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ABSTRACT

This paper addresses the problem of testing whether a bivariate
polynomial does not vanish in the product of the closed exterior of
the unit-circle times the right half-plane. This requirement presents
stability conditions for certain mixed continuous-discrete systems.
An algebraic method to solve the problem in polynomial order of
complexity is developed from the Jury’s modified stability test.

1. INTRODUCTION

Stability of linear systems poses restrictions on where in the com-
plex planeC the system’s characteristic polynomial may or may
not vanish. A stability test for a linear systems has to determine
whether a polynomial satisfies the relevant restriction. Denote the
imaginary axis by

I = {s : Re(s) = 0} (1)

and the open left half plane and its complimentary inC (the com-
plex plane) by

L = {s : Re(s) < 0 , |s| < ∞}, , R = C− L . (2)

Also, denote the unit circle by

T = {z : |z| = 1} (3)

its open interior, and its complimentary by

U = {z : |z| < 1} , V = C− U . (4)

A continuous system is stable if the zeros of its characteristic poly-
nomial lie inL. A discrete system is stable if the zeros of its char-
acteristic polynomial lie inU. For a one-variable(1-V)polynomial
h(s) that is not a constant, the condition “h(si) = 0 implies
si ∈ L” is equivalent to

h(s) 6= 0 ∀s ∈ R . (5)

Similarly, for a 1-V polynomiald(z) that is not a constant, the
condition “d(zi) = 0 implieszi ∈ U ” is equivalent to

d(z) 6= 0 ∀z ∈ V . (6)

A 1-V polynomial will be called “1-C stable” if it satisfies (5) and
“1-D stable”, if the property (6) holds for it.

Turning to stability of multidimensional systems, one has to
consider zero location of multivariate (M-V) polynomials withM >
1 variables. In general, the zeros of a multivariate polynomial can
not be confined to a compact subset ofCM . However, the dual
manner of characterization, like that used in (5) and (6), still makes

sense. Namely, it is still possible to pose stability requirement for
multidimensional systems as conditions on where the characteris-
tic multivariate polynomials isnot allowedto vanish. The common
subsets of interest are cartesian products ofR’s andV’s. In con-
sidering two-dimensional systems, the two variables of the charac-
teristic polynomials may be either boths-type, bothz-type, or one
s- and one isz-type. Thes-s type stability arises in continuous-
time two-dimensional systems and hence will be referred as 2-C
stability. It poses the constraint that the polynomial has no zeros
in R×R, see [1] and references there in. Thez-zcase arises in sta-
bility of two-dimensional discrete-time systems and is referred as
2-D stability. It poses the requirement of no zeros inV×V and was
studied most intensively till very recently, see [2] [3] [4] and ref-
erences there in. For a survey of earlier results in two-dimensional
continuous and discrete systems see [5]. References for the third
case, thes-zstability will be enrolled in the following. An illumi-
nating treatment of all these three cases in a common framework
of condition posed on appropriate polynomial Bezoutian matrices
appears in [6].

This paper considers the testing of thes-ztype stability condi-
tions as follows. Consider a bivariate polynomial of degree(n1, n2)

Q(s, z) =

n1∑
i=0

n2∑
j=0

qijs
izj , qn1,n2 6= 0 (7)

for which the following condition has to be assessed.

Q(s, z) 6= 0 ∀(s, z) ∈ R× V (8)

A polynomial that satisfies the condition (8) will be called C-D
(continuous-discrete)stable. The problem arises in testing stability
of certain systems that can be described by a linear differential-
difference equations, whereQ(s, z) presents the characteristic poly-
nomial [7]. A closely related problem is the stability of certain
differential delay equations with commensurate delay [8], [9]. It
leads to a characteristic 2-V polynomial, sayA(s, z), in which
the second variable is dependent ons via z = e−sh, whereh ≥ 0
denotes the unit of delay duration. It is quite apparent that C-D sta-
bility of A(s, z−1)zn2 is sufficient for the stability ofA(s, e−sh).
Thus, the algorithm to test C-D stability that will be presented here
is relevant also for testing efficiently stability ofA(s, z). How-
ever, the dependency between the two variables makes C-D stabil-
ity more than necessary for this latter stability problem. This ob-
servation requires a quite intricate tuning of the method presented
here to turn it into minimal conditions that are both necessary and
sufficient for this stability problem. The stability of continuous
systems with commensurate delay will be left for another publica-
tion.

Papers published so far on C-D stability (and even more so
on the stability of theA(s, e−sh)) were concerned mostly with
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obtaining adequate stability conditions and with replacing them
by equivalent conditions of simpler form rather than with offer-
ing any specific algebraic algorithm for testing the stability con-
ditions and attending its complexity. One difference between an
algebraic and a numerical stability test is that an algebraic test re-
quires a finite number of arithmetic operations. A second asset
that is often mentioned is that an algebraic test provides an unam-
biguous answer for the validity of the stability condition it tests.
The problem with the second property is that it holds in practice
for only low degree polynomials especially when the finite cost
increases rapidly with the degree of the tested polynomial. Un-
til very recently, the available stability tests for two-dimensional
systems were of complexity that increases in a rapid rate with the
degree of the tested polynomial. The resulting problem is not the
high amount of computation itself but some consequences, like
bulkiness in trying to use it in symbolic computation environment
and, in conventional manners of use, the implied accumulation of
numerical inaccuracy that may hinder the correct decision about
stability because at the end the decision is based on rules that de-
pend on signs of some numbers. This problem was well conceived
in the more intensively studied problem of testing 2-D stability,
where only recent research activity produced reduction of the cost
of computation from complexity that grows at a severe exponential
rate with polynomial degree to an only polynomial order of com-
plexity, see [2] [3] [4] and references there in. A reviewer of this
paper has brought to our attention a recent paper [10] that proposes
a procedure to test C-D stability. It can be shown that the sought
solution there has a cost that increases exponentially with the de-
gree of the tested polynomial. The current paper offers, apparently
for the first time, a C-D stability test with only polynomial order
of complexity.

2. NOTATION

Our notation convention will use a same letter for both a poly-
nomial and its matrix (or vector) of coefficients. For example,
the coefficients matrix of the polynomial (7) is denoted too by
Q = (qi,k). We usez to denote a vector whose entries are powers
in ascending degrees of the variable,z = [1, z, . . . , zi, . . .]t (of
length determined by context). It allows one to writed(z) = ztd
andQ(s, z) = stQz. It will be instructive during derivation to re-
gardQ(s, z) as a 1-V polynomial overC[z] with coefficients over
C[s] (whereC[x] denotes the set of polynomials in indeterminate
x with complex coefficients). To this end, the columns ofQ will
be denotedQ = [q0 , q1 , . . . , qn2 ]. So that one may writeQ(s, z)
as

Q(s, z) =

n2∑
k=0

qk(s)zk = [q0(s), q1(s), . . . , qn2(s)]z . (9)

We define a “diamond” operation for a 2-V polynomials of
degree(n1, n2) with mixeds-zindeterminates and for a matrix (of
its coefficients) as follows.

Q♦(s, z) = zn2Q?(−s, z−1) , Q♦ = KQ?J (10)

whereJ denotes the reversion matrix, a matrix with 1’s on the
main anti-diagonal and zeros elsewhere,K denotes a diagonal
matrix with diagonal elements(−1)k , k = 0, 1 . . ., i.e K =
diag[1,−1, 1,−1, 1, . . .] of size determined by context, and?
denotes complex conjugation. Note that the definitions are such
that the relationQ♦(s, z) = stQ♦z remains true.

For an s-variable 1-V polynomialh(s) = sth and its coeffi-
cient vector we denote the para-conjugate operation by

h\(s) = h?(−s) , h\ = Kh? (11)

So thath\(s) = sth\. For a z-variable 1-V polynomiald(z) =
ztd of degreen and its coefficient vector we denote the operation
of conjugate reciprocation by

d](z) = znd?(z−1) , d] = Jd? (12)

Again the reciprocated polynomial may be written asd](z) =
ztd]. Note that the diamond operation amounts to the combina-
tion of a pre para-conjugate and a post reciprocal (or a pre para a
post conjugate-reciprocal) operations.

3. CONTINUOUS-DISCRETE STABILITY

In difference from all previous works that considered the stability
condition (8) for only real coefficient polynomial, we shall admit
Q to be complex, i.e.Q(s, z) ∈ C[s, z]. The need for a stability
test procedure for complex polynomials arises when they are em-
bedded in testing stability of higher dimensional systems. It will
become apparent that treating the complex case requires almost no
extra effort. To this end, a polynomialh(s) ∈ C[s] will too be
called 1-C stable if it satisfies (5) and ad(z) ∈ C[z] - 1-D stable
if it satisfies (6).

Consider aQ(s, z) ∈ C[s, z] as in (7). The assumption that
the leading coefficientqn1,n2 6= 0 is an easily visible and not
restrictive requirement becauseqn1,n2 = 0 implies thatQ(s, z)
is already not stable. (Note thats = ∞ is belongs toR so that a
zero there implies an unstable 1-C polynomial and hence also C-D
instability.) It should ne noted that failing to be stable because of a
qn1,n2 = 0 does not infer anything on whether or not a polynomial
that is equal toQ(s, z) but isdefinedas one with lower degree and
has a non-vanishing leading coefficient is stable.

The following simplifying condition for C-D stability are per-
tinent to our derivation.

Lemma 1. The polynomialQ(s, z) (7) satisfies (8) (it is C-D sta-
ble) if and only the following two conditions hold:

(i) Q(s, b) is 1-C stable for someb ∈ V.

(ii) Q(s, z) 6= 0 ∀(s, z) ∈ I× V.

The above lemma first appeared in [6] with the valuesb = ∞.
It next appeared with valueb = 1 in [8, Theorem 2:(2)], with
b ∈ T in [11], and with its above generality in [9]. The latter two
references contain more simplifying conditions for C-D stability
not covered by Lemma 1.

Our starting point will be Jury’s modified 1-D stability test
for complex polynomials [12]. The following form is the version
called in [13] the main form for ”C-type” 1-D stability tests.

Algorithm 1. Assign to a complex 1-D polynomialp(z)=
∑n

0 piz
i

a sequence of polynomials{cm(z) =
∑m

i=0 cm,iz
i; m = n− 1,

. . . , 0}, as follows.

zcn−1(z) = p?
np(z)− p0p

](z) ; dn−1 = 1 (13a)

Form = n− 1, . . . , 1 do:

zcm−1(z) =
cm,mcm(z)− cm,0c

]
m(z)

dm
; dm−1 = cm,m (13b)



The Schur-Cohn-Fujiwara matrix is ann× n matrix, sayBT

(also known as the unit-circle Bezoutian), that is associated with
p(z) by the expression,

BT = L(p?
n:1)L

t(pn:1)− L(p0:n−1)L
t(p?

0:n−1) (14)

wherep0:n−1 = [p0, . . . , pn−1]
t, pn:1 = [pn, . . . , p1]

t andL(a)
denotes the lower triangular Toeplitz matrix whose first column is
the vectora.

Stability conditions for Algorithm 1 and some pertinent rela-
tions withBT are summarized in the next theorem (see [?] for a
proof).

Theorem 1.(a) If Algorithm 1 becomes singular (acm,m = 0 oc-
curs) thenp(z) is not stable. Else,p(z) is stable if, and only if,
cm,m > 0 for all m = 1, . . . , n.
(b) Algorithm 1 does not become singular if, and only if, its SC
matrixBT is strongly regular (all its leading principal minors are
non-zero).
(c) If BT is strongly regular then the principal minors ofBT are
given by the leading coefficients of the polynomials created by Al-
gorithm 1,det{BT 1:k} = cn−k,n−k k = 1, . . . , n (whereBT 1:k

denotes thek × k upper-left submatrix ofBT ).
Algorithm 1 and Theorem 1 can be used to implement the test-

ing of condition (ii) in Lemma 1

Q(s, z) 6= 0 ∀(s, z) ∈ I× V (15)

by regardingQ(s, z) as a 1-D polynomial inz with coefficients
dependent ons ∈ I as in (9).

Algorithm 2 [The C-D stability ‘table’] . Assign toQ(s, z) writ-
ten as in (9) withn := n2 a sequence
{Cm(s, z) =

∑m
k=0 c[m]k(s)zk, m = n− 1, . . . , 0},

obtained as follows. Start with

zCn−1(s, z) = q\
n(s)Q(s, z)− q0(s)Q

♦(s, z) (16a)

anddn−1(s) = 1. Then form = n− 1, . . . , 1 do:

zCm−1(s, z) =
c[m]m(s)Cm(s, z)− c[m]0(s)C

♦
m(s, z)

dm(s)

dm−1(s) = c[m]m(s) (16b)

The algorithm produces for a real/complexQ(s, z) a sequence
of real/complex 2-V polynomials (respectively)Cm(s, z) of de-
gree(2(n2 − m)n1, m), m = n2 − 1, . . . , 0. The fact that it
produces polynomial is because the divisor polynomialdm(s) is
always a factor of the numerator 2-V polynomial that it divides,
as can be shown similar to the proof in [2]. The polynomials
c[m] m(s) are even, i.e. c\

[m] m(s) = c[m] m(s) or c\
[m] m =

c[m] m. So that they take real values fors ∈ I. This also im-
plies that, the coefficients ofc[m] m(s) start with a real free term
and are alternatingly purely real and purely imaginary. In particu-
lar, whenQ is real it follows that the second, fourth and so forth
entriesc[m] m are zero. Since Algorithm 2 is, per eachs ∈ I, an
implementation of Algorithm 1 forps(z) = Q(s, z), it follows
from Theorem 1 that the condition (15) holds if and only if all the
c[m],m(s) polynomials that Algorithm 2 creates satisfy

c[m] m(s) > 0 ∀s ∈ I , m = n− 1, . . . , 0 . (17)

Now, according to Theorem 1, thec[m] m(s) are the principal
minors ofBT for the 1-V polynomialps(z) = D(s, z), where

now BT becomesBT (s), a matrix with entries dependent ons.
The necessary and sufficient conditions for positive definiteness of
BT (s), depicted in (17) (positivity of all principal minors) holds
if and only if BT (s) is positive definite at some single pointa ∈ I
plus the determinant ofBT (s) is positive for alls ∈ T (repeat-
ing a key argument used before in [6]). Thus conditions (17) are
equivalent to the next condition (a) & (b):

(a) Q(a, z) is 1-D stable for somea ∈ I (because positive
definiteness ofBT (s) at s = a is equivalent, again according to
Theorems 1 to this 1-D stability condition).

(b) c[0]0(s) > 0 ∀s ∈ I (becausec[0]0(s) is equal to the deter-
minant ofBT (s)).
But (17) together with the 1-C condition (i) of Lemma 1 form nec-
essary and sufficient conditions for C-D stability ofQ(s, z). Fi-
nally, we can lessen the requirement in (b) from positivity to just
(b’:) c[0]0(s) 6= 0 ∀s ∈ I. Evidently (b) ⇒ (b′). For the con-
verse, assume (b’) & (a), we have from Theorem 1 that (17) holds
ats = a, thus in particularc[0]0(a) > 0. So that(b′)&(a) ⇒ (b).
In summary, we have proved the next theorem.

Theorem 2 [Stability conditions for Algorithm 2]. Assume al-
gorithm 2 is applied toQ(s, z) (7) and denote byε(s) := C0(s, z)
the last polynomial that it produces.Q(s, z) is stable if, and only
if, the following three conditions hold.
(i) Q(s, b) is 1-C stable for someb ∈ V.
(ii) Q(a, z) is 1-D stable for somea ∈ I.
(iii) ε(s) 6= 0 ∀s ∈ I.

The polynomialε(s) is the last polynomial that Algorithm 2
produces has degree(2n1n2, 0). Namely, it is dependent ons
only and has degree2n1n2. It is an even polynomialε(s), like all
the c[m]m(s)’s. Thus condition (iii) holds if and only ifε(s) has
n1n2 zeros inL andn1n2 zeros inR. WhenQ is real thenε(s)
is real and is has only powers ofx = s2. In this case condition
(iii) amounts to no zeros of the polynomial in the variablex on
the negative real axis, a condition that can be examined also by a
conventional Sturm sequence. A general algebraic tool to examine
the condition (iii) is an adequate extension of the Routh stability
test to zero location with respect to the imaginary axis of complex
polynomials, e.g. [14] and its cost is roughlyn4 (sayn1 = n2 =
n). Condition (i) and (ii) are tasks of relatively negligible cost of
O(n2) operations by any 1-C and 1-D test (say a standard Routh
test any the 1-D stability test that consists of Algorithm & Theorem
1). A convenient value forb is b = 1 (presented by the sum of
columns ofQ as coefficients). Condition (ii) is a 1-C stability test
that can again be carried out by the Routh test. Two convenient
choices ofa for here area = 0 (the first row ofQ) anda = ∞
(the last row ofQ).

4. COMPUTATION AND ILLUSTRATION

Although the presented procedure is applicable for also aQ(s, z) ∈
C(s, z) it will be illustrated here for the more common (and less
spacious) case of a real polynomial Consider the following poly-
nomial of degree (3,3).

Q(s, z) = [1 s s2 s3]

 6 6 −10 15
5 8 −15 25
2 2 −4 7
1 1 −2 3




1
z
z2

z3


To test whether or not it is C-D stable we carry out the test that



consists of Algorithm 2 and Theorem 2 through the following four
steps.

Step 1: Test condition (i) in Theorem 2 for an appropriate
Q(s, b). For example, takeQ(s, 1) = [17 , 23 , 7 , 3]s (coeffi-
cients formed by sum of columns ofQ) and verify that it is 1-C
stable.

Step 2: Test condition (ii) in Theorem 2 for an appropriate
Q(a, z). For example it can be verified thatQ(0, z) = [6 , 6 ,
−10 , 15]z (whose coefficients are the first row ofQ) is 1-D stable.

Step 3: Apply algorithm 2. First note that

Q♦ =

 15 −10 6 6
−25 15 −8 −5

7 −4 2 2
−3 2 −1 −1


The algorithm produces a sequence of 2-V polynomials{stCmz,
m = 2, 1, 0} whose coefficient matrices are:

C2=



150 −186 189
−70 43 0
−159 261 −414
−9 1 0
−52 76 −95

1 −2 0
−5 7 −8


, C1=



−7254 13221
1557 0

54599 −103892
−7704 0
−56050 127065

283 0
−29598 60541

1353 0
−5817 11337

268 0
−531 1001

19 0
−21 39


Ct

0 = [646425, 0,−8915057, 0, 35480226, 0, −27528155, 0,
−22357775, 0,−6569912, 0,−1050718, 0, −99997, 0,−5414,
0,−135]

Step 4: Examineε(s) = stC0 and show that it has no zeros
on I. Thus the tested polynomial is C-D stable.

The remaining available space will be used for a brief account
on the cost of computation and a note on its further possible reduc-
tion. For simplicity, assume in the following thatn1 = n2 = n.
As already mentioned the testing of the condition (i) and (ii) re-
quireO(n2) operations and the testing of condition (iii) requires
O(n4) operations. What dominates the overall cost is Algorithm
2 that can be shown to have anO(n6) cost. Within thisO(n6),
the actual cost (in terms real operations) for the complex case is of
course higher than for the real case (a more accurate counts will
appear in some forthcoming publication). The presented method
can be readily simplified by “telepolation”, an approach introduced
in [3] and [4]. As a consequence, a simplified test can be obtained
that carries out the test by a finite collection of 1-D stability tests
and has a cost of onlyO(n4) complexity. Another issue is the ex-
tension of the method to testing the related stability problem of a
continuous system with commensurate delay [8] [9]. These topics
will be addressed in future paper.

5. CONCLUSION

This ISCAS paper has presented a method for testing the condi-
tion that a bivariate polynomial does not vanish in the closed right

half plane times the closed exterior of the unit circle. This con-
dition arises in testing stability of differential-difference equations
that describe certain filters and industrial processes. The proposed
test is algebraic, “tabular” and hasO(n6) complexity. A way to
simplify it further into a solution of onlyO(n4) complexity was
indicated. Some omitted issues and new results on extending the
method to also test the stability of continuous systems with com-
mensurate delay are underway.
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