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Fig. 2. 

After carrying out all the steps of the proposed algorithm, we 
arrive in the implementation of the denominator given in Fig. 2. 

IV. COMMENTS 

A general decomposition theorem of a rational function of m 
variables, in terms of functions of one variable only, leads to 
implementations of m-dimensional filters with great modularity 
and parallelism. Many different implementations can be achieved, 
depending on the choice of the matrices R,. These matrices can 
be chosen to achieve filter realizability, easy stability testing or 
optimum filter implementation. Such considerations have been 
already reported in the 2-D case [4], [5]. Their extension to the 
m-D case is now in progress. 
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A Stability New Test for Linear Discrete Systems in 
a Table Form 

Y. BISTRITZ 

Abstract-A new stability testing table is presented for discrete linear 
system. The table is similar to the Routh table in size, amount of computa- 
tion as well as other features. The new table requires for a discrete system 

polynomials about half the number of entries and arithmetic operations that 
is needed in the previous Jury-Marden criterion in tabular form. 

I. THE STABILITY CRITERION 

Assume a real polynomial of degree n 

D(~)=d~z”+d~z”-~+ ... +d,,, d, > 0. (1) 
Define its reciprocated polynomial D*(z) as z”D(z-‘), that is 
D*(z) denotes the polynomial 

D*(z) =d,,z”+ dnmlzn-‘+ ... + d,,. (2) 
The polynomial D(z) can be written as the sum 

D(z)=;S(z)+$(z). (3) 

In the above S(z) and A(z) are the symmetric and antisymmetric 
polynomials, respectively, defined by 

S(z) = D(z)+ D*(z) (4) 
A(z) = D(z)- D*(z) (5) 

where a general polynomial 

P(z)= 2 p,zi (6) 
i=o 

is called symmetric if 

p*(z) = P(z) p, =I$-;, i=O,l, ... (7) 

and it is called antisymmetric if 

p*(z)=-P(z) p,=-pn-i, i=O,l, ... . (8) 

Necessary and sufficient conditions for the polynomial D(z) to 
have all its zeros inside the unit circle are imposed on the 
following table: 

a0 a1 a2 ...... (a,-21 ‘(a,,-l) (a,,) 
bo b, b, ...... (be,) (h-2) (Ld 

co Cl ...... (c,,-1) (5-d 
do d, ...... (dn-4) (dn-3) 

e, ...... (en-41 

UO (4 .. 

“0 

(9) 
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aoz”+a,z”-‘+ . . . +a,= A(z), n=2m+l 
S(z), n=2m (10) 

boz”-li blz”-2 + ... +b,-,= S(z)/(z+l), n=2m+l 

A(z)/(z t-l), n=2m 

(11) 
(ii) The next (n - 1) rows are constructed by the rule 

a0 
Ck = - ak+l ~L=a,+l+($)(b~-bt+l) 

bo &+1-h b, 

d,=- bO bk+l 

CO 
ck+~-ckj;l;=bk+~+(~)(ck-ck+l~ (12) 

and so on. 
The necessary and sufficient conditions for D(z) to have all its 

zeros inside the unit circle ]z] = 1 are 
(1) All first entries in all rows are positive 

a,>O, b,>O, .m., uo>O. (13) 

(2) The following sums defined on the first and every second 
row thereafter are all positive 

u. = a, - a, + a2 - ag + a4 - a5 + . f. + a, > 0 
u2 = co - c, + c2 - c3 + . . . + q-2 > 0 

a4 = eo - e, + . . . en-4 > 0 

uZn,>O (u~~=u~-u~ for n=2m+l, uZm=vo for n=2m). 

04) 

The proof of the underlining necessary and sufficient condi- 
tions for this stability criterion is given in [2]. Other aspects and 
extensions of the method are presented in [3] and [4]. It is noted 
that the completion of the table is a necessary condition for 
stability [4]. Therefore singular conditions (division by a vanish- 
ing entry in (12)) indicate unstable polynomial. Following are 
some remarks on the computational aspects of the method. 

Remark I: 
The odd number rows 1,3,5 . . . of the table have the symme- 

try of the first row (are antisymmetric for n = 2m + 1 and sym- 
metric for n = 2m). The even number rows 2,4,6, . . . have the 
symmetry of the second row (are symmetric for n = 2 m + 1 and 
antisymmetric for n = 2m). By symmetry and antisymmetry of a 
row we mean that its right half entries are “mirror” and “anti- 
mirror” (i.e., minus) reflections of the left half entries in accor- 

Remark 2: 
The new table involves a number of entries (in view of the 

former remark) that is exactly equal to the number of entries of a 
Routh table for a polynomial of the same degree. Other evident 
points of closeness to the Routh table are the determinant rule 
(12) of construction and the conditions in (13). The number of 
multiplicative arithmetics involved is less if the second right hand 
sides of (12) are used (noting also that a,/b,, b,/c,, . . . are 
calculated once for all the entries of the row). This number (given 
by M = 0.25n2 + n - 1 for n even or by M - 0.25 for n odd) is 
exactly equal to the number of multiplications required for the 
Routh table and is half of the corresponding number for the 
Jury-Marden table (It is assumed in these comparisons that also 
in the mentioned two other tables a similar admissible compact 
common row factor construction rule is adopted). The number of 
additive operations is higher than in the table of Routh by one 
extra additive operation per entry. However, the total number of 
additive operations required for the new table (A = 0.5n2 + 1.5n 
+ 2 for n even, A - 1 for n odd) is still comparable with the 
corresponding number for the table of Jury. This is so because 
the relative extra additive operations per entry are favorably 
compensated by the relative half factor in the total number of 
entries. 

Remark 3: 
Additional useful computational hints are the following two; 

-The entries of a row in the table may be multiplied by a 
common positive real number without affecting the results. The 
property may be convenient for hand computation. 
-The elimination of a (z + 1) factor from a polynomial (6) 
required in (11) for setting the second row involves the following 
simple additive arithmetic (performed sufficely for half length 
only). 

n-l 
P(z)/(z +1) = 1 qiz”-l-i, qo=po, 4, = Pi - 4,-‘1 

i=o 

II. ILLUSTRATIVE EXAMPLES 

Consider the polynomial 
(1) D(z) = z4 - 1.368~~ + 0.4126~~ + 0.082 + 0.0025. 

BY (4) and (5), 

S(z) =1.0021z4 -1.288~~ +0.8252z2 -1.2882 +1.0025 

A(z) = 0.9975~~ - 1.448~~ + 1.4482 - 0.9975 

= (z + 1)(0.9975 z3 -2.4455~~ +2.4455z -0.9975). 

The table is constructed using (lo)-(12), (the numbers in 
Farentheses are completed by symmetry, see Remark 1) 

a0 = 5.4062 1.0025 - 1.288 0.8252 (-1.288) (1.0025) 
0.9975 - 2.4455 (2.4455) ( - 0.9975) 

u2 = 8.4348 2.1723 - 4.0903 (2.1723) 
0.4303 (-- 0.4303) 

a, = 0.2542 0.2542 

dance to the patterns (7) and (8), respectively. The important Conditions (13) and (14) are satisfied. Therefore the polynomial 
consequences is that the entries put in parentheses in the presen- has all its zeros inside the unit circle. 
tation (9) of the table need not be actually calculated. One can (2) Consider next the polynomial 
even completely drop out the right-half part of the table once a 
familiarity with its structure has been gained. D(z) =16.5z3 -15.6z2-16.4z+13.5 



now we have which will not difficult. Moreover, the problem can become 

A(z)=3z3+0.8z2-0.8z-z numerically sensitive and prone to errors. 

S(z)=30z3-32z2-32z+30=(z+J)(30z2-62z+30). 
Starting with a matrix represented arbitrary digital network, a 

simplified eigenvalue method has been proposed [3] with consid- 

The table is erable savings in both computer execution time and storage as 

u,=4.4 3 0.8 (-0.8) (-3) 
compared to the direct computation. However, the above two 
difficulties still remain to a certain extent. 

30 -62 (30) Applying the state-space approach of analog networks [4] to 
a,=20 10 t-w digital networks, accurate and efficient determination of the poles 

-2 and zeros between any two nodes of a single-input single- 

The -2 term in the last row violates condition (13). Therefore, 
output/multi-input multi-output arbitrary digital network can be 

the polynomial does not have all its zeros inside the unit circle. 
obtained. In this approach, the number of poles and the number 
of zeros computed will be respectively equal to, and not greater 

III. CONCLUSION 
than, the number of delays in a network. For a canonic digital 

The criterion presented in this paper is useful to test the 
network, the precise number of poles and zeros are computed. 

stability of discrete systems whose characteristic polynomial is 
For a noncanonic digital network, the problem of a small number 

known. The new methodology presents a significant reduction in 
of extra pole(s) and zero(s) cancellation is negligible. Moreover, 
for a digital network, the sizes of the two matrices, from which 

size and computation relative to the Jury-Marden table [l]. The the poles and zeros between any two nodes are computed, are 
table has many features in common with the Routh table which is 
used to test the stability of continuous systems. Some properties 

small as compared to those of the direct computation and the 

of similarity are evident from this paper, additional properties are 
simplified eigenvalue method. Therefore, numerical roundoff er- 

discussed in [3]. The method can be extended to obtain informa- 
rors that may conceivably arise in the present method are negligi- 
ble. 

tion also on the location of eigenvalues of unstable discrete 
systems [4]. II. TRANSFERFTJNCTIONMATRIX 
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appropriate dimensions. 
Taking the z-transform of (1) and (2) and rearranging, we 

obtain 

(zz-@Y,(z) =zqz) (3) 

Pole and Zero Determination of Arbitrary Linear ~.(z)=GYd(z)+zzxc(z) (4 
Digital Networks where 

HON-KEUNG KWAN E=S-tT(Z’- v)-‘u (5) 

Abstract -A method for poles and zeros determination between any two F=T(Z’- v>-’ (6) 

Difficulties arise in the determination of the poles and zeros 
between any two nodes of a matrix represented [l] digital net- 
work by the eigenvalue approach [2]. This is particularly so for a 
digital network having a large number of nodes as compared with 
its number of poles and zeros. Numerical roundoff errors in the 
direct computation of eigenvalues from two large matrices render 
the problem of deciding which pole(s) and zero(s) will cancel and 

nodes of a linear time-invariant single-input single-output/multi-input 
multi-output one-dimensional arbitrary digital network is described. It G= (I’- V)-%I (7) 
could be used for frequency domain analysis. Computational results show 
that this method is computationally accurate and efficient, and requires 

H= (I’- v)-‘. (8) 
small computer execution storage. Z and Z ’ are identity matrices of dimensions N X N and M x M, 

I. hTR00uc~10~ 
respectively. 

From (3) and (4), the transfer function matrix, T(z), of a 
M-input M-output network can be expressed as 

v,(z) 
T(z) = X,(z) (9) 

=H+G(zZ-E)-‘F (10) 

= Hdet(zZ-E)+Gadj(zZ-E)P 
det(zZ-E) (11) 
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