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The location of the zeros of discrete  systems  characteristic poly- 
nomials with respect to the unit circle is  investigated. A new 
sequence of symmetric  polynomials of descending  degrees is  de- 
fined for the characteristic  polynomial  and  the  number of zeros 
inside and outside  the unit circle is shown to be  related to a certain 
sign  variation  pattern of the  polynomials in the sequence. A stabil- 
ity table based on this sequence  is  presented to obtain  the  sought 
distribution of zeros.  The  new table is  close in appearance,  size, 
and  number of arithmetic  operations to the  Routh  table used for 
continuous-time system polynomials. By comparison with the  table 
of Jury, based on the theory of Marden,  Cohn, and  Schur, the  new 
table  involves  about  half  the  number of entries  and a correspond- 
ing significant saving in computations, The  study  includes a d e  
tailed  consideration of all  possible cases of singular  conditions so 
that  the  complete information on  the  number of zeros  inside, 
outside, and on the unit circle is  always obtained (including some 
additional  information on possible  reciprocal  pairs of zeros).  Neces- 
sary and  sufficient  conditions  for a polynomial to have all its zeros 
inside  the unit circle are obtained as a special outcome.  Other 
additional necessary conditions,  that are  useful to shorten proce 
dures  when the table is  used only  for  testing  the  stability of the 
system,  are  also given. 

I. INTRODUCTION 

An important topic in the analysis  and  design of discrete 
time systems is the determination of  the location of the 
zeros  of its characteristic polynomial  with respect to the 
unit circle. The characteristic polynomial may  be found 
from the difference equations, the characteristic equation 
of the state-space  matrix  presentation,  or from the least 
common denominator of all the minors  of the transfer 
function matrix  of a reachable  and  observable  linear time- 
invariant system.  The mathematical formulation  of the  prob- 
lem is the following. Given a real polynomial 

n 

D ( ~ ) = d , + d , z + . . . + d , ~ " = d , n ( ~ - ~ ; )  , 
i=l 

d,> 0, D(1) # 0 (1) 

with known d,, i = O;.., n, find the location of the (un- 
known) zeros zi ,  i = 1; . . ,n  with respect to the z-plane 
unit circle 

c =  { z p =  &+, + €  [ - s , n ] } .  (2) 

TWO assumptions are made in (I), not one of them is 
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practically restrictive. If d, 0 then - D(z) can be consid- 
ered. If D(1) = 0 then zeros at z = 1 can  first  be  removed 
and leave a lower degree polynomial for consideration. The 
convenience in the assumption D(1) # 0 will be clarified 
later  (remark 4.1 in Section IV). 

This  paper  presents a new method to determine the 
number  of inside the unit circle (IUC), on the unit circle 
(UC),  and outside the unit circle (OUC)  zeros of D(z).  The 
polynomial D(z) will be called stable if it is a possible 
characteristic polynomial of a stable  discrete time system, 
namely, if all i ts  zeros  are  IUC. In general D(z) may  have 
a, 2 0 IUC zeros, yn 2 0 OUC zeros,  and, if a,, + y,, < n, 
additional 8, = n - (a, + y,) UC  zeros. 

Well-known  stability tests and methods to locate  the 
zeros of polynomials with respect to the unit circle were 
derived by  Schur [I], Cohn [2], Marden [3], Jury [4],  and 
Astrom [5]. These methods are related to a certain  sequence 
of polynomials of  descending degrees  that are defined for 
D(z)  from which the location of  the zeros  can  be obtained. 
The implementation of  the  procedure is best  carried out in 
a table  form. Several variations for a table  form  have  been 
proposed, including [3, p. 1511, [4, p. 981, [5, p. 1241, [8, the 
appendix], [9]. 

The  present  paper introduces a different approach  that, 
based on the definition of a sequence  of  symmetric poly- 
nomials  for D(z), finds new conditions from which the 
numbers a,, and yn can  be determined. The method 
culminates on a new stability table for discrete  system 
polynomials. This  table  has  many  features in common with 
the Routh  table,  the  more important among  these being a 
comparable  number of involved entries  and arithmetic op- 
erations. The number of IUC or OUC zeros  can  be obtained 
from this table in all cases including possible  singular cases 
that are all carefully treated. The new table exhibits addi- 
tional  information on possible  pairs  of  reciprocal  zeros  and 
zeros on the unit circle. 

The subject  that is studied in the present  paper is useful 
for the  design  of  discrete systems with complicated control 
rules  or with feedback  or feedforward delays where it is 
required to adjust  system  parameters within stable  ranges. 
For  these  purposes, the importance  of  the topic has not 
been diminished since  its introduction to control theory 
decades  ago, in spite of the presently  available fast digital 
means to calculate  the  zeros explicitely. When using 
numerical methods to determine the zeros  of a polynomial, 
the stability bounds on the possible range  of  parameters  are 
not available  and their  derivation becomes a tedious root 

ool8-9219/84/0900-1131$01.00 Ol1984 IEEE 

PROCEEDINGS OF THE IEEE, VOL. 72, NO. 9. SEPTEMBER 1984 11 31 



locus problem of  difficulty that increases rapidly with the A*,(z) = - A ~ ( z ) .  (5) 
degree  of the polynomial. It seems that the  new stability Therefore, sk(z)  is symmetric if and only if 
table for discrete-time systems  and the other results  of the 
study in this paper  and in [6] reduce, for the first  time, the 
long-standing difference that has  existed, both in size and 
computational effort, between the two acknowledged 
standard textbook methods to determine the  number of 
"stable" and "unstable" zeros of discrete  and continuous 
system polynomials,  the (z-plane) Marden-Jury and the 
(s-plane) Routh  tables,  respectively. 

The  paper is constructed as follows. Section I1 defines for 
D ( z )  the sequence of symmetric polynomials and  estab- 
lishes  relations of the number  of IUC and OUC zeros to this 
sequence for normal cases. The computational aspects  of 
the method are considered in Section Ill where the method 
is implemented by a new stability table  whose  rows are 
formed by  the coefficients of the  symmetric polynomials. 
Section IV extends  the method to all the  possible cases of 
singularities. The singularities are classified into  two types 
and a modification is provided for each type such  that the 
table can  always  be completed and  the  number of IUC,  UC, 
and OUC zeros found. In the last  section,  Section V, a 
comparison  of  the new table with the  tables  of  Routh  and 
Marden-Jury is  presented. The comparison reveals a close 
similarity of  the new table to the Routh  table  and  conse- 
quently the advantages  of the new table  over  the  table of 
Marden-Jury. The presentation also contains  subsections 
for the special case of stable polynomials (Section Il-C) and 
the application of  the new table for merely testing stability 
(Section 111-8). Three numerical examples  are included and 
illustrate the use of the table in the  normal and in the  first 
and  second  type  singular cases. 

11. THE NUMBER OF ZEROS INSIDE THE UNIT CIRCLE 

A. A Sequence of Symmetric  Polynomials 

The determination of  the  number  of IUC,  UC, and OUC 
zeros of D(z )  will be  based on the properties of a special 
sequence of polynomials that will be  associated with D(z )  
(we shall, in fact,  present  and conveniently use two closely 
related sequences).  We first define the new sequences 
formally and then establish their properties. Note that the 
other studies on the distribution  of zeros mentioned above 
are  also  based on some  associated  sequences  of polynomi- 
als.  The relative simplicity of the method in this paper 
follows from a new choice of the underlying sequence  of 
polynomials. 

Let  us denote by D*(z)  the  reciprocated polynomial of 
D(z) ,  namely, 

D * ( z )  = z"D(z- ' )  d,, + d,-,z + e . 1  +doz". (3) 

The  zeros  of D*(z) are the inverses z;' of the zeros of 
D(z) .  Thus ( a , y )  IUC and OUC zeros of D(z) are replaced 
by ( y , a )  IUC and OUC zeros for D*(z). Also note that 
D*(z) is obtained from D(z) simply  by  reversing  the  order 
of its coefficients. 

A  polynomial Sk(z) of  degree k is called a symmetric  (or 
mirror) polynomial i f  

m z )  = S k ( Z )  (4) 

while A k ( z )  is called an antisymmetric  (or antimirror) poly- 
nomial if 

k 
S ~ ( Z ) =  ~ S ; Z ' ,  s ; = s k - ; , i = O , I ; - - , k  (6) 

i=O 

and Ak(z)  is antisymmetric if and only if 
k 

A ~ ( z )  = a i l i ,  a; = - a  k - ; , i =  0,1;..,k. (7) 
i =O 

Lemma 2.7: A real polynomial Dk(Z) is symmetric  or 
antisymmetric if and only i f  it has only UC or  reciprocal 
pairs of IUC and OUC zeros. 

Proof: If zi is a zero  of a symmetric  or  an antisymmetric 
polynomial  then z;' is also its  zero.  Therefore, either zi 
and z;' are both UC zeros  or they form a reciprocal  pair of 
IUC and OUC zeros.  To prove  the converse,  assume  that a 
real polynomial D k ( z )  has only UC or  reciprocal  pairs  of 
zeros. D k ( z )  may  have i) a quadruple of  zeros formed by 
two complex conjugate pairs  of  reciprocal  zeros; ii) a real 
pair of reciprocal  zeros; iii) a complex  conjugate  pair of UC 
zeros;  iv)  real  zeros  at z = -1; v)  real  zeros  at z = 1. Each 
of cases i)-iv) contributes a symmetric  factors while zeros 
at z = 1 of  even  or odd  multiplicity contribute, respectively, 
a symmetric or  an antisymmetric  factor. It  follows that 
D k ( z )  is either symmetric  or  antisymmetric. 

An  arbitrary  real polynomial of  degree k can  always  be 
written as the sum of a symmetric and  an antisymmetric 
polynomial 

Dk(Z) = -5k(z) + ?A&) 2 (8) 

S k ( Z )  = Dk(Z) + D ? ( z )  (9) 

1 1 

where 

and 

Ak(z) = D ~ ( z )  - D ? ( z ) .  (1 0) 

The polynomial Dk(z) can,  therefore,  be further written in 
the form 

1 1 
Dk(Z) = 7 S k W  + i ( Z  - I )Sk-l(Z) (11) 

since  an antisymmetric polynomial Ak(z)  must  have a zero 
at z = 1 (substitute z = 1 into (5)) and if this zero is divided 
out, the resulting polynomial,  of degree k - 1, has to be 
symmetric (see  Lemma  2.1). 

Given the polynomial D ( z )  of (I), we  assign to it a 
sequence  of n + 1 polynomial T,(z),   T,- l (z) , .  . ., To(z) 
according to the following formal definition: 
i) 

T,(z) = D ( z )  + D * ( z )  ( 3  2a) 

T,-,(z) = [ D ( z )  - D * ( z ) ] / ( z  - I ) .  (12b) 

Obviously, T,(z) and T,_,(z) form the two symmetric poly- 
nomials in a decomposition (11) of  D(z). 

ii) The other polynomials arc constructed from T,(z) and 
T,_,(z) by the recursion 

T+, (Z)  = z - l [ & ( z  + l)Tk-,(Z) - T d z ) ] ,  

k = n , n  - 1;..,2 (13a) 

with 

6, = Tk(O)/Tk-,(O). (1 3b) 
The recursion  requires  the  normal conditions 
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T,,-;(O) + 0 ,  i = I, 2;  . -, n. (1 4) 

The construction is interrupted when a Tk(0) = 0 occurs. 
Such  singular cases will be  discussed in detail later  (Section 
IV). In the following we  assume that the normal conditions 
of (14) are satisfied. 

Next, we study some  of the properties of the sequence 
that has just  been defined. To  start with, we denote for 
k = n a n d k = n - 1  

k 
T k ( Z )  = tpz i  (1 5) 

i=O 

and 

k 
Q~(z) = 8k.z + l ) T k - l ( ~ )  - T ~ ( z )  = q { k ) ~ ' .  (16) 

i=O 

The polynomial Qk(z)  is symmetric, for k = n, since Tk(z) 
and Tk-l(z) are symmetric for k = n. Substitution of z = 0 
in (16)  leads to 

which shows  that,  for k = n, qik) = dk) = 0. Therefore, 
Tk-z(z)  in (13a) is a symmetric polynomial of degree k - 2 
(for  k = n). Repeating the above argument  for k = n - 1, 
n - 2;. ., we obtain the following: 

Lemma 2.2: The polynomials T,(z),  T,,-,(z);. ., T,(z) 
defined for D ( z )  in (12)-(14) form a sequence  of symmetric 
polynomials  of descending degrees,  where Tk(z) is a poly- 
nomial of  degree k, & = O,I;.-,n. (T,,(z) is of  degree 
n - 1 iff do = - d,,). 

Remark 2.1: We do not require T,(O) # 0 in the normal 
conditions  of (14). It is possible to have T,(O) = 0 and, 
consequently, T,,(z) of  actual  degree n - 1 and still con- 
tinue the construction of Tk(z) for k = n - 1,n - 2;..,0. 
This  special  case  occurs when D(z)  has do = -d,. This 
case for T,(z) is also the only exception (for normal condi- 
tions) for a Tk(z) not to be of full degree k.  It is seen from 
( 1 3 )  that a T,,(z) of degree less than n - 1, having  more 
than one  zero at z = 0 (caused by D(z)  having also 4 = 
-d,,-l and so forth), implies the  singular condition T,,-,(O) 
= 0 and the construction of  the  sequence  breaks down. 
The last condition of (14), To = 0 is not required for com- 
pleting the  sequence.  However, T, = 0 implies a zero at 
z = -1 which we shall  consider similarly to other cases of 
UC zeros as a singular case (of type I, see Theorem  4.2). 

Once the sequence { Tk(z)};,o is formally established 
we can  associate with D(z)  the following second  sequence 
{ D k ( Z ) } 2 - 0  defined by Do(z) = T,(z) and 

1 1 
2 2 Dk(Z)=   -Tk (z )+   - ( z - I )Tk - l ( z ) ,  k=?, . " ,n .  

(1 8) 

It is obvious from the definition  of { Tk(z)} and  Lemma 2.2 
that D(z)  = D,(z) in (18)  and that Tk(z) and Tk-q(z) play 
the roles  of the two symmetric polynomials in the  decom- 
position (11) of D k ( z )  for all k < n. 

B. The Number of Zeros in Normal Conditions 

So far we have  associated with D(z)  two sequences, a 
sequence of symmetric polynomials { Tk(z)},  uniquely 
defined by  (12),  (13) if (14) holds,  and a second  sequence of 

polynomials { D,.(z)} that is defined via { Tk(z)} by (18). 
This  subsection will show how the required information  on 
the number of IUC and OUC zeros of D(z)  is directly 
obtained'from these  sequences.  The following theorem is a 
basis for a subsequent principal theorem in this paper. 

Theorem 2.7: Given  the sequence { Dk(z)};,,, defined 
for D ( z )  by (12)) (13), and  (18), if Dk(z) ,  k n, has ( a k , y k )  
IUC and OUC zeros, uk + yk = k,  then the zeros distribu- 
tion  of D,+,(z) with respect to the unit circle is given  by 
i) 

(ak + 1 , Y d  ifsgnD,+,(I) = W D k ( l )  

i i) 

(ak ,yk  + I) if  sgnDk+,(l) = -sgnDk(l). 

The proof for Theorem  2.1 is given in the Appendix. Let 
us denote by Var { a,; - .,a,,} the number  of  sign changes 
of the sequence of real  numbers {a , ; .  * , a n } .  The  next 
theorem is our  main  result. 

Theorem 2.2: Given D(z)  and the sequence { D k ( ~ ) } ; = O  
or { Tk(z)};_,  the  number  of zeros  of D(z)  inside the unit 
circle is given by a,, = n - v,, where 

v,, = Var { D,,(I); . e ,  D0(1)} (1 9) 

v,, = Var { T,,(I);. - ,  To(l)}. (20) 

The validity  of (19) is easily deduced from Theorem 2.1, 
and setting z = 1 into (18) to obtain Dk(l) = tTk(l), k = 
0;. e ,  n, shows the  equivalence of (20) and  (19). If D(z)  has 
no UC  zeros then the number  of OUC zeros is v,,. Zeros on 
the unit circle will be shown in Section IV (Theorem  4.2) to 
imply singular conditions, therefore we  have 

Corollary 2.1: D(z)  has v, OUC zeros, no UC  zeros,  and 
n - v,, IUC zeros  whenever the construction of { D k ( z ) }  
and { Tk(z)} obey the normal conditions of (14). 

Remark 2.2: We  shall extend in Section IV the method 
to also  cover all kinds of possible  singular cases. These 
extensions will present modifications for  the  sequences 
{ D k ( z ) }  and { Tk(z)} for cases where a term Tk(0) = 0 is 
encountered. The modified sequence will always  retain 
n - v,, with v, given by  (19)  and  (20), as the number of IUC 
zeros. Corollary 2.1 will also  be shown to  hold for a larger 
class that includes some  singular cases as well, but, evi- 
dently, it cannot be  true at the  presence  of  UC  zeros. 

We  consider  next the interrelations between the two 
sequences { Dk(Z)} and { Tk(z)}. The  sequence { Dk(z)} 
plays  an  essential role in the proof of Theorem 2.1 on which 
Theorem 2.2 is based. It has  also the  common property with 
previous sequences  that  were  used to study  the distribution 
of zeros in  [I]-[5] that the  highest  degree polynomial in the 
auxiliary  sequence is the examined polynomial. The se- 
quence { D k ( z ) }  will be  also  used to prove the modifica- 
tions required in singular  cases. On the  other  hand, { Dk(z)} 
is defined via { Tk(Z)} and  Theorem  2.2  indicates  that the 
number of IUC zeros  of D ( z )  can  be equally determined 
from { Tk(z)}. A similar  state is revealed  also in the forth- 
coming discussion  of  singular cases; once a suggested mod- 
ification has  been justified by using  the sequence { Dk(Z)}, 
the same information  on the position of the zeros  can  be 
obtained equally from { Tk(z)}. In fact, a question that 
arises is why to take in practice  the additional effort  to 
calculate  also { Dk(z)}?  We  shall  use { D, (z ) }  and { Tk(z)} 
interchangeably to set up  the  results but we  shall convert 
all the results into properties of the sequence { Tk(z)}. We 

or equivalently 
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tend  to consider { Tk(z)}, rather  than { Dk(z ) } ,  as the  main 
sequence in association with D(z)  and  show, in the  next 
section, an algorithm based on { Tk(z))f-o that reduces the 
computational effort involved in the determination of the 
location of  zeros with respect to the unit circle to a mini- 
mum never attained before. 

C. Stable  Polynomials 

Stable polynomials, which have all their zeros inside the 
unit circle, form a special but very important group  of 
polynomials . D(z).  Some conclusions for a stable poly- 
nomial can  already  be  deduced from the last two theorems. 
We  shall return to this subject also in Section I l l  after 
presenting a tabular algorithm. 

Lemma 2.3 [4]:  The following are three necessary condi- 
tions for a polynomial D ( z )  given  by (1) to be  stable: 

i) d n >  Idol 
ii) D(1) > 0 
iii) (-l)"D(-I) > 0. 

4l 4l bz 
40 41 

... 
... 

Remark 2.3: In many cases it is only required to de- 
termine whether a given polynomial is stable  or not. The 
last theorem suggests  an instructive piece  of information for 
this purpose by stating that singular conditions already 
indicate an unstable polynomial. Additional useful  neces- 
sary conditions for  such cases will be brought in Section 
Ill-B. 

I l l . ,  COMPUTATIONAL PROCEDURES 

A. A Table Form 

A demonstrative way to use  Theorem 2.2 is to present the 
polynomials { Tk(z)};,o in a tabular  form. Let { Tk(z)} be 
written  in the following  explicit form: 

n- k 
T n - k ( ~ )  = bk,;zi, k  =0,1;-.,n (21) 

and construct an  array of n + 1 rows  where row  k presents 
the coefficients of Tn-k(z) in ascending  (or  descending, 
since T n - k ( ~ )  are symmetric)  powers  of z'. 

i-0 

... (b.n+z) (4,n-l) (4,") ... (47-2) , ( b , A  

... 
( b k - 7 , n + q - 4 )  

... (bk,"-d (22) 

~~ 

Proof:  The proofs of conditions i)-iii) follow easily by 
substitution  of z = 0, z = 1, and z = -1, respectively, into 
(1) and using the stability condition lzil < 1, i = l;.*,n. 
If dn > 0 is not assumed, the  three conditions should 
be  replaced  by i) ldnl > Idol, ii) d,,D(I) > 0, and iii) 

Theorem 2.3: If D(z )  is stable then Dj(z),  i = 1, . , 
n - 1, are all stable. 

Proof:  Assume D(z)  is a stable polynomial given by (I), 
but that there exists an  unstable Dk(z),  k < n. Let D k ( z )  
have ak IUC zeros  where ak < k. The building-up pattern 
in Theorem 2.1 for the  number  of IUC zeros allows Dn(z) to 
have at most n - k additional IUC zeros.  Namely, a,, = 
n - k + ak < n IUC zeros.  This  contradicts  the assumption 
that D(z)  is stable. 

Theorem 2.4: D(z )  is stable if and only if the normal 
conditions of (14) hold for the construction of { Tk(z)}Zs0 
and vn of (20) is zero. 

Proof:  The only significant complementary  statement 
here is that stable polynomials fall into the  category of 
normal conditions. We  have to show  that Tk(0) # 0 for all k 
if D(z )  is stable.  Assume that D ( z )  is stable but a Tk-l(z) 
with Tk_,(O) = 0 has occurred. We  have from (18) 

dn( -I)"D( -I) > 0. 

Dk(Z) = Z T k ( 4  + i ( Z  - I)Tk- l (Z) 
1 1 

= doQ + p z  + . . . + C p z k  

and  using for Tk(z) the notation  of (15), we  have that 
2dk) = rhk )  and 2dk) = f ik )  because Tk-,(0) = 0 means 

condition for stability of Dk(z),Idk)l > Idk)[ is not satis- 
fied. If D,(z) is not stable then by  Theorem 2.3 D(z )  
cannot be stable.  Therefore,  stable D(z)  implies normal 
Conditions. 

rhk-1) ti?;') = 0. Therefore, dk) = dk) and  the  necessary 

The first two rows  correspond to Tn(z) and T,-, (z)  

Tn(z) = & + &z + ... +4,.z" (23a) 

T,-,(z) = blo + b++ e * *  + b l , n - l ~ " - l  (23b) 

which were defined for a given D(z )  in (12). The  subse- 
quent rows  present T,-*(z), T,-,(z); -., To(z) = b,,!. These 
polynomials were defined by the recursion (13), which will 
now be replaced  by a procedure that is more  adequate for 
the table form. 

First  we redenote the 6,'s of (15b) in reversed  order 

B k  = S n - k + l ,  k = l;..,n (24) 

namely, (81,-..,6n)= (S,;..,S,) and  we  have from (13b) 
that 

8, = bk-l,O/bk,O, k=l;. .  , n. (25) 

Next, we substitute (21) into (13a) 
n-k-1  c bk+1,iZi 

i=O 

n- k n - k + l  

bk,;Zi- bk-,,;Zi 
i-0 

and  compare coefficients of similar power of z to obtain for 
k = l , . . . , n - l  andi=O;..,n- k - I  

bk+l,i = W k , i  + bk,!+l) - bk-l,i+l. (26) 
The  last two equations, (25) and  (26), form  the  sought 
procedure to construct the table (22) from its  first two rows 
(23a)  and  (23b).  These two equations can  also  be combined 
into a determinantal rule 
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This form is schematically indicated by  arrows in (22). It is 
noted,  however, that the use of (25) and (26) involves less 
arithmetic operations  than (27). The number of IUC and 
OUC zeros  can  be determined directly from the  table  by 
the  number  of  sign changes 

u,,-Var{a,;~~,u,,} ( 2 8 4  

where uk = T,,-k(I) is simply  the sum of entries in row k ,  
I.e., 

n- k 
uk = bk,;, k = O , * . * , n .  (28b) 

i = O  

The number of IUC zeros is n - u,, and  the  number  of OUC 
zeros is v,, (Corollary 2.1). 

Remark 3.1: The  symmetry  of Tk(z) for all k imposes a 
similar  symmetry on the table. The right half  of  each row is 
a mirror  reflection of  its left half. It is sufficient, therefore, 
to calculate only the left half of the  table  and to complete 
its right half  by reflection.  In fact,  once enough familiarity 
with the method has been  gained,  the right half  of  the  table 
can completely be dropped out. We are not  adopting this 
approach in this exposition, we put however  parenthesis on 
the entries of the right half  of  the  table in (22) and in the 
coming numerical illustrations to remind of their re- 
dundancy. 

Example I :  Consider the polynomial 

D ( z )  = 1  .5z5 - 1 3 . 5 ~ ~  + 2 8 . 5 ~ ~  + 3 . 5 ~ ~  - 4.52 + 0.5 

we  have from (12) 

The third  form  follows from (30) by noting that,  for a 
polynomial D(z)  as in (I) ,   D(1) > 0 is a necessary condition 
for stability and a, = T,,(I) = i D ( 1 )  > 0. 

It is instructive to have simple necessary conditions for 
stability  which become  obvious duripg the construction of 
the table  and allow its premature interruption in cases 
when the table is used only  to determine stability. Theorem 
2.3 has  already presented  one such condition; namely, the 
normality  condition of (14). Note that  the  normal condi- 
tions, T(0) # 0, i = 0; . -, n, are equivalent to the necessary 
conditions bj,o # 0, i = O; - . ,n ,  in the  table form. A still 
stronger  necessary condition can however be shown. 

Theorem 3.7: A necessary conditions for stability is that 

S i >  0, forall i = l ; . . , n  ( 3 2 )  

or equivalently (assuming d,, > 0), that all the  first  entries 
of the  rows of the table are positive 

bi,o > 0, i = 0; * * I n .  ( 3 3 )  

Proof: Substituting z = 1 into (13a) to obtain 

B k  T k k ( l )  + T k - 2 ( 1 ) 1 / 2 T k - 7 ( 1 )  > (34) 
because all Tk( l ) ,  k = 0;. ., n, must  have the same  sign if 
D ( z )  is stable. If in addition D ( z )  is given by ( I ) ,  i.e., if 
d,, > 0 then d,, > Idol being a necessary condition for a 
stable polynomial implies also  that b, = d,, + do > 0. 
Therefore,  by (25), the conditions 6, > 0 and b,,, > 0, i = 
1 ; .  ., n, are the same. 

T, (z )  = D 5 ( z )  + P(z) = 2z5 - 18z4 + 3 2 2  + 32z2 - 182 + 2 

T,(z)  = [ 4(2) - P(z)] / (z  - 1 )  = (z' - 9z4 + 25z3 - 25z2 + 9~ - I ) / ( z  - I )  

= z4 - 8z3 + 17z2 - 8 z +  1 
and  using (23) and (27) the following table is constructed: 

2 -18 32 (32)  ( -18)  ( 2 )  
1 - 8  17 ( - 8 )  (1 1 

4  -14  ( -14)  (4)  
5.5 - 24 (5.5)  

6/11  (6/11) 
35 

Calculating the sums of the  entries in each row, by (28), 

v5 = Var{32,3, -20,  -13,12/11,35} = 2. 

Therefore, D ( z )  has 3 IUC  zeros  and (as the  table is normal) 
2 OUC zeros. 

B. Stable  Polynomials 

Let  us return to the special case of  stable polynomials in 
order to  obtain  additional characterizations  of this case for 
the table form. We first  recall that the  normal conditions 
are necessary  for stability (Theorem 2.4). Necessary  and 
sufficient  conditions for stability are found by (20) and (28) 
to be the following equivalent conditions: 

a) Var { T,,(I); -, T o ( l ) }  = 0 (29) 

b) Var{aO;~~,a,} = O  (30) 

c )  a, > 0 ,  i = O ; . . , n  (assuming D(z )  with d, > 0). 

(31 ) 

Remark 3.2: The  necessary conditions of  Theorem 3.1 
are not  sufficient for stability. The polynomial in Example 1 
that satisfies  these conditions but is not stable is an  ap- 
propriate counterexample. 

Remark 3.3: An  obvious sufficient condition for stabil- 
ity is provided by the case where all the  entries in the  table 
have the same (positive) sign.  However, interior negative 
entries in a table do  not exclude stability. 

Remark 3.4: The "visual" necessary condition (33) (as- 
suming d,, > 0)  and 4, > 0, i = O , l ; . . , [ n / 2 ]  (half of  the 
conditions (31)) are also sufficient for stability. This is so 
because Si > 0 and 9 ,  > 0 implies by (34) also uZi+,  > 0, 
i = 0 , l ;  . ., [ n/2] .  Therefore if (33) is found  to be true it is 
sufficient for stability  to evaluate  and verify the signs of  half 
of  the a,'s. (A result  similar to this has  been obtained for  the 
table form in [6] from different considerations.) 

Remark 3.5: If D ( z )  is stable  and d, > 0 then all poly- 
nomials Dk(z) ,  k < n, are  also  stable  (Theorem 2.3) and 
have a leading positive coefficient dk) > 0 because, from 
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Iv. ZEROS ON THE UNIT CIRCLE AND OTHER SlNCULARlTlES 

A. Classification of Singularities 

So far we assumed normal conditions for the stability 
table. In this section the method is extended to deal  also 
with possible  singular cases when a T,(O) = 0 does  appear. 
We  already know from Theorem  2.4  that  singular cases 
always indicate unstable polynomials. However,  unstable 
polynomials, as the  numerical Example 1 shows, do not 
necessarily  lead to singular conditions in the construction 
of the table. In a complementary manner to the class of 
stable  polynomials, that implies normal conditions, we  shall 
soon identify some  special  patterns  of  zeros distribution 
that imply a singular condition (and of a special form). 

We  shall distinguish between two types  of  singularities 
and  refer to them as the “first type” or “type I” and the 
“second type” or “type 11.” The first  type of singularity 
considers  the case where Tk(0) = 0 due to Tk(z), that is, 
identically zero. In the table  form,  type I singularity is 
featured by the appearance  of a row whose  entries are all 
zeros.  The singularity of  the  second  type  considers  the case 
where Tk(0) = 0 but Tk(z) # 0 identically. In the  table  form, 
this second case is characterized by a row that has  some 
first zero  entries  (and,  consequently, some  last  zero  entries 
as well)  but is not completely vanishing. We shall  consider 
separately  these two types  of singularity and show  for each 
type how the table  can  be completed to yield the  sought 
numbers of IUC, UC,  and OUC zeros. 

6. Type I Singularity 

Let  us first reveal a close relation between the  first  type 
singularity and  zeros of D(z)  which are on the unit circle or 
appear in reciprocal  pairs. Denote by z, # 1 a possible  UC 
zero and let z, and z;’ denote a possible  pair  of  reciprocal 
zeros.  Let k > 0 denote  the smallest  integers for which 
T,(z); -., T&) are all normal,  namely, Tk+;(o) # 0, i = 
0; - . , n  - k but Tk-’(0) = 0.  Let D,(z);. ., D k ( z )  be the 
corresponding polynomials of (18). A first  characterization 
of the case is given in the  next  theorem. 

Theorem 4.1: i) If z, or z, and z;’ are zeros of D(z)  = 
Dn(z) then they are  also  zeros of 0,- ; (z) ,  i = 1; .:, n - k .  
ii) If z, or z, and z;’ are  zeros of Dm(z), k < m < n then 
they are  also  zeros of Dm+ ;(z) ,  i = 1;. ., n - m. 

Proof: Let Dm(z) be  some intermediate polynomial in 
the nonsingular partial sequence, k m n. If z, or z, 
and z;’ are  zeros of Dm(z) then they are  also  zeros of 
DZ(z). Therefore,  they are  zeros of TJz) and T, - , (z ) ,  
because from (18), 

Tm ( z )  = D m  ( z )  + DZ ( z )  (35) 
and 

Tm-l(z) = [ Dm(z) - ~ z ( z > ] / ( z  - 1). (36) 

T,(Z) = 6,(z + l)Tm-l(z) - ZT,- , (Z)  ( 3 7 )  

The recursion (13a) and its reversed form 

transfer  these  zeros downward to Tk-’(z) and upward to 
T,(z), respectively (Tk-l(z) will soon be shown to be iden- 

tically zero).  Consequently,  by (18), all the corresponding 
polynomials D,, (z) ; . . ,   Dk(z)  have  zeros  at z, or z, and 

Remark 4.1: The assumption of z, # 1 is convenient 
but  not necessary for the  development  of  the theory. It is 
not restrictive because  zeros  at z, = 1 are identified  im- 
mediately by Tn(l) = 0 and D(1) = 0 and  can  be eliminated 
prior  to the usage of the table. The  cost of the involved 
arithmetic (additive arithmetic only) is compensated  by the 
correspondingly shortened  table. If D(z)  has no zeros at 
z = 1, or  after  these  zeros are divided out, all the  elements 
in the sign  rules  (19)  or  (20)  are nonzero, not  only for the 
normal conditions discussed thus  far, but also for the exten- 
sions of the method to the  singular cases of this section. 
(This  remark clarifies the  assumption in (1) that D(1) # 0.) 

The  next theorem  establishes an ”if and only if” relation 
between UC  or  reciprocal  pairs  of  zeros  and the type I 
singularity. 

Theorem 4.2: If @ ( z )  is a factor of D(z)  of  degree k that 
contains all its  UC zeros  and  reciprocal  pairs of zeros then 
(up to a possible  constant) Tk(z) = @ ( z )  and T,-,(z) =-0 
(assuming, for the  moment, no earlier  type II singularity, see 
Remark  4.2 below). Conversely, if Tk(z) = @ ( z )  and Tk-l(z) 
= 0 then @(z)  is a factor  of D(z)  that  contains all its  UC 
and  reciprocal  pairs of zeros. 

Remark 4.2: Theorem 4.2 will be extended also for the 
case where  an  earlier  type II singularity does  occur.  At this 
stage, however, if a T ( z )  # 0 with T(0) = 0 occur  and r > k 
then T-, (z>; .  *, Tk(z) are not yet defined. 

Proof of  Theorem 4.2: If @ ( z )  is the  factor  that  contains 
all the UC  and the  reciprocal  pairs  of  zeros  of D ( z )  then it 
is a symmetric polynomial (assuming  no  zero at z = 1). 
Applying Theorem  4.1, @ ( z )  is also a factor  of all.Dn-,(z) 
and Tn-,(z), i = 1,2;. ., for which T,-;(O) # 0. Therefore, 
it must be that Tk(z) = Kl@(z), for some constant K,, and 
TkPl(O) = 0 or else, one  has from Theorem 4.1 the con- 
tradiction that the polynomial of  degree k ,  Q(z),  is also a 
factor  of Dk-’ (z) .  Since @ ( z )  has to be a factor  of D k ( z )  
these two polynomials may differ only by a constant K, ,  
namely D k ( z )  = K2@(z). Then, by (21), 

Z ; l .  

D ~ ( z )  = K , @ ( z )  = - T ~ ( z )  + T ( Z  - l ) T k - , ( ~ )  1 1 
2 

1 
2 

= - K , @ ( z )  + T ( Z  - l )Tk-l(Z).  
1 

Setting z = 0 yields K ,  = 3 K ,  because Tk-’(0) = 0 and @(O) 
# 0. Substituting back $ K ,  = K ,  implies TkW1(z) = 0. 
Therefore, the singularity is of  type I. To  prove the  second 
part, Tk(z) = @ ( z )  and Tk-,(z) = 0 imply D k ( z )  = t @ ( z ) .  
As @ ( z )  is symmetric it can  have only UC  or  reciprocal  pairs 
of zeros.  Then  by the  second  part  of  Theorem 4.1  such 
zeros of D k ( z )  are  also  zeros of D(z)  = D,(z). Therefore, 
@ ( z )  is a factor  of D(z) .   D(z)  cannot have  zeros  z,  or z, 
and z;’ that are not  included in @ ( z )  since this would 
cause an  earlier ocurrance of the  type I singularity  (by the 
first part of this theorem). 

The  Procedure for a Type I Singularity: If T,(z), + . . , Tk ( z )  
is a partial normal sequence  and the next polynomial is  
Tk-l (z)  = 0, the partial  sequence  should be continued with 
fk - , (z ) ; .  ., fo(z )  where { t(z)}f:J is the  sequence that 
corresponds to the polynomial 

D k - l ( Z )  = - P,*_,(z) (38) 
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by the usual  assignment (12), and  where Pk-l(z) is the D(z) is given  by the sum 
derivative of Tk(z) with respect to z,  i.e., 

Pk-l(z) = Ti(z). (39) 
2uk - k + Var { T,(I);.., Tk(l)} + k - v k  

In other  words, set the next two rows of the table to be the 
coefficients of u, = Var { T,(l),...,Tk(~)} + u k  

ut 

fkP1(Z) = -Pk*-l(z) - Pk-l(Z) (ma) which is equal to (41). 

and Example 2: Consider the polynomial 

fk -2 (Z )  = [ -Pk*-,(z) + Pk-I(Z)l/(Z - 1) (ab )  D(z) = z5 + 1 .8z4 - 0 . 3 5 ~ ~  + 0.82' + 1.652 +-0.5. 

respectively,  and  resume the recursion.  The  first two rows are by (12) and  (23) 

1.5 3.45 0.45  (0.45) (3.45)  (1.5 1 

0 0 ( 0) (0) 
0.5  0.65 - 0.5  (0.65)  (0.5) 

Theorem 4.3: The  number of IUC zeros of D(z)  with 
the above  type I singularity, occurring right after  Tk(z) is 
a, = n - u, where 

v,=Var{T,(1);~~,Tk(1),fk~,(1);~~,f0(1)). (41) 

u k  = Var { T~(I),~~-~(I);..,~~(I)} (42) 

and the number of reciprocal  pairs is k - u k .  
Proof: Assume  that Tk(z) = 2Dk(z) has ak IUC zeros 

then it can be  deduced from a theorem  by  Cohn  [2] ([3, p. 
1591, [4, p. 1341,  [7],  [9]) that P$-l(z)  also  has ak IUC zeros. 

The number of UC zeros is 8, = 2uk - k where 

They  lead,  using  (27), to a first  type  singularity in the third 
row. To  apply the modification for  type I singularity,  we 
note  that in this case n = 5, k = 4  and 

T,(z) = 0.52' + 0 . 6 5 ~ ~  - 0 . 5 ~ ~  + 0.652 + 0.5 

P3 (z) = T i (  Z) = 2z3 + 1 .95z2 - z + 0.65. 

The  table  has to be continued by  the  rows of the table  that 
corresponds to 

D~(z)  = -P:(z) - 0 . 6 5 ~ ~  + Z' - 1.952 - 2. 

The complete  table is therefore 

1 .5  3.45  0.45 (0.45)  (3.45) (-1.5) 
0.5  0.65 -0.5 (0.65)  (0.5) 

- 2.65 - 0.95 ( - 0.95) ( -  2.65) 
1.35 4.3 (1.35) 

-10.14  (-10.14) 
- 4.6 

Since the number of  OUC zeros of P$-l(z) is 

u k - l  = Var { fk-,(1);.., f0(1)} 

the polynomial  Tk(z)  must have u k - ,  + 1 OUC zeros.  This 
number will be  given  by u k  of (42) if we  show  that sgn Tk(l) 
= -sgn fk-l(l). We  take the derivatives of the two sides of 
Tk(z) = zkTk(z-') and  substitute in the resulting equality 
z = 1, to obtain 

2T,'(1) = kTk(1). 

fkPl(l) = -2Ti(I) = -kT,(I) 

Then the application of (40a) 

shows  that, fk-l(l) and Tk(l) have oposite signs.  Since the 
number of IUC zeros of P$-,(z) is ak = k - v k ,  where 
v k  = Y ~ - ~  + 1 (and is also  given by (42)), ak is also the 
number of IUC zeros of Tk(z).  Since  Tk(z) has either a UC 
or a reciprocal  pair of zeros, it has ak reciprocal  pairs of IUC 
and OUC zeros  and k - ?ak = 2uk - k UC zeros.  Since, by 
Theorem 4.2, Tk(z) is the factor of all such  zeros of D(z), 
D(z) has 2uk - k UC zeros  and k - v k  reciprocal  pairs of 
zeros.  Finally,  the total number of UC  and OUC zeros of 

Using  Theorem 4.3 we  conclude  that the polynomial has 
a5 = 5 - v5 IUC zeros  where 

( n  = 5) u5 = Var {10.8,1.8,  -7.2,7,  -20.28, -4.6) = 3 

i.e., a5 = 2 IUC zeros.  The  number of UC zeros Bj = 2u, - 4, 
is found from 

( k  = 4) u, = Var {1.8, -7.2,7, -20.28, -4.6) = 3 

to be Bj = 2.  The number of reciprocal  pairs of zeros is 
4 - u, = 1. The  zeros of D(z) are  at 

0.5, 0.5, 0.6 k j0.8, and 2 

which verify  our findings. The  example  also  illustrates  Theo- 
rem 4.2.  The factor  formed  by the collection of UC  and 
reciprocal  pair of zeros is 

@(z) = (z - O.S)(z - 2)[(z - 0.6)2 + 0.641 

= z4 + 1.323 - z2 + 1.32 + 1. 
It has  degree  4  and it causes a first  type  singularity right 
after the row for T,(z). The  above  factor is also  equal to 
2T,(z), again in agreement with Theorem  4.2. 

Remark 4.3: Type I singularities will occur  more  than 
once in a table if (and only if) D(z) has z, or  z,, z;' pairs 

BISTRITZ. ZERO LOCATION  WITH RESPECT T O  THE UNIT CIRCLE 1137 



of  zeros  of multiplicity higher  than  one. The number  of 
occurrances is equal to the  highest multiplicity  of a z, or a 
z,, z;’ pair  among  the UC and  reciprocal  pairs  of  zeros of 
D(z). The  above follows from  the  fact  that UC or  reciprocal 
pairs  of  zeros of  multiplicity higher  than  one are retained as 
such  zeros  also  by Dk- ’ (z )  = [ -  T;(z)]* with  multiplicity 
lowered by one. Obviously, Theorem 4.3 still applies both 
for the  table as a whole as well as for each  subtable defined 
at each interruption. Furthermore,  one  may  superimpose 
conclusions from Theorems 4.1-4.3 for each subtable and 
obtain additional information  on the multiplicities  of the 
UC and  reciprocal  pairs  of zeros of D ( z )  (or,  occasionally 
even identify them). 

C. Type I1 Singularities 

In difference from the  first  type  singularity,  the  ap- 
pearance  of a second  type  singularity is not specific to a 
special pattern  of zeros position, except  that it implies an 
unstable polynomial. A second type  singularity was defined 
as a case when T(0) + 0, T-,(O) = 0, but T-l(z) + 0 identi- 
cally. In table form the situation is as follows,  letting 
k = n - r :  

T,(z):  bk.0bk.l . . *  . . . 4 . 1  Ibk.0 

T - l ( z ) :  O*. .O,bk+, ,q  . . *  ... - b k + l . q t ) - : . q  
9 9 

(43a) 
where bk,o # 0,  and q is the number  of  first  (and,  conse- 
quently, last)  vanishing  entries in the  singular row 

b k + , , ; =  0, i =  O ; . .  ,q - 1 

bk+l,q # 0, 29 < r. (43b) 

The  Procedure  for a Type I1 Singularity: Replace the 
rows  that  correspond to T,(z) and T,-,(z) by  rows  that 
correspond to the following  modified polynomials, respec- 
tively: 

t ( z )  = T, (z )  +(z - I ) T , - , ( z ) [ z ~  - z - P ]  (Ma) 

t-,(z) = T,-,(z)[ K + zq + z - ~ ] ,  K > 2 (44b) 

where K is an arbitrary (> 2) real  constant.  Observe  that in 
the table context zq and 2-9 represent  simply shift of 
entries q positions to the right and to the left, respectively. 
Note also that the modified polynomials t ( z )  and t - , ( z )  
are  symmetric  and  of the claimed degree  and  that  the 
second substituted row i s  regular  because 

T-l(O) = bk+1.q + 0. (45 1 
The  table  can,  therefore,  be continued  with the two mod- 
ified  rows. If it i s  completed  by  polynomials 
t ( z ) ,   t - , ( z ) ; .  ., fo(z)  then according to the  next  theorem 
the number  of IUC zeros of D(z)  is given by n - v, where 

v,= Var{ T,(I),...,T;(I),~_,(I),...,~~(I)} (46) 

because the modified first two rows retain the signs  at 
z = 1 of  the two rows  they  replace 

t(1) = T,(I )  and sgnt-,(I)  = sgnT,-,(I). (47) 

Theorem 4.4: i) The modified polynomial 

b,(Z) = + t ( Z )  + i (z  - I ) t - , ( z )  (48) 

Q ( Z )  = +T,(z) + j ( z  - l )T , - l ( z ) .  (49) 

has as many IUC zeros as 

ii) D,(z) and b,(z) have the same UC zeros  and the same 
pairs  of  reciprocal  zeros (if any). 

Proof: Let K > 2 in (44b)  be written a$ K = 2 + 2r, 
f > 0. We substitute into (48) the expressions (44) for t(z) 
and t - , ( z )  and obtain 

b, (z )  = or(.) + ( Z  - 1)T,-,(z)[O.s + c + Z 9 ]  

= Dr(z)[1.5 + E + zq ]  - 0 , ? ( ~ ) [ 0 . 5  + E + z ~ ] .  

In the second equality we used D,(z) - D:(z) = (Z - I) 
T-,(z). Since E > 0, the polynomial p,+,(z) I= D,(z) 

11.5 + c + z9] has as many IUC zeros as D,(z). Consider  the 
quotient 

Since  for  any z on the unit circle 

we find that 

It thus follows  from the  argument  theorem  that b,(z) has as 
many IUC zero as P,+Jz), which has as many IUC zeros as 
Dr(z). If D,(z) has  any UC or  reciprocal  pairs  of  zero  these 
must  be  zeros of both T,(z) and T,-,(z) and therefore they 
are  zeros of b,(z) as well. This  proves  part ii) and  also 
shows  that the number  of IUC zeros is n - v, where v, is 
given by (46). 

Remark 4.4: The merit of  the  preservation property of 
the UC and  reciprocal  pairs of zeros  by the suggested  type 
II modification as expressed in part ii) of Theorem 4.4, is 
most significant in an additional way. It means that a type II 
modification does not interfere with any  features  of a later 
or earlier occurrence  of a type I singularity. Assume that 
D ( z )  has UC or reciprocal  pairs  of  zeros in a total number 
of k .  If a second  type of singularity occurs in the first n - k 
rows  (once  or  several  times),  and is treated  (each  time)  by 
the modification  of (44) then the validity of all the  features 
and  conclusions  of  the  previous  subsections with regard to 
the first type of singularity are  guaranteed  by  part ii) of 
Theorem 4.4. The UC and  reciprocal  pairs  of  zeros still 
produce a row of  zeros right after the polynomial f k ( z ) ,  
now the  result of one  or  more  type I I  modifications, and 
the type I modification may  be applied to continue the 
table.  This polynomial f k ( z )  is still, as stated in Theorem 
4.2, the  factor of all UC and reciprocal pairs of zeros  of 
D(z)  and the number of  these  zeros is given by  Theorem 
4.3. Note that this  remark  removes  the  temporary restriction 
imposed on Theorem 4.2 (see Remark 4.2 there). 

Example 3: Consider  the polynomial 

D ( z )  = 6z4 + 5 2  + 8z2 + 72 + 2.  
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The first  three  rows of the table are 

R, 8 12  16 (1 2) (8) 

R2 4 2 (2) (4) 
R3 0 -8  (0) 

The third  row is singular  and q = 1. 
Applying the type I1 modification of (44) with say K = 2.5 

(we use this time a self-explanatory notation for direct 
operations on rows  instead of using the Tk(z) polynomials). 

R 2  + R,  + ~ ' ( 0 , 8 ,  -8,O) - ~ - ' ( 0 , 8 ,  -8,O) 

=(4,2,2,4) +(0,0,8, -8)   - (8 ,  -8,0,0) 

= (-4,10,10, -4) 

R3 4 2.5(0, -8,O) + ( O , O ,  -8 )  +(-8,0,0) 

= ( - 8 ,  -20, -8 ) .  

The modified resulting table is 

8 12 16 (1 2) (8) 
- 4  10 (1 0) (-4) 

-8  - 20 ( - 8 )  
4 (4) 

4 
v, = Var{56,12, -36,8,4} = 2. 

Therefore, D(z) has 2 IUC zeros  and (as no first  type 
singularity is apparent) 2 OUC zeros. 

D. A  Unifying Summary of  the  Approach  for  Normal  and 
Singular Cases 

We  end the presentation of the  method of this  paper 
by unifying and combining our  main findings. Allow 
T,(z), T,_,(z);-., T,(z) to present a complete  sequence of 
both normal  and modified polynomials. That is, a Tk(z) may 
be either a normal  polynomial  or  the  result  or successor of 
second  or  first  type modifications 

We have shown the  following: 
1) The number of  IUC zeros  is  always  given  by a, = n - v, 

u, = Var { T,,(I);..,T~(I)}. (50) 

In other words,  Theorem 2.2 holds  for  normal,  type I, and 
type II singular conditions. 

2) If a type I singularity is  not  apparent  then  there are no 
UC zeros  and  consequently  the  number of OUC zeros is  v, 
(or Corollary 2.1  holds  for  normal  and  type I1 singular 
conditions). 

3) If a type I singularity  occurs  because  of Tk- l (z )  = 0, 
prior to substitution, then  the  number of UC zeros is  
8, = 2v, - k 2 0, where 

where 

Y k  = Var{  Tk(l),'.',To(~)} (51 1 
and,  consequently, the number of OUC zeros for this case 
is yn = v, - 8, (Theorem 4.3). 

4) Normal conditions and v, = 0 are  necessary  and suffi- 
cient for  stable  polynomials  (Theorem 2.4). 

The  possible  combinations are conveniently summarized 
also in Table 1. 

Table 1 A summary for  Normal  and  Singular Cases 
( vn  and v k  are given  by (50) and (51)) 

No. of Normal  Normal  Normal  or  Type II 
Zeros and  Type II and  Type I 

IUC n - v , s n   n - v , < n  
uc 

n - v Y , <  n 
none  none 8, = 2 v ,  - k 2 0 

OUC v, 2 0 v, > 0 V" - 8, t 0 

V. COMPARISON WITH OTHER STABILITY TABLES 

This  paper  presents a new method to determine  the 
distribution with respect to the unit circle of the zeros of a 
discrete  system  polynomial D(z). The distribution is efii- 
ciently obtained  by applying the new stability table. A 
worthwhile concluding  discussion would be a comparison 
of the new table with the former  table of Marden  and Jury 
and with the table of Routh that is designed to determine 
the distribution of zeros of a continuous-time system poly- 
nomial H ( s )  in the left and  the right halves of the  s-plane. 
The  comparison with the table of Routh is done  first  and it 
exhibits a remarkable  formal similarity as well as analogous 
interpretations. The indicated similarity with the Routh  ta- 
ble also  makes  the new table easy to remember.  The 
subsequent  comparison with the Marden-Jury  table  em- 
phasizes,  among other advantages, the significant  computa- 
tional saving  provided  by  the new table. 

A.  Comparison  with  the  Routh Table 

We  assume the familiarity with the  celebrated  Routh 
table  and  present the following itemized comparison. 

i) Structure: The new table has for D(z)  the size and  form 
of the Routh  table  for a polynomial H(s)  of a same  degree 
n. The two tables  have n + 1 rows  and the same number of 
entries in respective  rows (counting for  the new symmetric 
table only its left half  entries).  This  results in the same total 
number  of  entries to be  calculated. The first two rows on 
the new table are formed  by  the  coefficients, in ascending 
powers of z, of + [ D ( z )  + D*(z)] and t [ D ( z )  - D*(z) ] / (z  
- 1) (where the $ factor is added to emphasize  the  similar- 
ity). The first two rows in the Routh  table are formed  by the 
coefficients, in ascending  powers  of x = s2, of t [ H ( s )  + 
H( -s)] and + [H(s )  - H(-s ) ] /s ,  a self-evident  analogy is 
apparent.  The  next  rows in the new table are obtained  by 
the determinant rule (27) which is slightly different from 
the determinant rule for the Routh  table in having b k , ;  + 
b k ,  , i l  instead  of  an only b k , ;  term. 

ii) Arithmetics: The construction of the two tables re- 
quires  the calculation of the same number of entries.  The 
involved number of elementary multiplicative operations is 
exactly  equal.  The  number of elementary  additive  operation 
is higher  by  one operation per  each  entry in the new table 
(due to the  above mentioned difference and the setup of 
the first two rows). 

iii) Analysis: The  number of "unstable"  zeros is de- 
termined  by the number of sign  changes of a sequence of 
n + 1 numbers;  given  by (28) in the new table  and  by the 
entries in the first column (nonsingular  situations in both 
tables is tacitly assumed although the comparison  can  be 
extended to appropriate modifications, etc.). 

iv) Singularities: The  meaning  and the treatment  of the 

BISTRITZ: ZERO LOCATION WITH RESPECT T O  THE UNIT CIRCLE 1139 



two types of singularities in the new table  can be shown to 
be in close  parallelism with the  Routh  table.  This  is so both 
for the interpretation of the first  singularity  and  its  treat- 
ment  by differentiation and  for the removal of the second 
type  singularity  by row shift operations. 

v) Application as Stability Test  Tables:  For both tables no 
sign  variation  indicates stability and a singularity  indicates 
instability. Some similar  “shortcuts” to indicate instability or 
stability may  also be indicated. A negative  first  entry implies 
instability in both tables while positivity of all entries is 
sufficient for stability.  However, a warning  against a wrong 
impression of a complete similarity should  be  given.  After 
all, the two tables do not  function identically. (For  example, 
a negative entry anywhere in the  Routh  table implies insta- 
bility whereas  an inner negative  entry in the new table  does 
not exclude  stability.) 

B. Comparison with the Mardewjury Table 

The  Marden-Jury  table is different in structure  and inter- 
pretation  from  the present  table. It is  suggested in several 
variations by Marden [3], Jury [4],  Astrom [5], modifications 
by Jury [8]  and  Raible  [9].  They all have n + 1 rows (not 
counting a reverse-order  image by  which each row is con- 
veniently followed  in [3]-[5]  and  [8]).  The first row has 
n + 1 entries formed by the coefficients of D(z) and  each 
succeeding row has one  entry less than i ts  predecessor 
(unlike the new table  that has,  say for n = 2m, rows with 
rn + 1, m + 1, m, m; . ., etc.,  entries).  To  get  an  estimate of 
the total number of additive and multiplicative operations, 
denoted  by A and M, respectively,  we  shall  proceed as 
follows. The total number  of  entries in the old table is 
0(0.5n2), not  counting reversed  older  rows,  whereas the 
number  of  entries in the new table is 0(0.25n2), not  count- 
ing its right half reflection. (The notation f = O ( a n 2 )  i s  
used  here to mean  that f /n2 tends to a for  large n.) The 
number of additive operations is  one  per  entry in any of the 
versions  [3]-[5],  [8],  [9]  by which A, = 0(0.5nL). The num- 
ber of multiplicative operations is two per  entry in [3]  and 
[4], giving M, = O(n2),  three  per  entry in [8] with M, = 
O(1.5n2), and only one  per  entry in [5] and  [9],  by which 
M, = 0(0.5n2). The new table requires two additive opera- 
tions per  entry but has half  the  number of entries,  therefore 
A ,  = O(0.5n2).  The  number of multiplicative operations in 
the new  table is one per entry  and  therefore M, = 

0(0.25n2). The number of multiplications is one fourth of 
that in [3],  [4],  one  sixth of that in [8],  and  one half of that in 
[5]  and  [9].  Since the exact  expressions  for A and M are in 
both tables  quadratic in n, the  computational  advantage of 
the new table is already  apparent  for  polynomials of large 
degrees.  The new table  exhibits  significant  computational 
saving  also  for low degree  polynomials.  However, it is 
difficult  to set unobjectionable exact  figures  for the number 
of additive and multiplicative operations  for the two differ- 
ent tables  and hold a precise  comparison.  The difficulties 
stem  from the following three  reasons: i) Each table  applies 
differently for only testing stability and  for the more  general 
zeros location problem. ii) Each table  admits certain short- 
cuts (not discussed  here for the new table),  advantage of 
which can be  taken by an experienced  user. iii) There  exists 
in  both tables a tradeoff, to some extent,  between  the M 
and A values.  Fortunately,  the  variations implied by i)-iii) 
seem to influence only the linear  parts  of the expressions 

for  the A‘s and M s ,  leaving  the  leading coefficients unaf- 
fected and the above  obtained  estimates  valid. 

The  procedure for counting the number of IUC,  UC,  and 
OUC zeros is considered to be  by far more effective in the 
new table then  the procedure of [3]  or  [4].  The count  of the 
OUC zeros, at least in normal cases,  by a simple  sign 
variation rule is possible in the tables of [8]  and  [9]. How- 
ever,  these  tables still involve twice the number of entries 
and in [8] the amount of computation is even  higher  than in 
[4].  The  singularities in the old table are, like in the new 
one, of two types; a type I that is associated with UC  or 
reciprocal pairs of zeros and a complementary  type I I .  The 
removal of the type I singularity by  differentiation is due to 
Cohn [2] and is  used in the new table  essentially in the 
same  way as in [3],  [4],  [7], and [9], where in [A  the possibil- 
ity  of UC  and  reciprocal  pair of zeros of multiplicity higher 
than  one is also  mentioned  (our Remark  4.3).  Since,  also in 
the old table, a type I singularity follows a symmetric row 
(an antisymmetric, if z, = 1 is a zero of odd  multiplicity of 
D(z)), the always  symmetric  rows of the new table retain 
the  “factor two” advantage  for  type I singularities, in the 
sense that in the  new table  the two next  rows,  compared to 
one, are gained  through the differentiation. Possibly,  more 
significant is the  contribution in the treatment  for the 
second type singularity.  The modification for the type II 
singularity in the new table is simple (shifting and  summing 
up rows), it always  removes  the  singularity  and is computa- 
tionally less consuming  than  the  respective  treatments in 
[3],  [4],  [9]-[12].  The  removal of the singularities  by  perturba- 
tion  of the polynomial, of the unit circle,  or  by the c-method 
also  suggested in [4],  [IO]-[I21 is  a great  deal less satisfactory 
and  incomplete.  Not less important than  the simplicity of 
the second modification in the new table is its integrity 
with the first type modification. Unlike an  c-method  or the 
radial perturbation  of the z variable,  the new type II modifi- 
cation does not interfere with a type I singularity,  nor  does 
it complicate, by changing  zeros  positions, a subsequent 
identification  of the UC  or  reciprocal  pairs of zeros.  The 
second modification in the new table is  close in this sense 
to (but is more direct than) a corresponding modification 
due to Cohn [2]  (also cited in [3, p. 1581,  [4, p. 1311, and  [9]) 
that similarly has this  property in combination with a type I 
singularity treated by differentiation. 

VI. CONCLUSIONS 

The  paper has presented a new method to determine the 
location of the zeros of a discrete  system  polynomial with 
respect to the z-plane unit circle. The method is based on a 
sequence of symmetric  polynomials  and  the analysis is best 
carried out in a tabular formulation. The new stability table 
is shown to be  very  similar to the Routh  table.  Its both 
formal and  meaningful similarity to the Routh  table  makes 
the new table easy to remember.  A  thorough  analysis  and 
treatment of all possible  singular cases is included such  that 
the sought information on the number of zeros  inside,  on, 
and  outside the  unit circle  can  always  be  obtained (as well 
as additional information  on the number,  location,  and 
multiplicity of UC and  reciprocal pairs of zeros).  The new 
table has half the size  and  involves  less computation than 
the Marden-Jury  table. (In certain  possible digital imple- 
mentations the main reduction in arithmetics  being in the 
number  of multiplications becomes  even  more significant 
because the time needed to a multiply is often greater  than 
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that needed for an addition). The  systematic  consideration 
and  removal of all possible  singularities is also  considered 
superior  over  corresponding  treatments  for  the  former  ta- 
ble. This  can  best  be  demonstrated  by  devising a highly 
singular polynomial (e.g., with multiple UC or  reciprocal 
pairs of zeros plus type I1 singularities)  or  by  resolving the 
numerical illustrations in [4],  [IO]-[12],  by the method of the 
paper. 

The  table of this  paper  may  be  viewed as an improved 
version of a table,  similar in size and  computations,  that has 
been  presented in [6]. The  table in [6] has been  derived 
based on a new  continued fraction expansion in the  z- 
domain and  presents  (only) necessary and sufficient condi- 
tions for stability. A modified version of the  continued 
fraction form of [6] can  also  be  associated with the table in 
this paper.  The  possible  association of a continued fraction 
expansion to the new table is one  more link  of similarity 
between the new table and the Routh  table (which is well 
known  to be  equivalent to certain  analogous  s-plane CF 
expansions, [6]) and a difference from  the  Marden-Jury 
table. It may  "explain" the closeness of the new table to 
the Routh  table  and as a result  its  advantages  over  former 
z-plane stability tables. 

APPENDIX 
PROOF OF THEOREM 2.1 

The proof is based on the arugment  theorem.  To  prove 
parts i) and ii) we  show,  respectively, that a) If sgn Dk+,(l) 
= sgn D,(1) then a,+, = uk + 1 and  b) If sgnD,+,(I) = 
-sgnD,(I) then = uk. Note that case  b)  means that 
Dk+,(z) has P k + ,  = B k  + 1 OUC zeros  because D k & , ( z )  
has no UC zeros if Dk(z) has no UC zeros, uk + yk = k (see 
Theorem 4.1). 

The  symmetric  real  polynomials Tk(z)  for  values of z E C, 
say z = e'#, take the forms 

Gm+,(e'*) = (e'+ + l)e"'iJ'R2,(c0s$) (A I )  

and 

~ ~ , ( e ' + )  = e"''+/? 2m ( COS$)  (A2) 

for odd and  even k 's ,  respectively,  where /?, , (x)  and 
d 2 , ( x >  are real polynomials in the real  variable x = cos+. 
This  can be shown from the fact that if zk # -tl is a zero of 
Tk(z)  then z i '  is also a zero of Tk(z).  Note  also  that from 
the symmetry of Tk(z)  and  the  recursion (13) we  also  have 
that at z = -1 for  all m = 0,1, .. . 

T2rn+1(-1) = 0 ( A 3 4  
and 

G,( -1) = To (a common constant).  (A3b) 

Consider for the proof  of part a) the quotient 

We proceed to show that as z traverses the  unit circle C, 
f(z) does not encircle the origin. The proof is by verifying 
that for any $o E [0,2r] for which f(ej#o) is real it has a 
same (positive)  sign.  We  have to consider  separately  the 
cases of even  and odd k's. So, assume first  that k = 21-17 - 1, 
we  have that at z = 1 ($ = 0,2a) 

where f(1) > 0 because of the sign  assumption.  Similarly at 
z = -1, using (A3) we find 

To  check  for  values of z = e'+ other  than  z = ?I, we 
substitute (AI) and  (A2) into (A4).  After dividing out a 
factor elm+, common to the numerator  and  denominator, 
the resulting expression is 

f(e'+) = {R2m-,(.)[cos$ +;sin$ + I] 
+ / ? , , - 2 ( ~ > [ ~ ~ ~ ~  + ;sin$ - I]) 
/ {  i*rn(.) + 2;sin4~2m-2(.)}. ( ~ 7 )  

f (e j# )  is real  for  values of +o for which either the two 
imaginary  or the two real  parts  become  zero  simultaneously 
in the numerator  and the denominator. The two imaginary 
parts  may  become  zero when 

~ in~ , [R~ , -~ (cos$~)  + / ? 2 m - 2 ( ~ ~ ~ $ O ) ]  = 0 (A8a) 

sin$oR2,-2(cos$,) = 0. (A8b) 

Solutions to (A8) other  then sin$o = 0 (z = $1) require 
R2,-2(cos$,) = d,,-2(cos$o) = 0 and imply that D,(Z)  
has UC zeros, D2,-,(e'") = 0, against  the  assumption. 
Next,  the two real parts  may  become  zero  for  values of $, 
that solve 

(cos$O + I ) R 2 r n - 2 ( ~ 0 ~ $ 0 )  

+(cos Go - 1) /?,,-,(cos $o) = 0 (A9a) 

/?2,(cos$,) = 0. (A9b) 

If z # ?I then  COS+^^ < 1, the next quantity is positive 

c = (1 +  COS+^)/(^ - COS+O) > 0 (A10) 

and (A9a)  can  be rewritten as 

/?Zm-2(C05$O) = CR,m-,(cos$,). (All) 

To see what  real  value  takes f(e'#) for q0 that  solve  (A9)  we 
substitute ( A l l )  and  (A9b) into (A7) to  find 

So, we  have shown  that  there is no  z E C for which f(z) 
takes a negative real value.  Applying the argument  theorem 
Dk+l(~) has as many  IUC  zeros as zD,(z),  namely, = 
uk + 1. By placing in (A4)  the  expression (AI), (A2) of 
Tk-,(z), Tk(z) ,  Tk+l(z)  for k = 2m it can  similarly be shown 
that f(e'+) never  takes a negative  real  values  and  the  same 
conclusion ak+, = ak + 1 is reached. 

The proof of part b)  uses instead of (A4)  the quotient 

The proof then proceeds in a similar  manner. First it is 
shown  that  by the sign  assumption in b), g(z) is negative at 
z = $1. Next,  for  z # $1 the two imaginary  parts  cannot 
be  simultaneously  zeros  for  that would again imply UC 
zeros  for Dk(z). The two real parts may  become  simulta- 
neously  zeros only at  values of $o for which 
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where E > 0 is again  given  by (AIO). Since g(z) takes  for 
z E C either  complex  or  negative  real  values, it cannot 
encircle the origin as z traverses C and  therefore D k + , ( z )  
has as many IUC zeros as Dk(z) ,  namely, Q ~ + ~  = ak. 
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