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Abstract

It is known that recovering projection matrices from planar con�gurations is
ambiguous, thus, posing the problem of model selection | is the scene planar
(2D) or non-planar (3D)? For a 2D scene one would recover a homography
matrix, whereas for a 3D scene one would recover the fundamental matrix or
trifocal tensor. The task of model selection is especially problematic when the
scene is neither 2D nor 3D | for example a \thin" volume in space.

In this paper we show that for certain tasks, such as reprojection, there is no
need to select a model. The ambiguity that arises from a 2D scene is orthogonal
to the reprojection process, thus if one desires to use multilinear matching con-
straints for transferring points along a sequence of views it is possible to do so
under any situation of 2D, 3D or \thin" volumes.

1 Introduction

There are certain mathematical objects connected with multiple-view analysis
which include: (i) homography matrix (2D collineation), and (ii) objects associ-
ated with multilinear constraints | fundamental matrix, trifocal and quadrifocal
tensors. Given two views of a planar con�guration of features (points or lines) it
is possible to recover the mapping between the views as a 2D collineation (ho-
mography matrix) | a transformation that is also valid when the scene is 3D
but the relative camera geometry consists of a pure rotation. On the other hand,
when the camera motion is general and the scene consists of a three-dimensional
con�guration of features, then the valid transformations across a number of views
consists of multi-linear relations that perform a variety of point-to-line mappings.
The coe�cients of the multilinear constraints encode the relative camera geom-
etry, the projection matrices, and form a matrix in two views, a 3� 3� 3 tensor
in three views and a 3� 3� 3� 3 tensor in four views.

The objects of multi-view analysis are often used for purposes of reconstruc-
tion, i.e., 3D modeling from a collection of views, and for purposes of feature-
transfer (reprojection) i.e., predict the image location of a point (line) in some
view given its locations in two other views. The reprojection paradigm is useful



for feature tracking along image sequences, mosaicing, and image based render-
ing.

Regardless of the application, it seems necessary to know in advance whether
the scene viewed by the collection of images is 2D or 3D. Because, in case the
scene is 2D the multilinear constraints are subject to an ambiguity | rank-6
estimationmatrix (instead of 8) for the fundamental matrix and rank-21 (instead
of 26) for the trifocal tensor. Hence arises the issue of model selection. There
has been a large body of research in the general area of model selection for
purposes of segmentation (due to shape, motion), and �eld of view (orthographic
versus perspective) [14]. Whatever the scheme of model selection is chosen, it
is problematic in the sense that often a decision is to be made in uncertain
conditions | in our case, for example, when the scene is neither purely planar
nor spans a su�ciently large 3D volume.

In this paper we show that in the case of multilinear constraints, it is not
necessary to decide on amodel i.e., whether a homographymatrix is better suited
than a fundamental matrix for example, for purposes of reprojection. Our results
show that the null space, or the ambiguity space in general, of the estimation of
multilinear constraints (fundamental matrix and trifocal tensor) is orthogonal to
the task of reprojection. In other words, in a situation of three views of a planar
scene the 6-dimensional null space of the trifocal tensor estimation is completely
admissible for reprojection of features arising from the planar surface. Moreover,
generally the space of uncertainty in recovering certain parameters of the tensor
due to insu�cient \3D volume" of the sampled surface is again orthogonal to
reprojection of features arising from the sampled volume.

2 Notations and Necessary Background

We will be working with the projective 3D space and the projective plane. In
this section we will describe the basic elements we will be working with (i)
homography matrix, (ii) camera projection matrices, (iii) fundamental matrix,
(iv) tensor notations, and (v) trifocal tensor.

A point in the projective plane is de�ned by three numbers, not all zero,
that form a coordinate vector de�ned up to a scale factor. In the projective
plane any four points in general position can be uniquely mapped to any other
fours points in the projective plane. Such a mapping is called collineation and
is de�ned by 3 � 3 invertible matrices, de�ned up to scale. These matrices are
sometimes referred to as homographies. A collineation is de�ned by 4 pairs of
matching points, each pair provides two linear constraints on the entries of the
homography matrix. If A is a homography matrices de�ned by 4 matching pairs
of points, then A�T (inverse transpose) is the dual homography that maps lines
onto lines.

The projective plane is useful to model the image plane. Consider a collection
of planar points P1; :::; Pn in space living on a plane � viewed from two views.
The projections of Pi are pi; p

0

i in views 1,2 respectively. Because the collineations
form a group, there exists a unique homography matrix A� that satis�es the



relation A�pi �= p0i, i = 1; :::; n, and where A� is uniquely determined by 4
matching pairs from the set of n matching pairs.

A point in 3D projective space is de�ned by four numbers, not all zero, that
form a coordinate vector de�ned up to a scale factor. A camera projection is a
3�4 matrix which corresponds between points in 3D projective space to points in
the projective plane. A useful parameterization (which is the one we adopt in this
paper) is to have the 3D coordinate frame and the 2D coordinate frame of view 1
aligned. Thus, in the case we have three views, then the three camera projection
matrices between the 3D projective space and the three image planes are denoted
by [I; 0]; [A; v0]; [B; v00] associated with views 1,2,3 respectively. These camera
matrices are not uniquely de�ned, as there is a 3-parameter degree of freedom
(\gauge" of the system) as [I; 0]; [A+ v0w>; v0]; [B + v00w>; v00] agree with the
same image data for all choices of w. The multi-view tensors which we will de�ne
next are gauge-invariant, i.e., they are invariant to the choice of w.

The 3�3 principle minor of the camera matrix, under this kind of parameter-
ization, is a homography matrix. The choice of gauge parameters determine the
position of the plane associated with the homography | the reference plane. In
particular, the space of all homography matrices between views 1,2 (up to scale)
is A + v0w>.

The simplest multi-view tensor is the fundamental matrix F = [v]xA whose
entries are the coe�cients of the bilinear matching constraint p0>Fp = 0, where
p; p0 are matching points in views 1,2 respectively. Note that F is gauge invariant
as [v]x(A + v0w>) = [v]xA.

It will be most convenient to use tensor notations from now on because the
multi-view tensors couple together pieces from di�erent projections matrices into
a \joint" object. When working with tensor objects the distinction of when co-
ordinate vectors stand for points or lines matters. A point is an object whose
coordinates are speci�ed with superscripts, i.e., pi = (p1; p2; p3). These are called
contravariant vectors. A line in P2 is called a covariant vector and is represented
by subscripts, i.e., sj = (s1; s2; s3). Indices repeated in covariant and contravari-
ant forms are summed over, i.e., pisi = p1s1 + p2s2 + p3s3. This is known as a
contraction. For example, if p is a point incident to a line s in P2, then pisi = 0.

Vectors are also called 1-valence tensors. 2-valence tensors (matrices) have
two indices and the transformation they represent depends on the covariant-
contravariant positioning of the indices. For example, aji is a mapping from
points to points (a collineation, for example), and hyperplanes (lines in P2)
to hyperplanes, because a

j
ip

i = qj and a
j
isj = ri (in matrix form: Ap = q

and A>s = r); aij maps points to hyperplanes; and aij maps hyperplanes to
points. When viewed as a matrix the row and column positions are determined
accordingly: in a

j
i and aji the index i runs over the columns and j runs over the

rows, thus bkja
j
i = cki is BA = C in matrix form. An outer-product of two 1-

valence tensors (vectors), aibj, is a 2-valence tensor c
j
i whose i; j entries are aib

j

| note that in matrix form C = ba>. A 3-valence tensor has three indices, say
H

jk
i . The positioning of the indices reveals the geometric nature of the mapping:

for example, pisjH
jk
i must be a point because the i; j indices drop out in the



contraction process and we are left with a contravariant vector (the index k is

a superscript). Thus, Hjk
i maps a point in the �rst coordinate frame and a line

in the second coordinate frame into a point in the third coordinate frame. The
\trifocal" tensor in multiple-view geometry is an example of such a tensor. A
single contraction, say piH

jk
i , of a 3-valence tensor leaves us with a matrix. Note

that when p is (1; 0; 0) or (0; 1; 0), or (0; 0; 1) the result is a \slice" of the tensor.
The 3� 3� 3 trifocal tensor is de�ned below:

T jk
i = v0jbki � v00kaji : (1)

The elements of the tensor are coe�cients of trilinear constraints on triplets
of matching points across the three views. Let p; p0; p00 be a matching triplet
of points, i.e., they are projections of some point in 3D. Let s be some line
coincident with p0, i.e., sjp

0j = 0, and let r be some line through p00. Then,

pisjrkT
ij
i = 0: (2)

Because p0 is spanned by two lines (say, the horizontal and vertical scan lines) and
r as well, a triplet p; p0; p00 generate 4 \trilinearities" each is a linear constraint
on the elements of the tensor. Thus 7 matching points (or more) are su�cient
to solve for the tensor. Note that the trifocal tensor is also gauge invariant as:

T jk
i = v0jbki � v00ka

j
i (3)

= v0j(bki +wiv
00k) � v00k(aji + wiv

0j) (4)

= T jk
i +wiv

0jv00k � wiv
0jv00k (5)

= T jk
i (6)

Once the trifocal tensor is recovered from image measurements (matching
triplets, or matching lines, or matching points and lines) the task of \recon-
struction" is to extract the camera projection matrices (up to a choice of gauge
parameters) from the tensor. We will not discuss this here. The task of \repro-
jection" is to predict (or \back-project") the location of p00 using the matching
pair p; p0 and the tensor. This is done simply as:

pisjT
jk
i

�= p00k

and since there are two choices for s we have a redundant system for extracting
p00.

These were the necessary details we need for the rest of the paper. More de-
tails on the trifocal tensor can be found in the review [10] and in (not exhaustive)
[9,4, 11, 12, 3, 5, 16, 6].

3 Reprojection of a Planar Surface From Multilinear

Constraints

In case the scene is indeed 3D there is a one-to-one mapping between tensors
that satisfy Eqn. 1 and tensors that satisfy Eqn. 2. However, when the scene is



planar then a tensor that satis�es Eqn. 2 does not necessarily satisfy Eqn. 1, as
we will see now.

Consider a collection of matching point triplets p; p0; p00 of a planar scene
� in views 1,2,3, respectively. Because the scene is planar there exist a unique
homography matrix A from views 1 to 2, i.e., Ap �= p0 and a unique homography
matrix B from views 1 to 3, i.e., Bp �= p00. Let �; � be arbitrary vectors, then the
tensor

T jk
i = �jbki � �ka

j
i ; (7)

satis�es the trilinearity - Eqn. 2. To see why this is so, note that s>Ap = 0 and
r>Bp = 0 for triplets p; p0; p00 arising from the plane �. We have therefore:

pisjrkT
jk
i = pisjrk(�

jbki � �kaji )

= (sj�
j)(rkb

k
i p

i)� (rk�
k)(sja

j
ip

i)

= (s>�)(r>Bp)� (r>�)(s>Ap) = 0;

and this holds for all choices of the vectors �; �. As argued in [13] this entails
that the rank of the estimation matrix for the trifocal tensor from measurements
arising from a planar surface is at most 21 (instead of 26). In other words, there
are 6 degrees of freedom due to the indeterminacy of the epipoles (�; �). What is
left to show is that all the solutions in the null space are in the form of Eqn. 7.
To see that note that A;B can be homographies due to any other plane �� and
still satisfy the trilinearity (Eqn. 2) if and only if � = v0 and � = v00 are the
true epipoles: Let �A = �A + v0n> and �B = �B + v00n> be the homographies
associated with the plane ��, then

v0jbki � v00ka
j
i
�= v0j(�bki + niv

00k)� v00k(�aji + niv
0j)

for all choices of �; n and thus in particular

v0jbki � v00ka
j
i
�= v0j�bki � v00k�aji :

To conclude, because the epipoles cannot be determined from the trilinearities
(Eqn. 2) then all the tensors in the null space are of the form of Eqn. 7 where
A;B are the homographies due to the plane �.

We have, therefore, an ambiguity whose source arises from the uncertainty
in recovering the epipoles from the image measurements. Thus, recovering pro-
jection matrices is not possible. Yet, consider the problem of reprojection:

pisjT
jk
i = pisj(�

jbki � �ka
j
i )

= (sj�
j)bki p

i � �k(sja
j
ip

i)

= (s>�)Bp � (s>Ap)� �= p00:

In other words, for all choices of �; �, a matching point and line in views 1,2
uniquely determine the location of the matching point in view 3, provided that
the matching triplet p; p0; p00 arise from the plane �. We can conclude, therefore,
that the null space for estimating the trifocal tensor from image measurements



arising from a planar surface is orthogonal to the reprojection equation pisjT
jk
i

where the matching points arise from the same planar surface that was sampled
in the process of recovering T jk

i .
In practical terms, given a collection of matching triplets p; p0; p00 sampling a

certain volume in space, each triplet provides 4 linear equations for the trifocal
tensor. The eigenvector associated with the smallest eigenvalue of the estimation
matrix is the trifocal tensor. In case the matching triplets came from a 3D scene,
the solution is unique whereas in case the the matching triplets came from a
planar con�guration the solution is not unique (the 6 eigenvectors corresponding
to the 6 smallest eigenvalues span the solution space) | but that does not
matter, as long as the matching points used for the estimation of the tensor
span the scene volume of interest (if the points came from a plane it means that
the scene is planar, for example), then the reprojection is valid nevertheless. The
following theorem summarizes the �ndings so far:

Theorem 1. In case a collection of matching triplets p; p0; p00 whose correspond-
ing 3D points sample some volume in space are given, then the eigenvector asso-
ciated with the smallest eigenvalue of the estimation matrix to the trifocal tensor
forms a trifocal tensor that is valid for reprojecting point p; p0 onto p00, regardless
of whether the volume is a 2D plane or a 3D volume, provided that the corre-
sponding 3D points come from the same volume in space sampled during the
estimation process.

This state of matters is not characteristic solely to the trifocal tensor, it is
a general geometric property. Consider performing reprojection using pairwise
fundamental matrices, for example. Let F13 be the fundamental matrix satisfying
p00>F13p = 0 for all matching pairs p; p00, and let F23 be the fundamental matrix
satisfying p00>F23p

0 = 0 for all matching pairs p0; p00. The reprojection equation
is an intersection of epipolar lines:

p00 �= F13p� F23p
0:

Generally it is not a good idea to rely on epipolar intersection as it becomes
degenerate when the three camera centers are collinear, but nevertheless this
provides an alternative to the reprojection equation using the trifocal tensor.
When the triplet p; p0; p00 arise from a planar con�guration, then F13 = [�]xB and
F23 = [�]xBA�1 satisfy the bilinear constraints p00>F13p = 0 and p00>F23p

0 =
0, for all choices of the vectors �; �. Thus, the rank of the estimation matrix
for the fundamental matrix becomes 6 (instead of 8). Reprojection, however, is
una�ected by the choice of �; � provided that the pairs p; p0 to be reprojected
arise from the same planar surface that was sampled in the process of recovering
F13 and F13:

F13p� F23p
0 = ([�]xBp)� ([�]xBA

�1p0)

= (� � p00) � (� � p00) �= p00

Note that unlike the trifocal tensor estimation that requires a triplet p; p0; p00

of matching points in the estimation process, here the requirement is pairs of



matching pairs p; p00 and p0; p00 that do not necessarily arise from the same point
in 3D. This raises the possibility, for example, that F23 is estimated from a 3D
scene, yet F13 is estimated from a planar scene. The process of reprojection would
remain valid nevertheless provided that the points p; p0 used for reprojection arise
from a surface whose dimensionality is lesser or equal to the dimensionalities of
the surfaces used for estimation of F13 and F23.

4 Sensitivity Analysis of \thin" Volumes

We have seen in the previous section that the ambiguity of the tensor estimation
in the presence of a planar con�guration of points does not a�ect the reprojection
process of points coming from the planar surface. In this section we wish to
investigate the reprojection process for \thin" volumes| the point con�guration
does not form a 2D plane but almost does so (shallow surface, aerial photograph,
for example). Strictly speaking, a point con�guration can be either 2D (plane)
or 3D (non-coplanar), there is no in-between. But, in practice it is important
to investigate the (numerical) sensitivity of the reprojection process in order to
be convinced that the transition between planar and 3D is a continuous one.
In other words, we would like to establish the fact that the estimation of the
trifocal tensor, from a point con�guration that spans any volume in 3D space,
will produce a valid reprojection of that volume.

We wish to show that all tensors that can be recovered from a "thin" volume
are equal to the �rst order. To do so, think of a "thin" volume as two planes
in�nitesimally separated (to be de�ned later). We will show that any form of
indeterminacy of the epipoles (whether complete or partial) leads to at most a
second order error in the in�nitesimal variables | hence can be neglected. In
other words, we will employ in�nitesimal calculus (see [2]) of the �rst order in
our investigation, such that if � is an in�nitesimal variable in a calculation, then
�2 = 0 (and higher orders).

We will �rst consider the estimation of the trifocal tensor from a point con-
�guration arising from two distinct planes �; ��. Let A;B be the homography
matrices due to � from views 1 to 2 and from views 1 to 3, respectively, and let
�A; �B be the homographies due to ��. Then, there exist �; n that satisfy:

�A = �A+ v0n>

�B = �B + v00n>;

where v0; v00 are the epipoles in views 2,3 respectively (projection of the �rst
camera center onto views 2,3). The vector n is the projection on view 1 of the
intersecting line between �; �� and (n>; �) is the plane passing through the �rst
camera center and the line n in view 1. Let the space of solutions to the trifocal
tensor arising from matching triplets corresponding to � be

�jbki � �ka
j
i

where �; � are free vectors, and let the space of solutions arising from �� be

��j�bki � ��k�aji



where ��; �� are free vectors. The space of solutions arising from measurements
corresponding to both �; �� is the intersection of the null spaces, i.e., we wish to
�nd �; �; ��; �� that satisfy

�jbki � �ka
j
i =

��j�bki � ��k�aji

After rearranging terms:

(�j � ���j)bki � (�k � ���k)aji = ni(��
jv00k � ��kv0j):

Since the left-hand side is at least a rank-4 tensor (A;B cannot be lower than
rank-2) and the right-hand side is a rank-2 tensor, equality can hold only if
� = ��� and � = ���. Thus, ��; �� must satisfy

��jv00k � ��kv0j = 0;

which could happen if and only if �� = �v0 and �� = �v00 for all �. Taken together,
the intersection of the null spaces is a unique tensor:

v0jbki � v00ka
j
i :

The derivation above is simply another route for proving the existence and form
of the trifocal tensor from image measurements arising from points matches
corresponding to a 3D set of points. However, it is shown that two planes are
su�cient for a unique determination (two distinct planes and the camera center
of view 1 forms a simplex). Analogously, the fundamental matrix between views
1,2 is known to be uniquely determined from the relationship: A>F +F>A = 0
and �A>F + F> �A = 0 and the proof follows the same lines as above.

We will use this line of derivation of the trifocal tensor to consider next the
situation where the two planes �; �� are in�nitesimally separated. This is de�ned
by letting �A; �B be de�ned as:

�A = �A+ dA

�B = �B + dB

where dA; dB are matrices whose entries are in�nitesimal to the �rst order,
i.e., higher orders of these variables can be neglected. Because dA; dB may be
arbitrary (i.e., v0; v00 are completely masked out in the presence of noise) the null
spaces may not have a common intersection. But, instead of an intersection we
are looking for �; �; ��; �� such that the null spaces have a common in�nitesimal
locus, i.e., a locus that is de�ned by second (or higher) order terms of dA; dB.
In other words, let T (�; �) be the space of tensors (null space) of the form
�jbki � �ka

j
i and let �T (��; ��) be the space of tensors ��j�bki � ��k�aji , then we are

looking for �; �; ��; �� such that T (�; �) � �T (��; ��) =inf 0 where the symbol =inf

denotes equality up to second order terms of in�nitesimal variables.
Let � = ��� and � = ���, then ��; �� must satisfy

��jdbki � ��kdaji =inf 0:



Let �� take some linear combination of the rows of dA and let � be equal to some
linear combination of the rows of dB (see Appendix for proof that such a choice
corresponds to an L2 norm minimization of the expression above). Then, the
expression above involves bilinear products of in�nitesimal variables | thus the
equality of the �rst order is achieved, i.e. T (�; �)� �T (��; ��) =inf 0 for the choices
we made. The theorem below summarizes the �ndings above:

Theorem 2. In the case where the trifocal tensor is estimated from point matches
coming from an in�nitesimally thin volume in space, then in the worst case condi-
tion (measurement noise completely masks out the location of the epipoles v0; v00),
the solutions in the null space are valid for reprojection of points of the sampled
volume | upto a measure zero of in�nitesimal variation.

5 Experiments

We show results on three real image sequences. In all cases we use a progressive
scan Canon ELURA DV cam-corder that produces RGB images of size 720�480
pixels. We use the KLT package [1] to automatically detect and track a list
of interest points throughout the sequence (about 100 points on average). We
then estimate the trifocal tensor on successive triplets of frames, reprojecting
points from the �rst two frames in the triplet to the third. The trifocal tensor is
estimated using the method described in this paper with the usual LMeDS (Least
Median of Squares) [7,15]. Speci�cally, the algorithm proceeds as follows. Sets
of seven points are sampled randomly from the set of all matching points. The
estimation matrix is constructed and the tensor is taken to be the eigenvector
that corresponds to the smallest eigenvalue. Then we measure the reprojection
error of the recovered tensor for the rest of the points and take the median of
the reprojection error as the score of this tensor. The process is repeated for 50
times. The tensor with the lowest score is the winner. We then recompute the
tensor, using the same method, but now with all the points whose reprojection
error is lower than the score of this tensor.

Experiment 1 We move the camera from a "volumetric" scene to a very shal-
low scene gathering 36 images as we move. We compute the trifocal tensor of
successive triplets of images and reprojected the points in the �rst two images
to the third. Figure 1 shows some of the 36 images, with the tracked and repro-
jected points super-imposed. The average reprojection error is about 0.5 pixels.
More interestingly, we plotted the average reprojection error across the 36 im-
ages and did not �nd a clear correlation between the reprojection error and the
"thickness" of the 3D scene. Recall, the camera is moving from a full 3D scene
to a very shallow scene.

Experiment 2 This experiment is similar to the previous one, only this time
the camera moves from a planar scene to a full volume 3D scene, gathering 26
images as it moves. Again, we compute the trifocal tensor of successive triplets



(a) (b)

(c) (d)

Fig. 1. ((a),(b),(c)) First, middle and last images in a 36 long image sequence. White
circles represent the tracked points. Black crosses represent the reprojected points.
Average reprojection error is 0.5 pixels. (d) shows reprojection error, in pixels, across
the 36 images of sequence. There is no clear correlation between the reprojection error
and the volume of the 3D scene. Note that the camera is moving from a full 3D scene
to a very shallow 3D scene.



of images and reprojected the points in the �rst two images to the third. Figure
3 shows some of the 26 images, with the tracked and reprojected points super-
imposed. The average reprojection error is about 0.5 pixels. Again, we plotted
the average reprojection error across the 26 images and did not �nd a clear
correlation between the reprojection error and the "thickness" of the 3D scene.
Recall, this time the camera is moving from a planar scene to a full 3D scene.

(a) (b)

Fig. 2. ((a),(b)) First and last in a sequence of 26 images. White circles represent the
tracked points. Black crosses represent the reprojected points. Average reprojection
error is 0.5 pixels. (c) shows reprojection error, in pixels, across the 26 images of
sequence. There is no clear correlation between the reprojection error and the volume
of the 3D scene. Note that the camera is moving from a planar scene to a full 3D scene.

Experiment 3 In this experiment we demonstrate the reprojection power of
our method given the same camera con�guration but using di�erent sections of
the 3D scene. We repeated the experiment twice on the same triplet of images,
once using all the points in the scene and once using only points on a plane.
The results are shown in Figure 3. White circles represent the tracked points.
Black crosses represent the reprojected points. In the �rst case the scene has a
large volume and our method has no problem reprojecting the points with an



average error of 0.5 pixels. In the second case we manually deleted all the points
outside a speci�c plane and ran the algorithm again. The reprojection now was
0.2 pixels.

(a) (b)

(c) (d)

Fig. 3. Original images ((a),(b)) are reprojected to the third image using all the points
in the scene (c) or only the points on the plane (d) (Images (c) and (d) show the third
image with the di�erent point con�gurations). The reprojection error is 0.5 pixels for
for image (c) and 0.2 pixels for image (d).

6 Summary

We have shown, in this paper, that the ambiguity in recovering multi-linear con-
straints from planar scenes is orthogonal to tasks such as reprojection. Thus, it
is not necessary to choose a di�erent model for di�erent scenes (Homography for
2D scenes or trifocal tensor/fundamental matrix for 3D scenes) as the ambiguity
in the recovered parameters does not a�ect our ability to perform reprojection.
Moreover, in the case of a "thin" volume which is not 2D nor 3D, our method will
generate a tensor that is provably correct for reprojecting all the points within
this volume. We thus have a uni�ed method for reprojecting planar, "thin" and
full volume scenes. Finally, while the results we have shown are relevant to the



process of reprojection, we believe that they can be used in some reconstruction
situations as well, but leave it for future research.

A Appendix

Consider the expression

j xb> � ay> jL2
+ j xc> � dy> jL2

+ j xe> � fy> jL2

where a; b; c; d; e; f are vectors, and jjL2
stands for the L2 norm of a matrix

de�ned by the sum of squares of the matrix entries. The vectors x; y that bring
the expression to minimum are described by x = �1a + �2d + �3f and y =
�1b + �2c + �3e for some coe�cients �i; �i, i = 1; 2; 3. The derivation is as
follows.

Since j A jL2
= trace(A>A) = trace(AA>), then the trace of the expression

above is

(b>b+ c>c+ e>e)(x>x)� 2(b>y)(x>a)� 2(c>y)(x>d)

�2(e>y)(x>f) + (a>a+ d>d+ f>f)(y>y) :

The partial derivatives with respect to x and y are therefore

@

@x
= (b>b+ c>c + e>e)x � (b>y)a � (c>y)d � (e>y)f = 0

@

@y
= (a>a+ d>d+ f>f)y � (x>a)b� (x>d)c� (x>f)e = 0:

References

1. S. Birch�eld An Implementation of the Kanade-Lucas-Tomasi Feature Tracker.
Download from: http://vision.stanford.edu/ birch/klt

2. R. Courant and D. Hilbert. Methods of mathematical physics. Interscience Pub-
lishers Inc., 1953.

3. O.D. Faugeras and B. Mourrain. On the geometry and algebra of the point and line
correspondences between N images. In Proceedings of the International Conference

on Computer Vision, Cambridge, MA, June 1995.
4. R.I. Hartley. Lines and points in three views and the trifocal tensor. International

Journal of Computer Vision, 22(2):125{140, 1997.
5. A. Heyden. A common framework for multiple view tensors. In Proceedings of the

European Conference on Computer Vision, pages 3{19, Freiburg, Germany, June
1998.

6. M. Irani, P. Anandan, and D. Weinshall. From reference frames to reference planes:
Multiview parallax geometry and applications. In Proceedings of the European

Conference on Computer Vision, Frieburg, Germany, 1998. Springer, LNCS 1407.
7. P. Meer, D. Mintz, D. Kim, and A. Rosenfeld. Robust regression methods for

computer vision: A review. International Journal of Computer Vision, 6(1):59{70,
1991.



8. P. Pritchett and A. Zisserman. Matching and Reconstruction from Widely Sepa-
rated Views. In 3D Structure from Multiple Images of Large-Scale Environments,

LNCS 1506, Springer-Verlag, 1998.
9. A. Shashua. Algebraic functions for recognition. IEEE Transactions on Pattern

Analysis and Machine Intelligence, 17(8):779{789, 1995.
10. A. Shashua. Trilinear tensor: The fundamental construct of multiple-view geometry

and its applications. In G. Sommer and J.J. Koenderink, editors, Algebraic Frames
For The Perception Action Cycle, number 1315 in Lecture Notes in Computer
Science. Springer, 1997. Proceedings of the workshop held in Kiel, Germany, Sep.
1997.

11. A. Shashua and M. Werman. Trilinearity of three perspective views and its associ-
ated tensor. In Proceedings of the International Conference on Computer Vision,
June 1995.

12. M.E. Spetsakis and J. Aloimonos. Structure from motion using line correspon-
dences. International Journal of Computer Vision, 4(3):171{183, 1990.

13. G. Stein and A. Shashua. On degeneracy of linear reconstruction from three views:
Linear line complex and applications. IEEE Transactions on Pattern Analysis and

Machine Intelligence, 21(3):244{251, 1999.
14. P.H.S Torr and A. Zisserman Concerning bayesian motion segmentation, model

averaging, matching and the trifocal tensor. In Proceedings of the European Con-

ference on Computer Vision, 1998.
15. P.H.S. Torr and A. Zisserman. Robust parameterization and computation of the

trifocal tensor. Image and Vision Computing, 15:591{607, 1997.
16. B. Triggs. Matching constraints and the joint image. In Proceedings of the Inter-

national Conference on Computer Vision, pages 338{343, Cambridge, MA, June
1995.


