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ABSTRACT

The paper revises and simplifies Jury’s tabular stability test
for two-dimensional (2-D) discrete-time systems. The tabu-
lar test builds for a 2-D polynomial of degree (n1,n2) a ‘2-D
table’ - a sequence of nm» matrices or equivalently 2-D poly-
nomials and then examines its last entry - a 1-D polynomial
of degree 2n1n2 for no zeros on the unit circle. Analysis of
the cost of computation for the test is performed and shows
that it is of O(n®) (n1 = nma = n), compared to previous
tabular tests of exponential complexity. Next, we propose
a new test based on telepolation - telescoping the last entry
of this 2-D table by interpolation. The table’s construction
is replaced by ning + 1 stability tests of 1-D polynomials
of degree ni or nz. The resulting new 2-D stability test is
shown to require a low O(n*) count of operations.

1. INTRODUCTION

Stability of two-dimensional (2-D) linear discrete-time (lin-
ear shift invariant) systems arises in many applications.
The problem has been reviewed in several texts including
[1] [2]. The key to stability determination of 2-D discrete
systems is an efficient solution for the next problem.

Problem statement. Given a two-dimensional (2-D,
bivariate) polynomial

D(ZlaZZ):[1a217---72?1]D[1aZ2;~-'7232]t (1)
of degree (ni,n2), where D = (d; ;) is a real coefficient
matrix, determine whether it does not vanish in the closed
exterior of the unit bi-circle, viz.,

D(Zl,ZQ) 75 O,V(Zl,ZQ) € ‘_/ X ‘_/ (2)

Here, T ={z : |2| =1} , U={2: |2| <1} , V = {z:
|z| > 1} are used to denote the unit circle, its interior, and
its exterior, respectively, and the bar denotes closure, V =
V UT. (Some other notations are also used in the literature
and may require a reversion of the coefficient matrix to
conform with the present convention [3].)

A 2-D polynomial D(z1,22) that satisfies (2) will be
called stable. Similarly a 1-D system polynomial p(z) such
that

p(z)=[,2,...,2"p#0 VzeV. (3)

will too be called stable. The above arranged similarity in
the definition of 1-D and 2-D stable polynomials is useful
for the solution of the problem but at the same time it hides
some theoretical and practical difficulties in testing stability
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of higher dimensional systems that are not existent in the
1-D case [1] [2].

The current paper focuses on the 2-D stability test pro-
posed in [4] [5]. This 2-D stability test evolves from Jury’s
so called modified 1-D stability test proposed by him in sev-
eral versions in the last four decades. In a classification of
the Schur-Cohn Marden-Jury (SCMJ) class of 1-D stability
tests into four types these modified test fall into the C-type
category [6]. The special property of C-type tests is that
they associate the tested 1-D polynomial with stability ta-
bles that contain at specific locations entries identical with
the principal minors of its Schur-Cohn Bezoutian matrix.
This property has allowed [4][5] to adopt Siljak’s simplifi-
cation for determining positive definiteness of a polynomial
matrix [7] and obtain 2-D stability tests with just a single
so called ‘positivity test’.

We first provide a concise and simple setting for Jury’s
2-D stability test. Our version consists of an algorithm to
construct the 2-D table and accompanying stability theorem
that answer the stated problem. It differs in notation and in
structure in that it uses our convention in other recent works
on 2-D stability (cf. [3]), and in that it follows the basic
form for C-type 1-D tests in [6] that is not identical with
any of the previous modified Jury’s C-type 1-D tests. (Our
basic test form carries the principal minors of the Schur-
Cohn matrix as the leading coefficients of the associated
sequence of polynomials. For precise relations with all other
published versions, see [6]).

We carry out for the first time an approximate count
of operations for this 2-D stability test. It shows that the
test is of O(n®) complexity (for n = n1 = n2) - a defi-
nite advantage over previous 2-D tabular stability tests of
exponential complexity. Examination of the accompany-
ing stability conditions reveal that the table is constructed
merely to reach its last entry - presented by a symmetric
polynomial of degree 2nin» that has then to be tested for
no zeros on the unit-circle. This last task can be carried
out in O(n*) (again for n1 = n» = n) operations. However,
the tabular test has an overall O(n®) complexity because it
is dominated by the cost of the table’s construction.

Subsequently, the paper proceeds to its main new con-
tribution - it obtains a new 2-D stability test whose overall
cost of computation is O(n4) operations. This improvement
is achieved by circumventing the table’s construction and
replacing it by a finite number of low degree 1-D stability
tests from which the last entry of the table can be recovered
by an efficient closed form interpolation formula. We call
the proposed approach telepolation, standing for telescoping



by interpolation (the last entry of the sequence). A proce-
dure to carry out the new 2-D stability test is detailed and
its cost of computation and additional merits are evaluated.

2. THE 2-D AND ITS 1-D COMPANION
TABULAR STABILITY TEST

2.1. notation

The notation that we use here has been detailed before
on several occasions, e.g. in [3]. Briefly, it admits inter-
changeable use of polynomial and array notation. For ex-
ample, a matrix D may be associated with a 2-D polyno-
mial by (zl,zg) = 7,'Dz2 as in (1). The vector z :=
[1,2,...,2%...]" is of length depending on context. This
notations is equally used to associate vectors with a 1-D
polynomials, e.g. p with p(z) = z'p. The letter s is reserved
for s € T. D¥ := JD*J and e,lc := Jej, denote matrix and
vector (conjugate) reversion, where J is the reversion ma-
trix (a matrix with 1's on the main anti-diagonal and 0's
elsewhere), and x denotes complex conjugate. The notation
can be used to set the 2-D tabular test algorithm in also a
matricial notation that is more transparent for programing
by a vector oriented language like Matlab. For brevity we
shall adhere here mostly to the polynomial pan of the no-
tation which is also the more instrumental presentation for
the derivation and of the new results.

2.2. The 2-D tabular test

Our formulation for the 2-D stability test of [5] consists of
the next Algorithm 1 and Theorem 1.

Algorithm 1. A 2-D table that consists of a sequence
of matrices {Cr,, m =n—1,,.. 0} or equivalently, a se-
quence of 2-D polynomials {C =3 o Cimk(s k.
m=n—1,...,0} is assigned to the tested D(z1, 22) (1) re-
garding it as a polynomial in z with coefficients dependent
on s, viz., =Y r_,di(s)z", n:=n,, and using the
following recursions.

2Cno1(s,2) = diy(s)D(s, 2)do(s)D* (5, 2), qn-1(s) =1 (4a)
Form=n-1,...,1do:
; s ) = Cim]m (8)Crm (s, 2) — c[m]o(s)Cfn(s,z)
Crmles) = ()
qm—1(8) = Cmim(8) (4b)

The division by the ¢ (s) is exact. Namely, gm(s) is
a factor of the numerator 2-D polynomial that it divides.
The polynomials Cp,(s,2), m =na—1,...,0, are of degrees
(2(n2 — m)ni, m).

Theorem 1. [Stability conditions for Algorithm
1.] D(z1,22) is stable if, and only if, the following three
conditions hold.
(i) D(2,1) A0Vz €V
(ii) D(1,2) Z0Vz €V
(iif) €(s) :=Co(s,z) = cpopp(s) #0 VseT (5)
where €(s) is a symmetric polynomial in s (only) and its de-
gree 8 2nina.

It can be shown that condition (iii) is replaceable by
positivity condition on T of €(3) := s~ Me(s), M = nina,
viz.

e(5) >0 VseT . (5")
Note that €(3) is real for s € T because € = Je.

2.3. Companion 1-D stability test

The next algorithm is the basic form for the C-type tests
in the classification of the SCMJ tests in [6].
Algorithm 2. Assume p(z) (3) assign to it a sequence

of polynomials {em(2), m=n-—1,...,0}, where cn(2) =
o Cm ,iz" as follows.
zen-1(2) = prp(2) — pop* (2); u—1 =1 (6a)

Form=n—-1,...,1 do:

_ i
zcmfl(z) _ Cm,mcm(z)q Cm,OCm(Z) S m1 = Cmm (Gb)
m

Remark 1. Algorithm 1 corresponds to applying Al-
gorithm 2 to ps(z) = D(,2) := s "1/2D(s, z) regarded as
a polynomial in z with coefficients dependent on s (form-
ing, so called, ‘balanced polynomials’ - polynomials that
extend to equal degree in s and s~! or s'/? and 571/2) and
assumed to take values s € T. This way, conjugation of
a scalar ¢, corresponds to reversion of the vector cpmyj.
Nevertheless the substitution of § by s as done in Algo-
rithm 1 is permitted. It can be shown that both choices
yield the same sequence of matrices {Cr,,m =n—1,...,0}
(cf. Theorem 3 below). As a matter of fact, a matricial
form of the algorithm dropping all variables (following the
approach used for the 2-D tabular test in [3]) provides the
most transparent presentation for programming this tabu-
lar test. However the polynomial interpretation is the more
instrumental presentation for deducing Theorem 1 from the
next Theorem 2 and subsequently for simplifying the test
by interpolation.

Theorem 2. [Zero location for Algorithm 2.] If
Algorithm 2 does not terminate prematurely then p(z) has
(no zeros on T) v zeros inV and n—v zeros in U, where v is
given by number of sign variations in the leading coefficients
sequence

, 00} (7)

v=Var{l,cn-1n—1,Cn-2,n—2 , ---

A proof for Theorem 2 is available in [6].

Remark 2. It is also proved in [6] that the leading
coefficients of the sequence of polynomials in Algorithm 1,
{¢m,m, m=mn—1,...,0} constitute the principal minors
of the Schur-Cohn matrix of p(z). Evidently, Algorithm 2
does not terminate prematurely if and only if all the prin-
cipal minors are not vanishing (the Schur-Cohn matrix is
strongly regular).

The relation of the modified Jury’s test with the princi-
pal minors of the Schur-Cohn Bezoutian were used, in com-
bination with Siljak’s simplification of testing positivity of
the polynomial Bezoutian [7], to prove the single positivity
condition in [5]. A proof for Theorem 1 can similarly be
obtained, after adding to this batch the simplification for



the condition (2) obtained by Huang and Stintzis. (The
Huang-Strintzis simplification is a starting point for virtu-
ally all 2-D stability tests, see [1, Theorem 5(2,3)], [2] or
[3]). Siljak’s simplification admits skipping the examina-
tions of the first n — 1 conditions in the next collection of
necessary conditions for 2-D stability.

Cmpm(s) 20 Vs€T , m=n—1,...,0 (8

or the equivalent ‘positivity’ conditions

Cmim(8) >0 VseT , m=n—1,...,0 (8)
The fact that these are necessary conditions for stability fol-
lows from the correspondence between the set cpm,m < n
in Algorithm 2 and the symmetric vectors cpy],, in Algo-
rithm 1. ¢y (8) = s~ ("27™mer o (s) are real for s € T
because c[y,}, are symmetric vectors. In fact, ¢,im(3),
m =n—1,...,0, are the principal minors of the Schur-Cohn
Bezoutian for ps(z) := s ™"/2D(s, z) and in particular e(3)
is its determinant.

It is interesting to estimate the cost of computation for
this 2-D stability test. An approximate count of opera-
tions is carried out next that keeps only leading terms in
a polynomial expression for the precise count (all counts
are of polynomial order). The notation O(n},) is used
here and throughout to indicate that terms with powers
ni'ny?, ar + as < k are discarded. Recall that convolu-
tion/multiplication of two vectors/polynomials of length/
degree ¢1 by {> requires approximately ¢1 x {2 operations.
Similar count of operations is required approximately also
for deconvoloution/division of a polynomial of degree £; +£»
by its factor of degree £; or £5. Step k of Algorithm 1 re-
quires for each of the (n2 — k + 1) columns of the matrix
Cry—k two convolutions of 2kni by 2kn: followed by de-
convolution of 4kn; by 2kn;. The result is approximately

e (2% 244 % 2)k?n?(n2 — k) operations that after ne-
glecting lower power terms gives %nfn% + O(n},). The
arithmetic costs associated with the examination of condi-
tions (i) (ii) (iii) in Theorem 1 are by comparison of neg-
ligible orders of O(n?), O(n3) and O(nin}), respectively.
Thus the total cost of the 2-D tabular test is approximately
%nfng +0(n} ).

The paper [5] emphasizes the fact that the test ends
with a single ‘positivity test’ for a symmetric polynomial
of degree 2n1n2 compared to a much higher degree polyno-
mial in previously proposed tabular tests. Indeed, the 2-D
test of Maria and Fahmy [8], that was the first proposed
tabular test, as well as subsequent tabular tests, includ-
ing several previous works by Hu and his coauthors (listed
in [5]), all end with a (symmetric) polynomial of degree
2n22"™t. (Most works mention half of this degree because
a symmetric polynomial can always be ‘folded’ into a not
symmetric polynomial of half degree. In our view, this ex-
tra operation is counterproductive - it increases arithmetic
cost, degrades numerical accuracy without achieving any
apparent added value.) According to the above cost anal-
ysis, the more significant achievement of this tabular test
is in reducing the complexity of tabular 2-D stability tests
from previous severe exponential complexities (rightly crit-
icized in [1] as impractical for all but testing the simplest
filters) to a O(n®) complexity (say n1 = n2 = n).

3. THE INTERPOLATION PROBLEM

One notable fact that emerges from the above cost analy-
sis is that the complexity of the tabular test is dominated
by the O(n®) cost of the table’s construction. The O(n?)
cost of testing the single positivity condition (5) (and even
the cost of testing all the positivity tests in (8), that re-
quires O(n®) operations) is negligible by comparison to the
demands of Algorithm 1. Another notable observation that
follows from Theorem 1 is that the only role that the con-
struction of the table serves is to obtain its last entry, the
polynomial distinguished by the notation e(s).

We show next that it is possible to obtain €(s) and main-
tain an overall O(n?) complexity by telescoping (bringing
forth) the last entry of the 2-D table by interpolation with-
out its full construction. Telepolation was already presented
in [10] to simplify our immittance tabular 2-D stability tests
[9]. (The name immittance has been given to algorithms
that stem from the zero location test formulation in [11]
and similar to this test’s advantage over the SCMJ class of
stability tests, yield algorithms of improved efficiency for
several related scattering classical algorithms. The immit-
tance formulation replaces two-term recursions in the classi-
cal algorithms by three-term recursions and exploit intrinsic
symmetry in the problems).

Denote the entries of the coefficient vector of €(s) by

€ = [eo,...,e2nr]". Let
2w i0

— — i

0_2M+1 , w=e

where j = /—1. If ¢(5) is known at M + 1 values s; € T
given by
bi=e(3) , si=w M i=0,1,...,M

Then it can be determined from these values by the next

expression.

bar + 23 4L bar—k cos(mke)
(2M +1)

EMom = ,m=0,...,M

m=1,...,.M (9)

The derivation of this expression, that follows from a DFT-
like formula specialized to the current problem, will become
available in a forthcoming journal paper. The cost of de-
termining € from nims + 1 values of b; = €(5;) is nin3 real
operations. The division by 2M + 1, that provides an ex-
act reproduction of €(s), is not necessary for examining the
condition (5).

The required values b; = €(5;) are obtained by applica-
tion of Algorithm 2 to ps;(z) = D(s;, z) in accordance with
Remark 1 and the following further result.

Theorem 3. Algorithm 1 and its accompanying stabil-
ity conditions in Theorem 1 may be regarded as projection
on T of the 2-D tabular stability test (Algorithm 2 and The-
orem 2) in the sense explained in Remark 1. Specifically:
(a:) Assume Algorithm 2 is applied to the 1-D polynomial
ps; (2) = D(si,2), si € T, then co0 = €(3;) = s; M epopo(si)-
(b:) Stability of the 1-D polynomial ps, (z) is necessary con-
dition for stability of D(z1, 22).

Proof: The action of Algorithm 1 on D(3,z) for each
point s € T is the same as the action of Algorithm 2 over

EM+m — EM—m 5



ps(z) = D(5,2) := s ™/2D(s,z) as was said in Remark
1. Statement (a) is true because it is easily checked that
applying Algorithm 2 either to ps(z) = D(s, z) or to ps(z) =
s7"1/2D(s, z) yields the same ¢, (z) for m = n — 1 and
thus both initiations create the same sequences {¢n. (2), m =
n—1,...,0}. Therefore co,0 = €(3;). Statement (b) follows
from (2).

4. THE PROPOSED 2-D STABILITY TEST

A possible implementation of the emerging new test is sum-
marized as a 4 steps procedure below. ‘Exit’ is used to
mark points that admit early termination of the procedure
because an indication that “D(z1, z2) is not stable” has al-
ready been found.

A 2-D Stability Test Procedure for D(z1, z2)

Step 1. Determine whether D(z,1) is 1-D stable. If not
stable - ‘exit’.

Step 2. Set M = nins, 6 = 2]\24’;1,

For i =0,1,...,M do: Set s; = w™ M+ Ap-
ply the companion 1-D stability (Algorithm 2
+ Theorem 2) to ps,(z) = D(si,z). As soon as
acmm <0m=1,2,...1is detected (ps,, () is
not 1-D stable) - ‘exit’. Otherwise, retain the
last element as by, := co,0(> 0).

Step 3. Use (9) to obtain e(s) = )
values b; : =0,..., M.

Step 4. Examine the condition “e(s) #0Vs € T”. D(z1, z2)
is stable if and only if this condition is true and the current
step has been reached without an earlier ‘exit’.

The paper is not self contained only in not showing how
to carry out step 4. For the integrity of the current approach
one might want to use the companion test (Algorithm 2 and
theorem 2) for this task as well. This is possible in principle
but requires extension of the algorithm to a full zero loca-
tion method (one that works also in the not strongly regular
case) that at this time has not yet been published. Anyway,
from the point of view of minimal operations, the most eco-
nomical tests in the SCMJ class are not C-type tests but
B-type tests [6]. Raible’s test [12] is a B-type test and it
also provides means to overcome singular cases. Raible’s
test performs step 4 in 2nin3 + O(nj ,) real operations.

w=e"?,

2M 41

i—o €is' from the

5. COST EVALUATION

Let us carry out an approximate count of operations for the
above procedure. The count is in terms of real arithmetics.
Step 1 is a 1-D stability test for a polynomial of degree
n =mni1. Its O(n?) complexity is negligible. Step 2 involves
niny times the application of Algorithm 2 to a complex 1-D
polynomials (plus the real polynomial P, (s)) each of degree
n2. It can be carried out in 3n1n3 + O(nj ,) real operation.
Step 3 requires nin3 real operations. The testing of condi-
tion in step 4 by Raible’s test requires 2nin3 +0(n3 ,) real
operations. The summation of the above counts yields an
overall complexity for the test of 3nin3 + 3nin3 +O(n‘;’,2)
real operations.

6. CONCLUSIONS

A tabular 2-D stability test for discrete-time systems by
Hu and Jury was revisited and simplified via telepolation.
Telepolation reduces the complexity of the test from O(n°)
to a very low O(n*) of operations. With telepolation, the
2-D stability of a polynomial of degree (ni,m2) is carried
out by a set of nimo + 1 1-D stability tests of degree n; or
n2 plus one zero location test of a 1-D polynomial of degree
2n1n2. Another benefit drawn from this structure stems
from the fact that all necessary conditions for 1-D stability
are also necessary condition for 2-D stability. The ample
of early indications for an unstable polynomial lowers even
further the cost wasted on an unstable polynomial.
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