images from the
CMU/VASC image database (the images courtesy of Hoff
and Ahuja [28]). No information about the camera internal
or external parameters is known or used. The images are
512 × 512 pixels each and an example for a synthesized im-
age can be seen in Fig. 9.

300 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

 (a) (b) (c) (d)

 (e) (f) (g) (h)

Fig. 6. An example of image synthesis using optic-flow and a tensor. The original images are (a) and (e), the rest of the images are taken from the
generated movie. They should be seen left to right, top to bottom.

(a) (b) (c)

(d) (e) (f)

Fig. 7. The original two images (a) and (d). Novel views of the face (b), (c), (e), (f).

AVIDAN AND SHASHUA: NOVEL VIEW SYNTHESIS BY CASCADING TRILINEAR TENSORS 301

We have also measured the sensitivity of the reprojection
process to errors in correspondence. This was done by
adding increasing levels of noise to the correspondence
values. The noise was added independently to the x and y-
components of the correspondence and was uniformly dis-
tributed in the range [−n, n], where n goes up to five pixels.
Fig. 11 presents the results—from which we notice a grace-
ful degradation of the rendering process despite the fact the
distance between the model views is very small. In other
words, the robustness of the synthesis method allows us to
extrapolate considerably from the original viewing cone.

We extended our approach to handle dynamic scene as
well by treating it as a series of static scenes in time. A pair
of synchronized, stationary cameras captured a flexible ob-
ject (in this case, facial expressions). Since the cameras are
stationary, we compute the seed tensor only once. For every
pair of images, we compute dense correspondence, gener-
ate a novel tensor from the seed tensor and the user speci-
fied parameters, and reproject the novel view. The result is
a fly-through around a “talking head,” as can be seen in
Fig. 10. Notice that all the examples contain a considerable
degree of extrapolation (i.e., views that are outside the
viewing cone of the original two model views).

5 SUMMARY

We have shown the use of the trilinear tensor as a warping
function for the purpose of novel view synthesis. The core

of this work is the derivation of a tensor operator that de-
scribes the transformation from a given tensor of three
views to a novel tensor of a new configuration of three
views. During the entire process, no 3D model of the scene
is necessary nor is it necessary to recover camera geometry
or epipolar geometry of the model images. In addition, the
synthesis process can start with only two model views and
their fundamental matrix, but the later steps follow the
trilinear tensor machinery which ensures lack of singular
configurations and provide a natural driving mode. Ex-
periments have demonstrated the ability to synthesize new
images from two closely-spaced model images, where the
viewing range of the synthesized images far exceed the
viewing cone of the model images (extrapolation of view-
ing position, rather than interpolation).

The limitations of the technique are mainly concerned
with the correspondence problem. The fact that our method
accepts closely spaced images (typically, the cameras are
few centimeters apart) greatly enhances the quality of the
optical-flow procedure. In addition, we are currently inves-
tigating methods for automatically extracting the focal
length directly from the trilinear tensor, thus removing the
need to assume some predefined value for the focal length.

Indeed, the view synthesis problem can be solved by means
of 3D reconstruction using the epipolar geometry of a pair of
images. Basically, there are two issues at hand. First, why use
the tensor formulation rather than Fundamental matrices?
Second, why not use depth maps as an intermediate step?

 (a) (b) (c)

Fig. 8. The original images (a), (b) are used to synthesize the novel view (c).

 (a) (b) (c)

Fig. 9. The original images (a), (b) are used to synthesize the novel view (c).

302 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

Regarding the use of Tensors, the tensor formulation on one
hand does not suffer from singular motions and generalizes
the formulation of the Fundamental matrix (see Section 1.2
on the tensor embedding of the Fundamental matrix). On
the other hand, the collection of Fundamental matrices does
not always contain the full representation of the 3D-from-
2D geometry (like when the camera centers are collinear
[27]), and preliminary work on degeneracy indicates that
the family of “critical (ambiguous) surfaces” is at most a
curve or a finite set of points under the tensor formulation,

compared to ambiguous surfaces under Fundamental ma-
trix formulation [45]. Furthermore, as was mentioned in the
Introduction, the tensor formulation satisfies the three re-
quirements necessary for an on-line synthesis system, such
as intuitively simple “driving mode” and singular-free mo-
tions. Therefore, even though the complete story of the 3D-
from-2D geometry is still unfolding, the tensor formulation
appears as a viable alternative for representing 3D ma-
nipulations from collection of views.

(a-1) (b-1) (c-1)

(a-2) (b-2) (c-2)

(a-3) (b-3) (c-3)

(a-4) (b-4) (c-4)

Fig. 10. The left two columns show some of the facial expression captured with the stationary pair of cameras. The rightmost column shows some
virtual views. The preprocess stage of computing the seed tensor was done only once for the upper pair of images. For each additional pair, we
start from the same seed tensor.

AVIDAN AND SHASHUA: NOVEL VIEW SYNTHESIS BY CASCADING TRILINEAR TENSORS 303

Regarding the use of depth maps, we simply show that
one can do without them and, moreover, one can do with-
out explicitly recovering the camera translation between
the model views (which is the most error sensitive com-
ponent of motion estimation). Thus, having most of the
unnecessary elements (camera translation, depth maps)
remain implicit, we stand a better chance of focusing only
on the relevant elements. We have included a sensitivity
test to demonstrate the robustness of the rendering proc-
ess in the presence of added noise to the image corre-
spondences. The results show that, even with the small
baseline we have worked with, the process degrades very
gracefully.

In addition, we believe that, by working in the image
domain and avoiding depth maps, one can extend cur-

rent 2D image morphing techniques with the aid of the
trilinear tensor. An example for such a combination ap-
peared in [2], where we combine nonrigid facial trans-
formations using classic view morphing techniques with
our trilinear-tensor approach to handle rigid transfor-
mations. For example, we show in Fig. 12 an example of
combining rigid and nonrigid transformations in a single
framework.

Finally, we are currently working [6] on an extension of
the method to handle an arbitrary number of images by
constructing a consistent camera trajectory between all the
model images and using the recovered tensor parameters
for view synthesis.

 (a) (b) (c)

Fig. 11. We measure the sensitivity of the reprojection process to errors in the correspondence by adding increasing levels of noise to the corre-
spondence values. (a), (b), and (c) show an extrapolated view of the statue with noise levels of 0, 1.5, and 5 pixels, respectively.

Fig. 12. Reprint from [2]. On the left are the four input images. For every expression, we have a pair of images from different view points. We com-
bine classical techniques of image morphing to handle the nonrigid transformation of the model and our tensor-based approach to generate novel
view points.

304 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

APPENDIX A.1
THE TRILINEAR TENSOR OF THREE IMAGES

Consider a single point x in space projected onto three
views with camera matrices [I; 0], A, B with image points
p, p′, p′′, respectively. Note that x = (x, y, 1, λ) for some sca-
lar λ. Consider A = [A; v′], where A is the 3 × 3 principle
minor of A and v′ is the fourth column of A. Consider p′ >
Ax and eliminate the scale factor:

′ = =
+ ′

+ ′
x

x

x

a p v

a x v

a

a
1

3

1 1

3 3

T

T

T

T

λ
λ

 (8)

′ = =
+ ′

+ ′
y

x

x

a p v

a x v

a

a
2

3

1 2

3 3

T

T

T

T

λ
λ

, (9)

where ai is the ith row of A. These two equations can be
written more compactly as follows:

λ ′ ′ + ′ =s v sT TAp 0 (10)

λ ′′ ′ + ′′ =s v sT TAp 0 , (11)

where s′ = (−1, 0, x) and s′′ = (0, −1, y). Yet, in a more com-
pact form, consider s′, s′′ as row vectors of the matrix

s x
yj

µ = − ′
− ′

�
!

"
$#

1 0
0 1 ,

where j = 1, 2, 3 and µ = 1, 2. Therefore, the compact form
we obtain is described below:

λ µ µs v p s aj
j i

j i
j′ + = 0 , (12)

where µ is a free index (i.e., we obtain one equation per
range of µ).

Similarly, let B = [B; v′′] for the third view p′′ > Bx and
let rk

ρ be the matrix,

r x
yk

ρ = − ′′
− ′′

�
!

"
$#

1 0
0 1 .

And, likewise,

λ ρ ρr v p r bk
k i

k i
k′′ + = 0, (13)

where ρ = 1, 2 is a free index. We can eliminate λ from (12)
and (13) and obtain a new equation:

s v p r b r v p s aj
j i

k i
k

k
k i

j i
jµ ρ ρ µ′ − ′′ =4 94 9 4 94 9 0 ,

and, after grouping the common terms:

p s r v b v ai
j k

k
i
k k

i
jµ ρ ′ − ′′ =4 9 0 ,

and the term in parentheses is a trivalent tensor we call the
trilinear tensor:

7 i
jk j

i
k k

i
jv b v a i j k= ′ − ′′ =. , , , ,1 2 3 . (14)

And the tensor equations (the 4 trilinearities) are:

p s ri
j k i

jkµ ρ7 = 0 . (15)

Hence, we have four trilinear equations (note that µ, ρ = 1, 2).
In more explicit form, these trilinearities look like:

′′ − ′′ ′ + ′ − =

′′ − ′′ ′ + ′ − =

′′ − ′′ ′ + ′ − =

′′ − ′′ ′ + ′ − =

x p x x p x p p

y p y x p x p p

x p x y p y p p

y p y y p y p p

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

i
i

7 7 7 7

7 7 7 7

7 7 7 7

7 7 7 7

13 33 31 11

13 33 32 12

23 33 31 21

23 33 32 22

0

0

0

0

,

,

,

.

Since every corresponding triplet p, p′, p′′ contributes
four linearly independent equations, then seven corre-
sponding points across the three views uniquely determine
(up to scale) the tensor 7 i

jk . Equation (14) was first intro-
duced in [42] and the tensor derivation leading to (15) was
first introduced in [43].

The trilinear tensor has been well-known in disguise in
the context of Euclidean line correspondences and was not
identified at the time as a tensor but as a collection of three
matrices [48], [49], [54] (a particular contraction of the ten-
sor known as correlation contraction). The link between the
two and the generalization to projective space was identi-
fied later by Hartley [22], [24]. Additional work in this area
can be found in [47], [17], [53], [26], [44], [3], [4], [50].

A.2 Tensor Embedding of the Fundamental Matrix
We return to (14) and consider the case where the third im-
age coincide with the second. The camera matrices for both
images are A = [A; v′] and this special tensor can be written
as:

)i
jk j

i
k k

i
jv a v a= ′ − ′ , (16)

which is composed of the elements of the fundamental ma-
trix, as the following lemma shows.

LEMMA 1. The two-view-tensor)i
jk is composed of the elements

of the fundamental matrix:

)i
jk ljk

liF= e

where Fli is the fundamental matrix and e
ljk is the cross-

product tensor.

PROOF. We consider (14) with)i
jk ljk

liF= e to derive the fol-
lowing equalities:

p s r

p s r F

i
j k i

jk

i
j k

ljk
li

) =

=e4 9
p s r Fi j k

ljk

p

li

l

e4 9
′

=
124 34

0 . (17)

o

The two-view-tensor is an admissible tensor that em-
bodies the fundamental matrix in a three-image-
framework. The algorithm that works with the trilinear
tensor of three views can work with this tensor as well.
Further details can be found in [5].

ACKNOWLEDGMENTS

An on-line demo can be found on the World Wide Web at
http://www.cs.huji.ac.il/labs/vision/demos/demo.html. Amnon Shashua
would like to acknowledge US-IS BSF contract 94-00120
and the European ACTS project AC074.

AVIDAN AND SHASHUA: NOVEL VIEW SYNTHESIS BY CASCADING TRILINEAR TENSORS 305

REFERENCES

[1]� E.H. Adelson and J.R. Bergen, “The Plenoptic Function and the
Elements of Early Vision,” Computational Models of Visual Process-
ing M. Landy and J.A. Movshon, eds., Chapter 1. Cambridge,
Mass.: MIT Press, 1991.

[2]� S. Avidan, T. Evgeniou, A. Shashua, and T. Poggio, “Image-Based
View Synthesis By Combining Trilinear Tensors and Learning
Techniques,” VRST, 1997.

[3]� S. Avidan and A. Shashua, “Tensorial Transfer: On the Represen-
tation of n > 3 Views of a 3D Scene,” Proc. ARPA Image Under-
standing Workshop, 1996.

[4]� S. Avidan and A. Shashua, “Novel View Synthesis in Tensor Space,”
Proc. IEEE Conf. Computer Vision and Pattern Recognition, 1997.

[5]� S. Avidan and A. Shashua, “Unifying Two-View and Three-View
Geometry,” Proc. ARPA Image Understanding Workshop, 1997.

[6]� S. Avidan and A. Shashua, “Threading Fundamental Matrices,”
Proc. European Conf. Computer Vision, June 1998.

[7]� E.B. Barrett, P.M. Payton, and G. Gheen, “Robust Algebraic In-
variant Methods with Applications in Geometry and Imaging,”
Proc. SPIE Remote Sensing, July 1995.

[8]� T. Beier and S. Neely, “Feature-Based Image Metamorphosis,”
Proc. SIGGRAPH, 1992.

[9]� J.R. Bergen, P. Anandan, K.J. Hanna, and R. Hingorani, “Hierar-
chical Model-Based Motion Estimation,” Proc. European Conf.
Computer Vision, 1992.

[10]� D. Beymer, A. Shashua, and T. Poggio, “Example Based Image
Analysis and Synthesis,” Technical Report A.I. Memo No. 1431,
Artificial Intelligence Laboratory, Massachusetts Inst. of Technol-
ogy, 1993.

[11]� P.J. Burt and E.H. Adelson, “The Laplacian Pyramid as a Compact
Image Code,” IEEE Trans. Comm., vol. 31, pp. 532-540, 1983.

[12]� S.E. Chen and L. Williams, “View Interpolation for Image Synthe-
sis,” Proc. SIGGRAPH, 1993.

[13]� S.E. Chen, “QuickTimeVR—An Image-Based Approach to Virtual
Environment Navigation,” Proc. SIGGRAPH, 1995.

[14]� T. Evgeniou, “Image-Based Rendering Using Algebraic Techniques,”
master’s thesis, Massachusetts Inst. of Technology, June 1996.

[15]� O. Faugeras and T. Papadopoulo, “A Nonlinear Method for Esti-
mation the Projective Geometry of 3 Views,” Proc. Int’l Conf. Com-
puter Vision, 1998.

[16]� O.D. Faugeras, “What Can Be Seen in Three Dimensions with an
Uncalibrated Stereo Rig?” Proc. European Conf. Computer Vision,
1992.

[17]� O.D. Faugeras and B. Mourrain, “On the Geometry and Algebra
of the Point and Line Correspondences Between N Images,” Proc.
Int’l Conf. Computer Vision, 1995.

[18]� O.D. Faugeras and L. Robert, “What Can Two Images Tell Us
About a Third One?” Proc. European Conf. Computer Vision,
1994.

[19]� S.J. Gortler, R. Grzeszczuk, R. Szeliski, and M. Cohen, “The Lumi-
graph,” Proc. SIGGRAPH, pp. 43-54, 1996.

[20]� W.E.L. Grimson, “Why Stereo Vision Is Not Always About 3D
Reconstruction,” Technical Report A.I. Memo No. 1435, Artifi-
cial Intelligence Laboratory, Massachusetts Inst. of Technology,
1993.

[21]� C. Harris and M. Stephens, “A Combined Corner and Edge De-
tector,” Proc. Fourth Alvey Vision Conf. Intelligence, pp. 189-192,
1988.

[22]� R. Hartley, “Lines and Points in Three Views—A Unified Ap-
proach,” Proc. ARPA Image Understanding Workshop, 1994.

[23]� R. Hartley, “In Defence of the 8-Point Algorithm,” Proc. Int’l Conf.
Computer Vision, 1995.

[24]� R. Hartley, “A Linear Method for Reconstruction from Lines and
Points,” Proc. Int’l Conf. Computer Vision, 1995.

[25]� R. Hartley, “Minimizing Algebraic Error in Geometric Estimation
Problems,” Proc. Int’l Conf. Computer Vision, 1998.

[26]� A. Heyden, “Reconstruction from Image Sequences By Means of
Relative Depths,” Proc. Int’l Conf. Computer Vision, 1995.

[27]� A. Heyden and K. Astrom, “Algebraic Varieties in Multiple View
Geometry,” Proc. European Conf. Computer Vision, Apr. 1996.

[28]� W. Hoff and N. Ahuja, “Surfaces from Stereo: Integrating Feature
Matching, Disparity Estimation, and Contour Detection,” IEEE
Trans. Pattern Analysis and Machine Intelligence, vol. 11, no. 2, pp. 121-
136, Feb. 1989.

[29]� S. Laveau and O. Faugeras, “Oriented Projective Geometry for
Computer Vision,” Proc. European Conf. Computer Vision, 1996.

[30]� S. Laveau and O.D. Faugeras, “3-D Scene Representation as a
Collection of Images,” Proc. Int’l Conf. Pattern Recognition,
1994.

[31]� M. Levoy and P. Hanrahan, “Light Field Rendering,” Proc. SIG-
GRAPH, pp. 31-42, 1996.

[32]� B.D. Lucas and T. Kanade, “An Iterative Image Registration Tech-
nique with an Application to Stereo Vision,” Proc. IJCAI, pp. 674-
679, Vancouver, Canada, 1981.

[33]� L. McMillan and G. Bishop, “Plenoptic Modeling: An Image-
Based Rendering System,” Proc. SIGGRAPH, 1995.

[34]� A. Zisserman P.A. Beardsley, and D.W. Murray, “Sequential Up-
dating of Projective and Affine Structure from Motion,” Int’l J.
Computer Vision, vol. 23, no. 3, pp. 235-260, 1997.

[35]� S. Peleg and J. Herman, “Panoramic Mosaic by Manifold Projec-
tion,” Proc. IEEE Conf. Computer Vision and Pattern Recognition,
1997.

[36]� P.H.S. Torr A. Zisserman, and D. Murray, “Motion Clustering
Using the Trilinear Constraint Over Three Views,” Proc. Workshop
Geometrical Modeling and Invariants for Computer Vision, 1995.

[37]� T. Poggio and R. Brunelli, “A Novel Approach to Graphics,”
Technical Report A.I. Memo No. 1354, Artificial Intelligence Labo-
ratory, Massachusetts Inst. of Technology, 1992.

[38]� M. Irani, R. Kumar, P. Anandan, J. Bergen, and K. Hanna, “Repre-
sentation of Scenes from Collections of Images,” Proc. IEEE Work-
shop Representation of Visual Scenes, 1995.

[39]� B. Rousso, S. Avidan, A. Shashua, and S. Peleg, “Robust Recovery
of Camera Rotation from Three Frames,” Proc. IEEE Conf. Com-
puter Vision and Pattern Recognition, 1996.

[40]� S.M. Seitz and C.R. Dyer, “Physically-Valid View Synthesis By
Image Interpolation,” Proc. IEEE Workshop Representation of Visual
Scenes, 1995.

[41]� S.M. Seitz and C.R. Dyer, “View Morphing,” Proc. SIGGRAPH, pp. 21-
30, 1996.

[42]� A. Shashua, “Algebraic Functions for Recognition,” IEEE Trans. Pat-
tern Analysis and Machine Intelligence, vol. 17, no. 8, pp. 779-789, Aug.
1995.

[43]� A. Shashua and P. Anandan, “The Generalized Trilinear Con-
straints and the Uncertainty Tensor,” Proc. ARPA Image Under-
standing Workshop, 1996.

[44]� A. Shashua and S. Avidan, “The Rank4 Constraint in Multiple
View Geometry,” Proc. European Conf. Computer Vision, 1996. Also
in CIS report 9520, Technion, Nov. 1995.

[45]� A. Shashua and S.J. Maybank, “Degenerate n Point Configura-
tions of Three Views: Do Critical Surfaces Exist?” Technical Re-
port TR 96-19, Hebrew Univ. of Jerusalem, Nov. 1996.

[46]� A. Shashua and S. Toelg, “The Quadric Reference Surface: Appli-
cations in Registering Views of Complex 3D Objects,” Proc. Euro-
pean Conf. Computer Vision, 1994.

[47]� A. Shashua and M. Werman, “On the Trilinear Tensor of Three
Perspective Views and Its Underlying Geometry,” Proc. Int’l Conf.
Computer Vision, 1995.

[48]� M.E. Spetsakis and J. Aloimonos, “Structure from Motion Using Line
Correspondences,” Int’l J. Computer Vision, vol. 4, no. 3, pp. 171-183,
1990.

[49]� M.E. Spetsakis and J. Aloimonos, “A Unified Theory of Struc-
ture from Motion,” Proc. ARPA Image Understanding Workshop,
1990.

[50]� G. Stein and A. Shashua, “Model Based Brightness Constraints:
On Direct Estimation of Structure,” Proc. IEEE Conf. Computer Vi-
sion and Pattern Recognition, 1997.

[51]� R. Szeliski and S.B. Kang, “Direct Methods for Visual Scene Re-
construction,” Proc. IEEE Workshop Representation of Visual Scenes,
1995.

[52]� P.H.S. Torr and A. Zisserman, “Robust Parametrization and Com-
putation of the Trifocal Tensor,” Image and Vision Computing, vol. 15,
pp. 591-607, 1997.

[53]� B. Triggs, “Matching Constraints and the Joint Image,” Proc. Int’l
Conf. Computer Vision, 1995.

[54]� J. Weng, T.S. Huang, and N. Ahuja, “Motion and Structure from
Line Correspondences: Closed Form Solution, Uniqueness and
Optimization,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 14, no. 3, Mar. 1992.

[55]� T. Werner, R.D. Hersch, and V. Hlavac, “Rendering Real-World
Objects Using View Interpolation,” Proc. Int’l Conf. Computer Vision,
1995.

[56]� G. Wolberg, Digital Image Warping. Los Alamitos, Calif.: IEEE CS
Press, 1992.

306 IEEE TRANSACTIONS ON VISUALIZATION AND COMPUTER GRAPHICS, VOL. 4, NO. 4, OCTOBER-DECEMBER 1998

Shai Avidan received the BSc degree in
mathematics and computer science from Bar-
Ilan University, Ramat-Gan, Israel, in 1993. Cur-
rently, he is a PhD candidate at the Hebrew Uni-
versity, where his research interests are in com-
puter vision and computer graphics. In addition,
he has been working for the past 10 years in
the industry in the fields of CAD, GIS, and
photogrammetry.

Amnon Shashua received the BSc degree in
mathematics and computer science from Tel-Aviv
University, Tel-Aviv, Israel, in 1986; the MSc de-
gree in mathematics and computer science from
the Weizmann Institute of Science, Rehovot,
Israel, in 1989; and the PhD degree in computa-
tional neuroscience, working at the Artificial In-
telligence Laboratory, from the Massachusetts
Institute of Technology, in 1993.Dr. Shashua is a
senior lecturer at the Institute of Computer Sci-
ence, The Hebrew University of Jerusalem,

His research interests are in computer vision and computational
modeling of human vision. His previous work includes early visual
processing of saliency and grouping mechanisms, visual recognition,
image synthesis for animation and graphics, and theory of computer
vision in the areas of three-dimensional processing from a collection of
two-dimensional views.

