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Abstract

We present a new method for synthesizing novel views of
a 3D scene from few model images in full correspondence.
The core of this work is the derivation of a tensorial opera-
tor that describes the transformation from a given tensor of
three views to a novel tensor of a new configuration of three
views. By repeated application of the operator on a seed
tensor with a sequence of desired virtual camera positions
we obtain a chain of warping functions (tensors) from the
set of model images to create the desired virtual views.

1. Introduction

This paper addresses the problem of synthesizing a novel
image, from an arbitrary viewing position, given a small
number of model images (registered by means of an optic-
flow engine) of the 3D scene.

The most significant aspect of our approach is the ability
to synthesize images that are far away from the viewing po-
sitions of the sample model images without ever computing
explicitly any 3D information about the scene. This prop-
erty provides a multi-image representation of the 3D object
using a minimal number of images. In our experiments, for
example, two closely spaced frontal images of a face are
sufficient for generating photo-realistic images from view-
points within a 60 degrees cone of visual angle – further
extrapolation is possible but the image quality degrades.

We propose a new view-synthesis method that makes
use of the recent development of multi-linear matching con-
straints, known as trilinearities, that were first introduced in
[24]. The trilinearities provide a general (not subject to sin-
gular camera configurations) warping function from model�An on-line demo can be found on the World-Wide-Web in the fol-
lowing address http://www.cs.huji.ac.il/labs/vision/demos/demo.html. A.S
would like to acknowledge US-IS BSF contract 94-00120 and the Euro-
pean ACTS project AC074.

images to novel synthesized images governed directly by
the camera parameters of the virtual camera. Therefore, we
provide a true multi-image system for view synthesis that
does not require a companion depth map, nor the full recon-
struction of camera parameters among the model cameras,
yet is general and robust.

The core of this work is the derivation of a tensorial op-
erator that describes the transformation from a given tensor
of three views to a novel tensor of a new configuration of
three views. Thus, by repeated application of the operator
on aseedtensor with a sequence of desired virtual camera
positions (translation and orientation) we obtain a chain of
warping functions (tensors) from the set of model images
(from which the seed tensor was computed) to create the
desired virtual views. We also show that the process can
start with two model views by having the “seed” tensor be
comprised of the elements of the fundamental matrix of the
model views.

1.1. Novelty Over Previous Work

The notion of image-based rendering systems is gain-
ing momentum in both the computer graphics and com-
puter vision communities. The general idea is to avoid the
computational-intensive process of acquiring a 3D model
followed by rendering, and instead to use a number of
model images of the object (or scene) as a representation
from which novel views can be synthesizeddirectly by
means of image warping.

The work in this area can be roughly divided into three
classes: (i) image interpolation, (ii) Off-line (Mosaic-based)
synthesis, and (iii) On-line synthesis. The first class, im-
age interpolation, is designed to create “in-between” im-
ages among two or more model images. This includes
image morphing [5], direct interpolation from image-flows
(“multi-dimensional morphing”) [6, 21], image interpola-
tion using 3D models instead of image-flow [7], and “phys-
ically correct” image interpolation [23, 31]. All but the last



two references do not guarantee to produce physically cor-
rect images, and all cannot extrapolate from the set of input
images — that is, create novel viewing positions that are
outside of the viewing cone of the model images.

Instead of flow-field interpolation among the model im-
ages, it is possible to interpolate directly over the plenoptic
function [1] — a function which represents the amount of
light emitted at each point in space as a function of direc-
tion. Levoy et al. [18] and Gortler et al. [12] interpolate
between a dense set of several thousands of example im-
ages to reconstruct a reduced plenoptic function (under an
occlusion-free world assumption). Hence, they consider-
ably increase the number of example images to avoid com-
puting optical flow between the model images.

In the second class, the off-line (mosaic-based) syn-
thesis, the synthesis is not created at run time — instead
many overlapping images of the scene are taken and then
“stitched” together. The simplest stitching occurs when the
camera motion includes only rotation — in which case the
transformation between the views is parametric and does
not include any 3D shape (the transformation being a 2D
projective transformation, a homography). This was clev-
erly done by [13, 8] in what is known as “QuickTime VR”.
Szeliski and Kang [29] create high-resolution mosaics from
low-resolution video streams, and Peleg and Herman [20]
relax the fixed camera constraint by introducing the projec-
tion manifold. A drawback of this approaches is that one
cannot correctly simulate translational camera motion from
the set of model images.

The major limitations of the aforementioned techniques
is that a relatively large number of model images is required
to represent an object. The third class, on-line synthesis,
along the lines of this paper reduces the number of acquired
(model) images by exploiting the 3D-from-2D geometry for
deriving an on-line warping function from a set of model
images to create novel views on-the-fly based on user speci-
fication of the virtual camera position. Laveau and Faugeras
[17] were the first to use the epipolar constraint for view
synthesis, allowing them to extrapolate, as well as inter-
polate, between the example images. Epipolar constraints,
however, are subject to singularities that arise under cer-
tain camera motions (like when the virtual camera center is
collinear with the centers of the model cameras) and the re-
lation between translational and rotational parameters ofthe
virtual camera and the epipolar constraint is somewhat indi-
rect and hence requires the specification of matching points.
The singular camera motions can be relaxed by using the
depth map of the environment. McMillan and Bishop [19]
use a full depth map (3D reconstruction of the camera mo-
tion and the environment) together with the epipolar con-
straint to provide a direct connection between the virtual
camera motion and the reprojection engine. Depth maps are
easily provided for synthetic environments, whereas for real

scenes the process is fragile especially under small base-line
situations that arise due to the requirement of dense corre-
spondence between the model images/mosaics [14]. The
challenges facing an “optimal” on-line synthesis approach
are therefore:

Implicit Scene Modeling:to reduce as much as possible the
computational steps from the input correspondence field
among the model images to useful algebraic structures that
would suffice for generating new views. For example, it
is likely that the base-line between model views would be
very small in order to facilitate the correspondence process,
thus computing the full set of camera parameters (or, equiv-
alently, the depth map of the scene) is not desirable as it
may produce unstable estimates, especially for the transla-
tional component of camera motion (the epipoles). It is thus
desirable to have the camera parameters remain as much as
possible implicit in the process.

Non-singular Configurations:to rely on warping functions
that are free from singularities under camera motion. For
example, the use of the fundamental matrix, or concatena-
tion of fundamental matrices, for deriving a warping func-
tion based on epipolar line intersection (cf. [11]) is undesir-
able on this account due to singularities that arise when the
camera centers are collinear.

Driving Mode: the specification of the virtual camera posi-
tion should be intuitively simple for the user. For example,
rotation and translation of the camera from its current posi-
tion is prevalent among most 3D viewers.

None of the existing approaches for on-line synthesis
satisfy all three requirements. For example, [17] satisfy
the first requirement at the cost of complicating the driving
mode by specifying control points; using depth maps pro-
vide an intuitive driving mode and lack of singularities but
does not satisfy the implicit scene modeling requirement.

We propose an approach relying on concatenating trilin-
ear warping functions that leave implicit the scene and the
camera parameters, does not suffer from singularities, and
is governed by the prevalent driving mode used by most 3D
viewers.

2 View Synthesis in Tensor Space

The view synthesis approach is based on the following
paradigm. Three views satisfy certain matching constraints
of a trilinear form, represented by a tensor. Thus, given two
views in correspondence and a tensor, the corresponding
third view can be generated uniquely by means of a warp-
ing function, as described below in more detail. We then
derive a “driver” function that governs the change in tensor
coefficients as a result of moving the virtual camera.



2.1 The Trilinear Warping Function

The trilinear tensor concatenates together the camera
transformation matrices (camera locations) across three
views, as follows. LetP be a point in 3D projective space
projecting ontop; p0; p00 in three views ;  0;  00 respec-
tively, represented by the two dimensional projective space.
The relationship between the 3D and the 2D spaces is rep-
resented by the3 � 4 matrices,[I; 0], [A; v0] and [B; v00],
i.e., p = [I; 0]Pp0 �= [A; v0]Pp00 �= [B; v00]P
WhereI is the identity matrix andA andB are homog-
raphy matrices due to some plane in space from to  0
and 00, respectively (in particular, rotation is the homogra-
phy matrix due to the plane at infinity in case the cameras
are calibrated). The vectorsv0 andv00 are known as epipo-
lar points (represent the translational component of camera
motion when the cameras are internally calibrated).

We may adopt the convention thatp = (x; y; 1)>,p0 = (x0; y0; 1)>, p00 = (x00; y00; 1)> andP = [x; y; 1; �].
The coordinates(x; y); (x0y0); (x00; y00) are matching points
across the three images.

The trilinear tensor is an array of 27 entries:�jki = v0jbki � v00kaji : i; j; k = 1; 2; 3 (1)

where superscripts denote contravariant indices (represent-
ing points in the 2D plane, likev0) and subscripts denote
covariant indices (representing lines in the 2D plane, like
the rows ofA). Thus,aki is the element of the k' th row and
i' th column ofA, andv0k is the k' th element ofv0 (see Ap-
pendix A on tensorial notations). The tensor�jki forms the
set of coefficients of certain trilinear forms that vanish on
any corresponding tripletp; p0; p00 (i.e., functions of views
that are invariant to object structure).pis�j r�k�jki = 0 (2)

wheres�j are any two lines (s1j and s2j ) intersecting atp0,
andr�k are any two lines intersecting atp00 (see Fig. 1).

Since each of the free indices�; � is in the range 1,2,
we have 4 trilinear equations which are unique up to linear
combinations. If we choose the canonical form wheres
andr represent vertical and horizontal lines, then the four
trilinear forms, refered to as trilinearities, are expanded as
follows:x00�13i pi � x00x0�33i pi + x0�31i pi ��11i pi = 0;y00�13i pi � y00x0�33i pi + x0�32i pi ��12i pi = 0;x00�23i pi � x00y0�33i pi + y0�31i pi ��21i pi = 0;y00�23i pi � y00y0�33i pi + y0�32i pi � �22i pi = 0:

pi
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Figure 1. Each of the four trilinear equations describes a
matching between a pointp in the first view, some lines�j
passing through the matching pointp0 in the second view
and some line liner�k passing through the matching pointp00 in the third view. In space, this constraint is a meeting
between a ray and two planes.

Since every corresponding tripletp; p0; p00 contributes
four linearly independent equations, then seven correspond-
ing points across the three views uniquely determine (up to
scale) the tensor�jki . These constraints first became promi-
nent in [24] and the underlying theory has been studied in-
tensively in [28, 15, 25, 10, 30, 16, 26].

One can readily see that given two views in full cor-
respondence and the tensor (recovered using 7 matching
points with a third view), the entire third view can be syn-
thesized by means of (forward) warping: simply, from each
trilinearity one can extract eitherx00 or y00, thus for every
matching pairp; p0 we can obtainp00 and copy the appropri-
ate brightness value (take the average from the two model
images, for example). This process is referred to as “re-
projection” in the literature. There are alternative ways of
performing reprojection, but if we would like to do it with-
out recovering first a 3D model of the scene, the trilinear
tensor generally provides the best results (see [4, 24, 27]).

We have described so far the implementation of the re-
projection paradigm via the trilinear equations. In other
words, given two model views and a tensor, the third view
is uniquely determined and can be synthesized by means
of a warping function applied to the two model images. In
image-based rendering we would like to obtain the tensor
(the warping function) via user specification of location of
virtual camera, rather than by the specification of (at least)
seven matching points.
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Figure 2. We generate tensor< 1; 2;  >, that relates
images1; 2 with some novel image , from the seed ten-
sor< 1; 2; 3 > and the virtual camera motion parameters(R; t) from image 3 to image . Tensor< 1; 2; 3 > re-
lates images1; 2 and3 and is computed only once at the
pre-processing stage. Tensor< 1; 2;  > is computed ev-
ery time the user specifies a new(R; t). We use tensor< 1; 2;  > to render the novel image (image ) from
model images1; 2.

2.2 The basic Tensorial Operator

The basic tensorial operator describes how to modify
(transform) a tensor so as to represent a new configuration
of three cameras. We are particularly interested in the case
where only one camera has changed its position and orienta-
tion. Thus, by repeated application of the operator on a seed
tensor with a sequence of desired virtual camera positions
(translation and orientation) we obtain a chain of warping
functions (tensors) from the set of acquired images (from
which the seed tensor was computed) to create the desired
virtual views (see Fig. 2).

Going back to the tensor of views< 1; 2; 3 > described
in eqn. (1), we note that the homographiesA andB cor-
respond to an arbitrary plane, and the choice of the plane
does not change the tensor coefficients [24]. In particular,
we may select the plane at infinity, i.e.,A =M 0R0M�1 B = M 00R00M�1
whereM;M 0;M 00 are the internal parameters matrices of
the cameras andR0; R00 are the rotational components. As-
suming that the cameras are internally calibrated, i.e., thatM 0 = M 00 = M 000 = I, the tensor of threecalibrated
model views is:�jki = v0jR00ki � v00kR0ji : (3)

Note thatv0; v00 are the translational components of camera

Pre−Processing
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Recover Tensor
     <1,2,3>
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New Camera
Params:  R,t

Figure 3. View synthesis is divided into two parts. The
pre-processing stage, done only once and the actual render-
ing done for every image.

motion — now that the camera is assumed internally cali-
brated.

Consider the tensor�jki of the views< 1; 2; 3 >, and
assume the user wishes to to apply an incremental change
of position of the third image, i.e., rotate the third camera
position by the3 � 3 coordinate matrixR, and translate it
by the3� 1 translation vectort — this motion would result
to a novel view, call it view . Hence, the camera matrix
from image 1 to image is [RklR00li; v"lRkl + tk] and the
tensor
jki of the configuration of views< 1; 2;  > is:
jki = v0j(Rkl R00li)� (v00lRkl + tk)R0ji= Rkl v0jR00li �Rkl v00lR0ji � tkR0ji= Rkl �jli � tkR0ji : (4)

and we have arrived at a linear equation, which is the
tensorial operator, that generates the tensor
jki of views< 1; 2;  > from the seed tensor�jli of views< 1; 2; 3 >,
the virtual camera parametersR; t and the rotation matrixR0 between the two model images. No control points across
the views are needed, only applying the tensorial operator.
In appendix B we elaborate on how to recoverR0 directly
from the tensor�jli .

To summarize, starting from a seed tensor and dense cor-
respondence between two of the model images, then by re-
peated application of eqn. (4) based on user-specified posi-
tionR; t of the virtual camera we obtain a sequence of ten-
sors — each serving as a warping function from the model
views onto the desired novel view (see Fig. 3).



3. The Seed Tensor of Two views

Given two acquired images we can construct a special
tensor composed of the elements of the fundamental matrix
[9] that can serve as a seed tensor that starts the chain of
tensors, as follows. Consider a configuration of three views
in which views 2,3 coincide, i.e., Eq. 1 becomes:�jki = v0jaki � v0kaji (5)

where�jki is the tensor of the image triplet< 1; 2; 2 >. It
can be readily verified that the elements of�jki are com-
posed of the fundamental matrixF , and�F , and the re-
maining (nine) elements vanish:�jki = f(6�k�j)i if k = (j + 1)mod3�jki = �f(6�k�j)i if j = (k + 1)mod3�jki = 0 if j = k (6)

wherefji means the element in thej-th row and thei-th
column of the fundamental matrixF . As shown in [3], the
rank of
jki is 2 whereas the rank of the tensor of three dis-
tinct views is 4 — but otherwise all other properties remain
and, in particular,�jki can serve as the first tensor that starts
the synthesis process described above [3].

In other words, the synthesis process can start with two
model views and their fundamental matrix, as in [17], but
the later steps follow the trilinear tensor machinery which
ensures lack of singular configurations and provide a natu-
ral driving mode — thus satisfying the three requirements
described in Section 1.

4. Experimental Results

The tensor-based rendering method was implemented on
synthetic and real image images. Specifically, we concen-
trated on the case where only a pair of model images are
given. In each example, a “movie” was created by specify-
ing a set of key frames, each by a rotation and translation
of the virtual camera from the second model frame. The
parameters of rotation and translation were then linearly in-
terpolated (not the images, only the user-specified param-
eters) to the desired number of frames. Also, we handled
visibility problems, to obtain better results. An example is
shown in Fig. 4. The two model images were captured using
a standard indy camera at a resolution of640� 480 pixels.

We extended our approach to handle dynamic scene as
well, by treating it as a series of static scenes in time. A pair
of stationary cameras captured a flexible object (in this case
facial expressions) and for each such pair a novel view was
synthesized. The result is a fly-through around a “talking
head”. Figure 5 demonstrates some of the input images, as
well as the synthesized views generated.

5. Summary

We have shown the use of the trilinear tensor as a warp-
ing function for the purpose of novel view synthesis. The
core of this work is the derivation of a tensorial operator that
describes the transformation from a given tensor of three
views to a novel tensor of a new configuration of three views
During the entire process no 3D model of the scene is nec-
essary, nor is it necessary to recover camera geometry or
epipolar geometry of the model images. In addition, the
synthesis process can start with only two model views and
their fundamental matrix, but the later steps follow the tri-
linear tensor machinery which ensures lack of singular con-
figurations and provide a natural driving mode.

Experiments have demonstrated the ability to synthesize
new images from two closely-spaced model images, where
the viewing range of the synthesized images far exceed the
viewing cone of the model images (extrapolation of viewing
position, rather than interpolation). We are currently work-
ing on modeling non-rigid as well as rigid transformation
under this framework [2].
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A On Tensorial Notations

We use the covariant-contravariant summation conven-
tion: a point is an object whose coordinates are speci-
fied with superscripts, i.e.,pi = (p1; p2; :::). These are
called contravariant vectors. An element in the dual space
(representing hyper-planes — lines inP2), is called a co-
variant vector and is represented by subscripts, i.e.,sj =(s1; s2; ::::). Indices repeated in covariant and contravariant
forms are summed over, i.e.,pisi = p1s1+p2s2+:::+pnsn.
This is known as a contraction. For example, ifp is a point
incident to a lines in P2, thenpisi = 0. Matrices have two
indices and the transformation they represent depends on
the covariant-contravariant positioning of the indices.aji is
a mapping from points to points, and hyper-planes to hyper-
planes, becauseajipi = qj andaji sj = ri (in matrix form:Ap = q andA>s = r); aij maps points to hyper-planes;
and aij maps hyper-planes to points. When viewed as a
matrix the row and column positions are determined accord-
ingly: in aji andaji the indexi runs over the columns andj runs over the rows, thusbkj aji = cki is BA = C in ma-
trix form. An outer-product of two vectors,aibj, is a matrixcji whosei; j entries areaibj — note that in matrix formC = ba>.

B Direct Recovery of Rotations from Tensors

We recover the small-angles rotation matrix between two
model images directly from the trilinear tensor, under the
assumption that the cameras are calibrated.
X = det0@ �j32�j32 + �j23�j33 � �j22 1A =K
Y = det0@ ��j31�j32 + �j23�j33 � �j22 1A =K
Z = det0@ �j21�j32 + �j23�j33 � �j22 1A =KK = det0@ �j22�j32 + �j23�j33 � �j22 1A (7)

where�j22 stands for(�122 ; �222 ; �322 ), etc. and the vec-
tor 
 = (
X ;
Y ;
Z)> is the rotation axis, and the mag-
nitude of the vector is the magnitude of the rotation around
this axis. Large angles can be recovered by iteratively ap-

plying equation�jki = R̂0lj�lki , whereR̂0lj is the recovered
rotation matrix in the previous iteration. This method was
first presented in [22] for the purpose of video stabilization.


