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Abstract
We present a new method for rendering novel images

of flexible 3D objects from a small number of example
images in correspondence. The strength of the method
is the ability to synthesize images whose viewing posi-
tion is significantly far away from the viewing cone of the
example images (“view extrapolation”), yet without ever
modeling the 3D structure of the scene. The method re-
lies on synthesizing a chain of “trilinear tensors” that gov-
erns the warping function from the example images to the
novel image, together with a multi-dimensional interpola-
tion function that synthesizes the non-rigid motions of the
viewed object from the virtual camera position. We show
that two closely spaced example images alone are suffi-
cient in practice to synthesize a significant viewing cone,
thus demonstrating the ability of representing an object
by a relatively small number of model images — for the
purpose of cheap and fast viewers that can run on standard
hardware.

1 Introduction
In this paper we develop a reprojection technique for

synthesizing novel views of a 3D object, given a collec-
tion of 2D model images in correspondence. We also
consider the synthesis of novel views from a single model
image and develop a method to control non-rigid transfor-�S. Avidan and A. Shashua are with the Hebrew University. T. Evge-
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mations of the viewed object, such as facial expressions
in the case of faces.

The most significant aspect of our approach is the abil-
ity to synthesize images that are far away from the view-
ing positions of the sample model images without ever
computing explicitly any 3D information about the scene.
This property provides a multi-image representation of
the 3D object using a minimal number of images. In our
experiments, for example, two closely spaced frontal im-
ages of a face are sufficient for generating photo-realistic
images from viewpoints within a 60 degrees cone of vi-
sual angle – further extrapolation is possible but the im-
age quality degrades. The immediate application of our
results is to provide a very fast 3D viewing system based
on a small number of images that can run on standard
hardware.

The notion of image-based rendering is gaining mo-
mentum in both the computer graphics and computer vi-
sion communities. The general idea is to achieve photo-
realistic virtual images while avoiding the computational-
intensive process of acquiring a 3D model followed by
rendering. Instead, one seeks to use a number of model
images of the 3D object or scene as a representation from
which novel views can be synthesizeddirectly by means
of image warping.

The forerunner of this approach is to create a
panoramic image of a scene (mosaic) from overlapping
images taken from a fixed location while varying the ori-
entation of the camera. The mosaic is mapped to a vir-
tual cylinder that allows the user to look continuously at
all directions but not to move. This is the basis for the
QuickTimeVR system [7].

The fixed position constraint can be relaxed by com-
puting the optical flow between the example images and
using it to interpolate between the cylinders constructed
at different locations (cf. [4, 5, 6]) (originally proposed
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for views, not mosaics, but the principle is the same).
However, interpolation may produce physically-invalid
images. Seitz and Dyer [20] proposed a physically-valid
view interpolation method. The method involves recov-
ering the epipolar geometry between the two acquired
images and having interpolation done along the rectified
epipolar lines.

Interpolation can also be performed directly on the
plenoptic function [1] which represents the amount of
light emitted at each point in space as a function of direc-
tion. Levoy et al. [15] and Gortler et al. [10] interpolate
between a dense set of several thousands of example im-
ages to reconstruct a reduced plenoptic function (under an
occlusion-free world assumption). They considerably in-
crease the number of example images to avoid computing
optical flow between the model images.

The major limitations of the aforementioned tech-
niques is that a relatively large number of model images is
required to represent an object. The alternative approach,
along the lines of this paper, is to reduce the number of
acquired (model) images by exploiting the 3D-from-2D
geometry of the problem with the aid of corresponding
points between the model images. Laveau and Faugeras
[14] were the first to use the epipolar constraint for view
synthesis, allowing them to extrapolate, as well as in-
terpolate, between the example images. Epipolar con-
straints, however, are subject to singularities that ariseun-
der certain camera motions (like when the virtual camera
center is collinear with the centers of the model cameras)
and the relation between translational and rotational pa-
rameters of the virtual camera and the epipolar constraint
is somewhat indirect and hence requires the specification
of matching points [14]. The singular camera motions can
be relaxed by using the depth map of the environment.
McMillan and Bishop [17] use a full depth map (3D re-
construction of the camera motion and the environment)
together with the epipolar constraint to provide a direct
connection between the virtual camera motion and the re-
projection engine. Depth maps are easily provided for
synthetic environments, whereas for real scenes the pro-
cess is fragile especially under small base-line situations
that arise due to the requirement of dense correspondence
between the model images/mosaics [11].

In this paper we propose a new view-synthesis method
that makes use of the recent development of multi-linear
matching constraints, known as trilinearities, that were
first introduced in [21]. The trilinearities provide a gen-
eral (not subject to singular camera configurations) warp-
ing function from model images to novel synthesized im-
ages governed directly by the camera parameters of the
virtual camera. Therefore, we provide a true multi-image

system for view synthesis that does not require a com-
panion depth map, nor the full reconstruction of cam-
era parameters among the model cameras, yet is general
and robust. The strength of our method is demonstrated
by the ability to work with closely spaced acquired im-
ages yet synthesize high-quality views at a significant ex-
trapolation from the viewing angles of the acquired im-
ages. Furthermore, our method can be generalized to
work with a single acquired model image and to allow
non-rigid transformations by integrating multi-linear con-
straints and multi-dimensional interpolation.

The main contributions of our work are:

1. The introduction of the trilinear tensor as the warp-
ing function.

2. The derivation of a tensorial operator which is the
heart of the method. The operator generates a cas-
cading set of tensors from two model views in cor-
respondence and the parameters of the virtual cam-
era motion. The tensorial operator does not re-
quire the estimation of the baseline between the ac-
quired images (typically a fragile process) thereby
enabling the model images to be closely spaced
without hindering much the robustness of the syn-
thesis process.

3. The combination of the tensor with a learning
method for the generation of virtual views of an ob-
ject given only a single model image.

4. The combination of rigid transformations using
the tensor with non-rigid transformations achieved
with multi-dimensional view interpolation.

On the experimental side, we have tested the proposed
method on a variety of objects with a variety of cameras
in real-world conditions where neither camera calibration
(or even camera type) is available nor the lighting con-
ditions are controlled. We demonstrated that correspon-
dence is practical for closely spaced images, and that the
synthesis method is sufficiently accurate and robust.

2 View Synthesis in Tensor Space
The view synthesis approach is based on the follow-

ing paradigm. Three views satisfy certain matching con-
straints of a trilinear form, represented by a tensor. Thus,
given two views in correspondence and a tensor, the
corresponding third view can be generated uniquely by
means of a warping function, as described below in more
detail. We describe how to recover the tensor parameters
and show a “driver” function that governs the change in
tensor coefficients as a result of moving the virtual cam-
era.



2.1 The Trilinear Warping Function
The trilinear tensor concatenates together the camera

transformation matrices (camera locations) across three
views, as follows. LetP be a point in 3D projective
space projecting ontop; p0; p00 in three views ;  0;  00
respectively, represented by the two dimensional projec-
tive space. The relationship between the 3D and the 2D
spaces is represented by the3� 4 matrices,[I; 0], [A; v0]
and[B; v00], i.e., p = [I; 0]Pp0 �= [A; v0]Pp00 �= [B; v00]P
whereA;B stand for the rotational component of cam-
era motion (generally these are 2D homography matrices)
andv0; v00 stand for the translational component (gener-
ally these are the epipolar points).

We may adopt the convention thatp = (x; y; 1)>,p0 = (x0; y0; 1)>, p00 = (x00; y00; 1)> and, thus,P =(x; y; 1; �). The coordinates(x; y); (x0y0); (x00; y00) are
matching points across the three images.

The trilinear tensor is an array of 27 entries:�jki = v0jbki � v00kaji : i; j; k = 1; 2; 3 (1)

where the covariant-contravariant indexing notation is as-
sumed (see Appendix A). The tensor�jki forms the set of
coefficients of certain trilinear forms that vanish on any
corresponding tripletp; p0; p00:pis�j r�k�jki = 0 (2)

wheres�j are any two lines (s1j ands2j ) intersecting atp0,
andr�k are any two lines intersecting atp00 (see Fig. 1).

Since each of the free indices�; � is in the range 1,2,
we have 4 trilinear equations which are unique up to linear
combinations. If we choose the canonical form wheres
andr represent vertical and horizontal lines, then the four
trilinear forms,referred to as trilinearities, are expanded
as follows:x00�13i pi � x00x0�33i pi + x0�31i pi � �11i pi = 0;y00�13i pi � y00x0�33i pi + x0�32i pi � �12i pi = 0;x00�23i pi � x00y0�33i pi + y0�31i pi � �21i pi = 0;y00�23i pi � y00y0�33i pi + y0�32i pi ��22i pi = 0:

Since every corresponding tripletp; p0; p00 contributes
four linearly independent equations, then seven corre-
sponding points across the three views uniquely deter-
mine (up to scale) the tensor�jki . These constraints first
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Figure 1: Each of the four trilinear equations describes a
matching between a pointp in the first view, some lines�j pass-
ing through the matching pointp0 in the second view and some
line line r�k passing through the matching pointp00 in the third
view. In space, this constraint is an intersection between aray
and two planes.

became prominent in [21] and the underlying theory has
been studied intensively in [24, 12, 9, 25, 13, 22].

One can readily see that given two views in full cor-
respondence and the tensor (recovered using 7 matching
points with a third view), the entire third view can be syn-
thesized by means of forward warping. From each tri-
linearity we can simply extract eitherx00 or y00, thus for
every matching pairp; p0 we can obtainp00. We then copy
at p00 the appropriate brightness value, for example the
average of the pixel values atp andp0 in the two model
images. This process is referred to as “reprojection” in
the literature. There are alternative ways of performing
reprojection, but if we would like to do it without recov-
ering first a 3D model of the scene, the trilinear tensor
generally provides the best results since it is free from
singular configurations (see [2, 21, 23]). In image-based
rendering we would like to obtain the tensor via user spec-
ification of the location of a virtual camera, rather than by
the specification of (at least) seven matching points. This
is described next.

2.2 The basic Tensorial Operator
The basic tensorial operator describes how to modify

(transform) a tensor so as to represent a new configura-
tion of three cameras. We are particularly interested in
the case where only one camera has changed its position
and orientation. Thus, by repeated application of the op-
erator on a seed tensor with a sequence of desired virtual
camera positions (translation and orientation) we obtain
a chain of warping functions (tensors) from the set of



acquired images (from which the seed tensor was com-
puted) to create the desired virtual views.

Consider the tensor�jki of the views< 1; 2; 3 > (in
that order), and assume the user wishes to apply an incre-
mental change of position of the third image, i.e., rotate
the third camera position by the3 � 3 coordinate matrixC, and translate it by the3� 1 translation vectort — this
motion would result to a novel view, call it view 4. Then
the tensorjki of the views< 1; 2; 4 > is given by:jki = v0j(ckl bli)� (v00lckl + tk)aji = ckl �jli � tkaji : (3)

This is so because we use Eq. 1 where we replace the
motion parametersv00k,bki from the first image to the third
image, with(v00lckl +tk); (ckl bli) which depend on the mo-
tion parameters from the first image to the novel one. The
matrixaji representing the rotational component of cam-
era motion between the two model views 1,2 can be rep-
resented in closed form as a function of the tensor�jki as
described in [19]:
X = det0@ �j32�j32 + �j23�j33 � �j22 1A =K
Y = det0@ ��j31�j32 + �j23�j33 � �j22 1A =K
Z = det0@ �j21�j32 + �j23�j33 � �j22 1A =KK = det0@ �j22�j32 + �j23�j33 � �j22 1A (4)

where
X ;
Y ;
Z are rotation angles and�j22 stands for(�122 ; �222 ; �322 ), etc.
To summarize, Eq. 3 is a general formula for trans-

forming the tensor based on an incremental camera mo-
tion of a fixed (third) camera. Therefore, starting from a
“seed” tensor and a sequence of desired camera motions,
the set of corresponding tensors can be generated and
used to warp the acquired images onto the novel views.
We next consider how to obtain the seed tensor that starts
the process.

2.3 The Seed Tensor of Two Views
Given two acquired images we can construct a special

tensor composed of the elements of the fundamental ma-
trix [8] that can serve as a seed tensor that starts the chain
of tensors, as follows. Consider a configuration of three
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Figure 2: View synthesis is divided into two parts. The pre-
processing stage, done only once and the actual rendering done
for every image.

views in which views 2,3 coincide, i.e., Eq. 1 becomes:jki = v0jaki � v0kaji (5)

wherejki is the tensor of the image triplet< 1; 2; 2 >. It
can be readily verified that the elements ofjki are com-
posed of the fundamental matrixfij = �iklv0kalj, �fij,
and the remaining (nine) elements vanish. It will not be
shown here, but the rank ofjki is 2 whereas the rank of
the tensor of three distinct views is 4 — but otherwise all
other properties remain and, in particular,jki can serve as
the first tensor that starts the synthesis process described
above.
2.4 The View Synthesis Loop

The method is divided into two stages — a prepro-
cessing stage, done only once, and the actual rendering
done for every new frame (see Fig. 2). In the preprocess-
ing stage compute dense correspondence between the two
model images, recover the fundamental matrix and con-
struct the rank-2 tensor (eq 5) from it. In rendering time,
accept virtual camera parameters from the user, generate
the new tensor (eq 3) and synthesize the novel view from
the two model images and the computed tensor.
2.5 Experiments

We conducted our experiments on pairs of model im-
ages, taken with uncalibrated cameras. Rendering time is
approximately 5 seconds on an SGI Indy machine, with-
out any optimization. Due to space limitations, we show
here only the “Shannon” example (Figure 3), where a pair
of images,620�764 pixels each, were taken and extrapo-
lated up to 90 degrees with graceful degradation in image
quality.



Figure 3: The “Shannon” example of view synthesis using our reprojection method. The only real images are the two framed
(dimmed) ones on the top row. Our method allows both interpolation (center image) and extrapolation, as can be seen in thelower two
rows.

3 Synthesis from a single model view
In the previous section, we have discussed how to syn-

thesize new images for different viewpoints, given two
examples images. Suppose now that only one image of
a specific object, saypnov, is available. Does our repro-
jection method break down? This section sketches a so-
lution to this question. The idea is to create an additional
– virtual – example image of objectpnov from just one
real view of it. Once one obtains a second image of the
object from a different viewpoint, one can use the repro-
jection algorithm of section 2.4 to generate subsequent
virtual images. To accomplish this task without using a
parametric 3D model, one may start from a collection of
example views of another similar objectp which plays
the role of a prototype for representing generic transfor-
mations of the object class that the two objects belong to.
Faces form such a class of objects. In general, we want to
generate from one 2D viewImgnov of a 3D objectpnov
other views, exploiting knowledge of views of other ob-
jects of the same class. This idea of generating “virtual”
views of an object by using class-specific knowledge has
been discussed before (see references in [5]). Suppose
that we have two viewsImgref and Imgp of the pro-
totype. We takeImgref to appear in the same pose asImgnov. Imgp is a slightly transformed (i.e., rotated)
view of Imgref (see diagram in Fig. 4). We can then
compute the optical flowSp between these two views.
Moreover, since the prototype objectp is assumed to be

“similar” to objectpnov, we assume that we can find good
correspondenceSnov betweenImgref andImgnov. We
subsequently generate the optical flowSp+nov between
the viewImgref and a new view of the objectpnov by
the vector addition:Sp+nov = Sp + Snov: (6)

A new view, Imgp+nov, of objectpnov is then ren-
dered by texture mapping from the single available viewImgnov after forward warping fromImgref using op-
tical flow Sp+nov. In a sense, we “map” the learned
transformation (optical flowSp) fromImgref to Imgnov
using flowSnov. We now have two images of objectpnov that our reprojection technique can use to simulate
a virtual camera and generate new images and image se-
quences.

We demonstrate this technique in Fig. 4 using as an
example a self-portrait of Van Gogh. A slight rotation is
learned from another similar prototypical “object”, in this
case another face, to generate a first virtual image of Van
Gogh. Then the reprojection method of section 2.4 is
used to generate subsequent views.

4 Incorporating non-rigid Transformations
So far we have described a technique that allows the

user to generate new images by controlling the rigid de-
grees of freedom that correspond to motion of the cam-
era. From two or more images in correspondence it may



Figure 4:We can simulate a virtual camera looking at an object from arbitrary viewpoints given only one image. First we synthesize
a single virtual view of the object by learning an appropriate transformation, in this case a small rotation, from another similar
prototypical object. The method is shown on the left diagram. In this example we create a rotated self-portrait of Van Gogh (Imgp+nov)
using the original self-portrait (Imgnov) and information from a “similar” prototypical face (Imgref andImgp). Snov is the optical
flow between the first image of the prototypical face and the original painting. Sp is the optical flow between the two images of
the prototypical face. The new Van Gogh image is then createdby texture mapping from the single available painting afterforward
warping fromImgref usingSp+nov = Sp + Snov. From these two views of Van Gogh we then generate other viewsfrom arbitrary
viewpoints, as shown on the right, using our reprojection method.

also be possible to generate new images of non-rigid 3D
objects as a function of input parameters that correspond
to non-rigid transformations such as a change in expres-
sion of a face. The underlying operation is multidimen-
sional interpolation, a simple extension of traditional im-
age morphing. We outline the technique and illustrate
how it can be integrated with the algebraic method de-
scribed so far.

Let us assume thatn images are available and that
pixel-wise correspondence can be computed with an op-
tical flow algorithm between one of them, chosen as the
”zero” reference image, and each of then � 1 others. As
we saw earlier, correspondence associates to each imagei the optical flow, that we note asSi, of the position of
each pixel relative to the reference image. We can also
associate to each image a vector of color values, the “tex-
ture” vector, that we note asTi. The texture vectorTi is
simply the imagei warped to the shape of the reference
image by the optical flowSi. Let us also assume that the
user defines the valuesri of the non-rigid parameters of
interest to be associated with each one of these ”example”
images.

A multidimensional interpolation technique such as
Radial Basis Functions or splines is then used to inter-
polate then example pairs(ri; (Si;Ti)) (see for instance

[5]). The mapping from the input space of non-rigid pa-
rameters to the output space of images, expressed in terms
of textures and flows, is provided by the following inter-
polation scheme which can be regarded as a learning net-
work ([4, 5]) S(r) =Pni=1 ciG(r� ri);T(r) =Pni=1 aiG(r� ri); (7)

where theci andai are vectors of coefficients, andG is
a basis function, which may be a radial basis function,
like the Gaussian or a spline, like a tensor product spline.
The network coefficientsci andai are found by solving
the linear system of equations (7) over the training data
([4, 5]).

Given a new vectorr of non-rigid parameters, the net-
work of Eq. 7 synthesizes a new(S;T) using the learned
coefficientsci andai, which is then rendered in a new
image by warpingTi according to the warping fieldSi,
effectively performing multidimensional morphing.

This simple technique can be used to control several
non-rigid degrees of freedom such as facial expressions,
as shown by [4, 5]. It can be combined directly with the
algebraic technique described earlier to control the po-
sition of the virtual camera. That is, we first perform



Figure 5: We control non-rigid degrees of freedom by com-
bining interpolation techniques with our reprojection method.
Using the four example images on the left (framed) we generate
new images as shown on the right. We can synthesize interme-
diate expressions from any viewpoint.

a multi-dimensional interpolation (non-rigid transforma-
tion) followed by the image extrapolation (rigid transfor-
mation) described in section 2.4.

Fig. 5 shows the simple case of one non-rigid degree of
freedom. Given four images, corresponding to two values
of the non-rigid parameter and two viewpoints, a virtual
image for the desired intermediate expression is obtained
by interpolation for each of the viewpoints. Then our re-
projection technique generates views of the intermediate
expression from the desired new viewpoint.

5 Conclusions
The method we describe in this paper can render novel

images of flexible 3D objects from a small number of ex-
ample images without the need of an explicit 3D model.
Its main strength is the ability to synthesize images whose
viewing position is significantly far away from the view-
ing cone of the example images.

Clearly the key step in this class of techniques is the
computation of pixel-wise correspondence between the
example images. We addressed this problem by using an
optical flow algorithm from the computer vision literature
that estimates dense sets of pixel-level correspondences.
It is well known that correspondence is a very difficult
problem which can be solved only for images that are
similar enough and do not suffer from significant self-
occlusions. 3D model-based approaches, however, suf-
fer from even worse correspondence problems, if the 3D
models are themselves estimated from a set of images.
As the experimental results indicate, our technique has a
major advantage relative to others, at least for the rigid
degrees of freedom of the camera, since it relies on pairs
of images with asmall baseline, which helps the critical
correspondence stage. Methods that estimate 3D struc-

ture are very noisy with small baselines. Although our
technique implicitly estimates the 3D structure, not do-
ing so in an explicit way means avoiding noisy steps and
therefore generating less noisy virtual images. Moreover,
morphing techniques, such as [20], require large baselines
since they cannot perform extrapolation.
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A On Tensorial Notations
We use the covariant-contravariant summation conven-

tion: a point is an object whose coordinates are spec-
ified with superscripts, i.e.,pi = (p1; p2; :::). These
are called contravariant vectors. An element in the dual
space (representing hyper-planes — lines inP2), is called
a covariant vector and is represented by subscripts, i.e.,sj = (s1; s2; ::::). Indices repeated in covariant and con-
travariant forms are summed over, i.e.,pisi = p1s1 +p2s2 + ::: + pnsn. This is known as a contraction. For
example, ifp is a point incident to a lines in P2, thenpisi = 0. Vectors are also called 1-valence tensors.
2-valence tensors (matrices) have two indices and the
transformation they represent depends on the covariant-
contravariant positioning of the indices. For example,aji
is a mapping from points to points, and hyper-planes to
hyper-planes, becauseajipi = qj andaji sj = ri (in ma-
trix form: Ap = q andA>s = r). When viewed as a
matrix the row and column positions are determined ac-
cordingly: inaji andaji the indexi runs over the columns
andj runs over the rows, thusbkjaji = cki is BA = C in
matrix form. An outer-product of two 1-valence tensors
(vectors),aibj , is a 2-valence tensorcji whosei; j entries
areaibj — note that in matrix formC = ba>. The tensor
of vector products is denoted by�ijk (indices range 1-3)
operates on two contravariant vectors of the 2D projective
plane and produces a covariant vector in the dual space (a
line): �ijkpiqj = sk, which in vector form iss = p � q,
i.e., s is the vector product of the pointsp andq.


