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ABSTRACT

Two recently proposed tabular procedures for testing stability of
two-dimensional (2-D) discrete linear (shift invariant, LSI) system
polynomials are compared and simplified. One is an immittance-
type test that associates a tested 2-D polynomial of degree(n1, n2)
with a sequence ofn2 or n1 centro-symmetric matrices of linearly
increasing row sizes and decreasing column sizes. The second is a
scattering-type tabular test that builds a sequence of similarly sized
matrices without structural symmetry. The two tabular tests are of
O(n6) complexity (sayn = n1 = n2) where the symmetries of
the matrices makes the immittance test more efficient. Simplifica-
tion of the tabular tests is achieved bytelepolation- telescoping the
last polynomial of the table using interpolation. The telepolation
approach reveals that the testing stability of a 2-D system can be
carried out by a finite collection of designated 1-D stability tests.
It also produces testing procedures of apparently unprecedentedly
low O(n4) complexity. The resulting immittance form test can
be carried out by less than4n4 real arithmetic operations and it is
again more efficient than the corresponding scattering version.

1. INTRODUCTION

Stability is an important issue in the design and analysis of multi-
dimensional systems. Developing methods to determining stabil-
ity of multidimensional (n-D) systems has been an active research
area in the last three decades. This paper describe two recent tabu-
lar stability tests for two-dimensional (2-D) discrete-system poly-
nomials and their further simplification by interpolation. Specifi-
cally, it deals with procedures to solve the following problem.

Problem statement. Given a bivariate (two-dimensional,2-D)
polynomial

D(z1, z2) = [1, z1, . . . , z
n1
1 ]D[1, z2, . . . , z

n2
2 ]t (1)

of degree(n1, n2), whereD = (di,k) is a real coefficient matrix,
determine whether it does not vanish in the closed exterior of the
unit bi-circle, viz.,

D(z1, z2) 6= 0 ,∀(z1, z2) ∈ V̄ × V̄ . (2)

whereT = {z : |z| = 1}, V = {z : |z| > 1}, andV̄ = V ∪ T .
A D(z1, z2) that satisfies (2) will be calledstable. (Attention is
drawn to that several other notations for defining stability in the
literature exist and may require a reversion of the coefficient matrix
to conform with the present convention cf. [1].) Similarly, a 1-D
(real or complex) polynomialp(z) such that

p(z) = [1, z, . . . , zn][p0, . . . , pn]t 6= 0 ∀z ∈ V̄ (3)

will too be called stable. The testing of the condition (2) is the key
problem in testing stability of 2-D discrete systems. The similar-
ity in the definition of 1-D and 2-D stable polynomials is some-
what misleading in that it hides several difficulties and differences
between stability of 1-D and 2-D systems. Comprehensive back-
ground on multidimensional linear discrete-time systems with em-
phasis on the stability is available in [2] [3].

This paper considers two recent tabular tests that solve the
stated problem in onlyO(n6) (say,n1 = n2 = n) complexity
and shows alternative procedures that reduces for each of them the
overall complexity toO(n4). The first tabular test is a scattering-
type 2-D stability test proposed by Hu and Jury [4]. The second
tabular test is the immittance-type tabular test in [5]. The terms
immittanceandscatteringare used to distinguish algorithms that
stem from the zero location test formulation of Bistritz in [6][7]
from the Schur-Cohn test and several other related classical algo-
rithms (see [8] and other references therein). The immittance for-
mulation replaces two-term recursions in the classical algorithms
by three-term recursions and obtain algorithms of improved ef-
ficiency that exploit intrinsic symmetry in the problems. In the
current context, the scattering tabular test involves a two-term re-
cursion of 2-D polynomials (or of matrices) with no particular
structure whereas the immittance tabular test uses a three-term re-
cursion to propagate 2-D polynomials (or matrices) with a spe-
cial symmetry (the coefficient matrices are centro-symmetric). A
count of operations for the 2-D stability test reveals that they are
bothO(n6) complexity (n = n1 = n2) - a definite advantage over
previous 2-D tabular stability tests that until very recently used to
be of severe exponential complexity. Examination of the accom-
panying stability conditions reveals that, in each case, the table is
constructed merely to reach its last entry - presented by a symmet-
ric polynomial of degree2n1n2 that has then to be tested for no
zeros on the unit-circle. This last task can be carried out inO(n4)
(n1 = n2 = n) operations. Nevertheless an overallO(n6) com-
plexity is dictated by the higher cost of the table’s construction.
The paper shows that it is possible to circumvent the table’s con-
struction and replace it by a finite number of low degree 1-D sta-
bility tests from which the last entry of the table can be recovered
by an efficient interpolation formula. We call this approachtele-
polation, standing fortelescoping (the last entry of the sequence)
by interpolation. The resulting procedures have a very (apparently
unprecedentedly) low overallO(n4) complexity.

2. TABULAR 2-D STABILITY TESTS

The notation in this paper follows that in [1] and related works. It
associates a 2-D polynomial as in (1) with the matrixD of its coef-
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ficients, byD(z1, z2) = z1
tDz2. The vectorz := [1, z, . . . , zi, . . .]t

is of length depending on context. This notations is also used to
associate vectorsp with a 1-D polynomialsp(s) = stp. We also
denoteD] := JD?J for a matrix ande]

k := Je?
k for a vector,

whereJ is the reversion matrix and? denotes complex conjugate.
A vector may also be associated with a ‘balanced polynomial’
p(s̃) := s̃tp = s−m/2p(s) wherem is the degree ofp(s) and
s̃ = [s−m/2, . . . , 1, . . . , sm/2]t. Balanced polynomials may also
be associated with the columns of matrices, for exampleD(s̃, z)
stands for̃stDz where the length of̃s is compatible with the row
size of the matrix. A polynomial such thatp](z) =: stp] = p(z),
and a vector such thatp] = p are called symmetric. Similarly a
2-D polynomial such thatD](z1, z2) := z1

tD]z2 = D(z1, z2)
and a matrix such thatD] = D are called centro-symmetric.

2.1. An Immittance tabular 2-D stability test

The next 2-D tabular test is based on the original form of the au-
thor’s 1-D stability test [6, 7].
Algorithm 1, [9][5]. Construct forD(z1, z2) the sequence of
polynomials.{Em(s̃, z) =

∑n−m

k=0
e[m] k(s̃)zk, m = 0, 1, . . . , n (=

n2) using the following recursion.

M(s̃, z) = D(s−1, 1)D(s, z)

E0(s̃, z) = M(s̃, z) + M ](s̃, z)

E1(s̃, z) =
M(s̃, z)−M ](s̃, z)

z − 1

q0(s̃) = E0(s̃, 1)

Form = 1, . . . , n− 1 obtainEm+1(s̃, z):

gm(s̃) = e[m−1] 0(s̃)e
]
[m] 0(s̃)

qm(s̃) = e[m] 0(s̃)e
]
[m] 0(s̃)

zEm+1(s̃, z)=
gm(s̃)Em(s̃, z)+g]

m(s̃)zEm(s̃, z)−qm(s̃)Em−1(s̃, z)

qm−1(s̃)

The first variable in the 2-D polynomials is distinguished by
s and will usually be interpreted most as taking valuess ∈ T .
It is possible to replace everywhere in the algorithm the balanced
variable s̃ by s and have normal 2-D and 1-D polynomials e.g.,
E(s, z) = stEmz, qm(s) = stqm. The choiceE(s̃, z) = s̃tEmz
makes more transparent in the forthcoming linking of the tabular
algorithms with 1-D polynomial recursions that reversion of rows
may be presented by complex conjugation (fors ∈ T ). It is also
possible to drop variables altogether and regard the algorithm as
operating on vectors and matrices where multiplication / division
between a vector and a matrix mean convolution/deconvolution be-
tween the vector and each column of the matrix. The latter view
may be the most transparent for programming these tabular tests.

Theqm(s) represents a factor common to all the coefficients
in the numerator that is eliminated by dividing it out. This elimi-
nation reduces drastically (from exponential to linear growth) the
row sizes of theEm and improves the efficiency of the algorithm.
The degree ofEm(s, z) is (2mn1, n2 − m) for m ≥ 1, and the
matricesEm are all centro-symmetric,E]

m = Em. It therefore
suffices to calculate only half of their entries. The more effective
approach (less computation and better accuracy) is to compute the
upper half of the rows of eachEm (rather than half of the columns)
[5].

Theorem 1, [5]. Assume Algorithm 1 is applied toD(z1, z2).
D(z1, z2) is stable if, and only if, the following three conditions
hold.

(i) D(z, 1) 6= 0 for all z ∈ V̄

(ii) D(1, z) 6= 0 for all z ∈ V̄

(iii) ε(s) := stEn 6= 0 for all s ∈ T

2.2. A scattering tabular 2-D stability test

The next tabular stability test has been obtained by Hu and Jury
[4]. It originates from the modified Jury test for 1-D stability [10]
and it is brought here in the version we derived for it in [11].

Algorithm 2. Assign toD(z1, z2) = [d0(z1), . . . , dn(z1)]z2,
n := n2, a sequence of polynomials{Cm(s, z) =

∑m

k=0
c[m]k(s)zk,

m = n− 1, . . . , 0}, , using the following recursions.

zCn−1(s, z) = d]
n(s)D(s, z)−d0(s)D

](s, z), qn−1(s) = 1

Form = n− 1, . . . , 1 do:

zCm−1(s, z) =
c[m]m(s)Cm(s, z)− c[m]0(s)C

]
m(s, z)

qm(s)

qm−1(s) = c[m]m(s)

The division by theqm(s) is again exact. Namely,qm(s) di-
vides without remainder the numerator 2-D polynomial. The poly-
nomialsCm(s, z), m = n2 − 1, . . . , 0, are of degrees(2(n2 −
m)n1, m). Again, the algorithm may be equally presented with
variables replaced by the balanced variables̃, or as recursion of
arrays with convolution and deconvolution replacing multiplica-
tion and division of polynomials.

Theorem 2, [11].Assume Algorithm 2 is applied toD(z1, z2).
D(z1, z2) is stable if, and only if, the following three conditions
hold.
(i) D(z, 1) 6= 0 ∀z ∈ V̄
(ii) D(1, z) 6= 0 ∀z ∈ V̄
(iii) ε(s) := C0(s, z) 6= 0 ∀s ∈ T

2.3. Evaluation

It is apparent that both tabular tests serve to derive a target polyno-
mial ε(s) that has to be examined for having no zeros onT . The
polynomialε(s) = stε is a symmetric real polynomial of even de-
gree2M , M := n1n2. It follows thatε(s̃) := s−M ε(s) is real
for s ∈ T . In fact, the conditions (iii) in Theorems 1 and 2 can be
replaced by the positivity condition

ε(s̃) > 0 ∀s ∈ T

because in the context of these theorems conditions (ii) holds only
if at s = 1 ε(s̃) > 0.
The immittance 2-D stability test requires approximately5

6
n2

1n
4
2

+O(n5
1,2) flops, [5], where here and on+O(nk

1,2) is used to de-
note that other additive terms with powersnα1

1 nα2
2 such thatα1 +

α2 ≤ k are neglected, . The count of operations for the scat-
tering tabular test is approximately4

3
n2

1n
4
2 + O(n5

1,2), [11]. An
exact count of operations for the two tests shows that the cost ra-
tio is higher than the asymptotic factor of 1.6 for all degrees of
interest. (Forn = n1 = n2, the ratio factor is greater than 2 for
3 ≤ n ≤ 10.)



Theorems 1 and 2 reveal that the only role that the construction
of the tables serves is to obtainε(s), its last entry. The testing of
the conditionε(s) 6= 0 ∀s ∈ T can be carried out inO(n4) (n =
n1 = n2) by any zero location procedure that handles also possible
singular cases. (Least count of onlyn2

1n
2
2 real multiplications is

attainable by using the zero location method in [6]). The higher
overall cost of computation is caused by the computation required
to construct the ‘tables’, i.e. the sequences{Em} and{Cm}.

The remaining of the paper shows that it is possible to main-
tain an overallO(n4) complexity bytelepolationof ε(s). Namely,
it is possible totelescope the last entry of these 2-D tables by in-
terpolationwithout their full construction. The next section shows
how sample values ofε(s̃) at any desirableso ∈ T can be obtained
by certain companion 1-D stability tests. Afterwards, an efficient
formula will be brought to recoverε(s̃) from a sufficient set of
sample values.

3. COMPANION 1-D STABILITY TESTS

This section brings for each of the above two 2-D polynomial al-
gorithms, a companion 1-D polynomial algorithm that follow its
action onD(s̃o, z) at a fixed pointso ∈ T . Each such “projection”
of a 2-D polynomials algorithm on a 1-D polynomials algorithm
may be used to obtain samples ofε(s̃). Each 1-D polynomial al-
gorithm is turned into a stability test by coupling it with necessary
and sufficient conditions for 1-D stability.

3.1. Immittance companion 1-D stability test

Algorithm 1-C, [12]. Assumep(z) (3) with complex coefficients
and thatp(1) 6= 0. Form p̂(z) = p(1)?p(z) and construct the
next sequence{em(z), m = 0, 1, . . . n}, of (conjugate) symmet-
ric polynomialsem(z) =

∑n−m

i=0
em,iz

i (Jem = e?
m).

e0(z) = p̂(z) + p̂](z)

e1(z) =
p̂(z)− p̂](z)

(z − 1)
, q0 = 2|p(1)|2

Form = 1, . . . , n− 1 obtainem+1(z):

gm = em−1,0e
?
m,0 , qm = |em,0|2

zem+1 =
(gm + g?

mz)em(z)− qmem−1(z)

qm−1

The requirement in the algorithm thatp(1) 6= 0 is guaranteed in
the forthcoming application.

Algorithm 1-C turns into a stability test forp(z) in conjunction
with the next theorem.
Theorem 1-C, [12]. Assume Algorithm 1-C is applied to a 1-D
polynomialp(z) of degreen.
(a) p(z) is stable if, and only if,em(1) > 0, m = 0, 1, . . . , n
where{em(z)} are obtained by Algorithm 1-C.
(b) If em,0 = 0 thenp(z) is not stable.

Furthermore, it can be shown that applying Algorithm 1-C to
p(z) = D(so, z) represents the action of Algorithm 1 onD(s, z)
at s = so for any fixedso ∈ T . In particular, it follows that if
Algorithm 1-C is applied top(z) = D(s̃o, z) then its last entryen

is equal to the value ofε(s̃) = s̃tEn atso [12].

3.2. Scattering companion 1-D stability test

Algorithm 2-C. Assign to a polynomialp(z) (3), with complex
coefficients, a sequence of polynomials{cm(z), m = n−1, . . . , 0},
wherecm(z) =

∑m

i=0
cm,iz

i as follows.

zcn−1(z) = p?
np(z)− p0p

](z) ; qn−1 = 1

Form = n− 1, . . . , 1 do:

zcm−1(z) =
cm,mcm(z)− cm,0c

]
m(z)

qm
; qm−1 = cm,m

Theorem 2-C [13]. Assume Algorithm 2-C is applied top(z).
p(z) is stable if, and only if,

cm,m > 0 m = n− 1, . . . , 0

For any fixedso ∈ T applying Algorithm 2-C top(z) =
D(s̃o, z) (or p(z) = D(s, z)) produces the action of Algorithm
2 onD(s̃, z) ats = so. Most importantly,c0,0 = ε(s̃o), [11].

The above stability test is the main form for type-C tests in
the classification of the Schur-Cohn-Marden-Jury tests into four
classes in [13]. Type-C tests were first obtained by Jury in several
occasions including [10] as a modification for the Schur-Cohn-
Marden stability tests that has a more direct relation with the prin-
cipal minors of the Schur-Cohn Bezoutian. A proof of these rela-
tions and generalization to zero location is available in [13]. In
particular, these relations can be used to prove thatε(s) forms
the determinant of the Schur-Cohn Bezoutian of the polynomial
p(z) = D(s, z).

4. THE INTERPOLATION PROBLEM

Assumeε(s) = [ε0, . . . , ε2M ]s is a symmetric real polynomial.
Let

θ =
2π

2M + 1
, w = ejθ

wherej =
√
−1. Assume values ofε(s̃) are atM + 1 points on

the unit circle as follows

bi = ε(s̃i) , si = w−M+i , i = 0, 1, . . . , M .

Thenε(s) can be determined from them by next expression, [12][11].

εM−m =
bM + 2

∑M

k=1
bM−k cos(mkθ)

2M + 1
, m = 0, . . . , M ,

εM+m = εM−m , m = 1, . . . , M . (4)

(Of course, the division by2M + 1 is not required for the purpose
of examining positivity onT of ε(s̃).)

5. TELEPOLATED 2-D STABILITY TEST PROCEDURES

The simplified procedures for testing a 2-D polynomial (1) for the
stability condition (2) combines the results brought so far and is
outlined (in parallel for brevity) in the next four steps procedure.
(‘exit’ marks a point of termination with conclusion thatD(z1, z2)
is not stable.)

Step 1. Test stability ofD(z, 1) is 1-D stable. If not stable - ‘exit’.



Step 2. SetM = n1n2, θ = 2π
2M+1

, w = ejθ.

For i = 0, 1, . . . , M do: Setsi = w−M+i.

[either: immittance form ] Apply to psi(z) = D(si, z)
the 1-D stability test of Algorithm 1-C and Theorem 1-C.
If not stable (as soon as aem,0 = 0 or a em(1) ≤ 0 is
detected)- ‘exit’. Otherwise, retainen(> 0) asbi := en.

[or: scattering form ] Apply to psi(z) = D(si, z) the 1-D
stability test of Algorithm 2-C and Theorem 2-C. If not sta-
ble (as soon as acm,m ≤ 0 is detected) - ‘exit’. Otherwise,
retain the last elementc0,0(> 0) asbi := c0,0.

Step 3. Obtainε(s) from the valuesbi i = 0, . . . , M , using (4).

Step 4. Examine the condition “ε(s) 6= 0 ∀s ∈ T ”. D(z1, z2)
is stable if and only if this condition is true and the current
step has been reached without an earlier ‘exit’.

Next is a brief account of the approximate complexity of these
procedures. It counts multiplication of two complex numbers as
four real multiplications and two real additions and a real times
complex numbers as two real multiplications. The immittance-
type procedure requires2n2

1n
2
2 + 1.5n1n

3
2 real multiplications and

3n2
1n

2
2 + n1n

3
2 real additions +O(n3

1,2) [12] [15]. It assumes
that in step 2 Algorithm 1-C is performed using two multipliers
(gm/qm−1 andgm/qm−1) per recursion step (rather than three)
and that step 4 uses the method of least count of operations for
the task, the 1-D zero location test in [6]. (A similar reduction
in computation is possible by telepolation for also the immittance
tabular test in [1], [15].) The complexity of the scattering-type pro-
cedure is3n2

1n
2
2 + 3n1n

3
2 +O(n3

1,2) real operations and an equal
number of real additions. It assumes that in step 2 Algorithm 2-
C uses two multipliers per recursion step (cmm/cm−1,m−1 and
cm0/cm−1,m−1) and that the condition in step 4 is tested by Raible’s
test [14] - the most efficient test in the Schur-Cohn Marden-Jury
class of tests [13]. Of course, step 4 may be carried out too by [6]
independently of using Algorithm 2-C for step 2. Note that it is
always possible, to apply the tests to 2-D polynomial with trans-
posed coefficient matrix (D → Dt). According to the expressions
for the count of operations this transposition should precede the
procedure whenn1 < n2.

6. CONCLUDING REMARKS

The paper presented procedures to test stability of discrete-time
(LSI) two-dimensional systems. The two procedures require very
(apparently unprecedentedly) low amount of computation (culmi-
nating in the immittance form). The reduced complexity is achieved
by telepolation of recent tabular tests. It profits on the already ad-
vanced features of these tabular test in terms of efficiency (previ-
ously available 2-D tabular tests were of severe exponential com-
plexity) and their simple stability condition (a single positivity
test).

The new procedures reveal that testing the stability of a poly-
nomial of degree(n1, n2) can be carried out by a collection of
(properly designed)n1n2+1 1-D stability tests of degreen1 or n2

plus one zero location test of a 1-D polynomial of degree2n1n2.
This establishes an interesting feature that was not known before in
the theory of multidimensional system. This property also makes
the programming of the method very easy. It also minimizes the
effort wasted on an unstable polynomial because the procedure is
passes a densely paved path of necessary conditions for 1-D sta-
bility that are also necessary condition for 2-D stability.

Since the major gap in the mathematics for n-D systems occurs
upon moving from 1-D to 2-D systems, the extension of the current
approach to stability testing of higher dimensional systems poses
no conceptual obstacles. The generalization of the presented tab-
ular tests and their telepolation to 2-D polynomial with a complex
valued coefficient matrix is also possible and will be presented in
forthcoming papers.
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