
CIRCUITS SYSTEMS SIGNAL PROCESSING c© Birkhäuser Boston (2004)
VOL. 23, NO. 3, 2004, PP. 195–213

AN EFFICIENT

INTEGER-PRESERVING

STABILITY TEST FOR

DISCRETE-TIME SYSTEMS*

Yuval Bistritz1

Abstract. The paper presents an efficient integer-preserving version for the author’s stabil-
ity test for discrete-time linear systems. A first naive solution that satisfies this constraint is
shown to have an explosive (severely exponential) growth of the magnitude of the integers.
Then a simple, but far from obvious, new recursion form is established that has a more
restrained (linear) growth of coefficients. A qualitative evaluation of computing time shows
that the new test form is most efficient. Its possible usefulness for determining stability
constraints for filters and systems with designable parameters is illustrated by a numerical
example. Its capacity to offer better numerical accuracy for high-degree polynomials is
also illuminated. Additional applications may arise from its usability over other algebraic
rings. The latter capacity was demonstrated recently by implementing it into an efficient
stability test for two-dimensional discrete-time systems.
Key words: Stability criteria for discrete-time systems, unit-circle zero location, immit-
tance algorithms, integer-preserving computation.

1. Introduction

Algebraic algorithms to test whether a polynomial has all its zeros inside the
unit circle (i.e., is “stable”) play a central role in digital signal processing and
discrete-time system theory. They are used to test stability and to design stable
filters and systems. They are also related to additional processing algorithms and
filter forms. Thus new forms of one-dimensional (1D) stability tests made impact
on associated signal processing algorithms and may also affect corresponding
algorithms for higher dimensional systems.

The classical Schur–Cohn and Marden–Jury (SCMJ) stability tests [3] rely
on two-term polynomial recursion that propagates (asymmetric) polynomials of
decreasing degree that are also common to the Levinson algorithm for linear

∗ Received June 23, 2003; revised December 1, 2003.
1 Department of Electrical Engineering, Tel Aviv University, Tel Aviv 69978 Israel.

E-mail: bistritz@eng.tau.ac.il

196 BISTRITZ

prediction and the ParCor lattice filters. An alternative formulation for these al-
gorithms emerged from the author’s stability test in [2]. The new formulation
relies on a three-term recursion that propagates polynomials with symmetry. It
has become termed the immittance (or “split”) formulation and, for distinction, the
classical algorithms were given the label scattering algorithms. The immittance
algorithms exploit intrinsic symmetry in the underlying problems to solve the
respective classical algorithms with less computation; see, e.g., [8]. A chapter on
scattering versus immittance algorithms appears in the textbook [13, Chap. 5].

The mentioned stability test [2], a refined version of which appeared recently
in [5], has become reputable as the least cost stability test (and unit-circle zero
location procedure) for one-dimensional discrete-time systems test (1D stability
test) in a conventional count of operations. However, there exist applications for
which considerations beyond minimal count of operations become an important
issue. 1D stability tests are used at times as a tool to design filters or to stabilize
a system by feedback. These applications could benefit from a 1D stability test
that exhibits the property that, if the tested polynomial has integer coefficients,
then the test can be completed with all operations performed over integers only, a
property to which we shall refer as the integer-preserving (IP) property.

This paper proposes an efficient IP form for the test in [2]. The scope of interest
in such an algorithm is evidently not limited to integer polynomials. A polynomial
recursion that preserves coefficients over integers (i.e., is not moving to rational
numbers) also preserves coefficients over any algebraic ring (i.e., is not moving
to its respective quotient field). For instance, the coefficients might belong to the
ring of real-coefficient polynomials (in one or several variables) or the ring of
integer-coefficient polynomials. A situation where the coefficients are themselves
polynomials arises in testing multidimensional discrete-time systems. Indeed, the
stability conditions and recursion to be derived here were already exploited to
develop some efficient two-dimensional (2D) stability tests (tests for stability of
two-dimensional discrete-time systems) in [6], [7]. Another area of application is
the use of such a test as a design tool in a symbolic programming environment. A
numerical example in this paper will illustrate an instance of this kind of applica-
tion. The usefulness of the IP algorithm in increasing the numerical accuracy is
also anticipated because manipulation of binary numbers in computers resembles
a power-of-two ring of polynomials. In view of the aforementioned interrelations
between stability tests and other signal processing algorithms, the proposed test
may also affect algorithms beyond the stability issue.

There already exists a scattering-type 1D stability that is integer preserving.
A modified test that Jury proposed on several occasions in various versions [10],
[11], [12] actually has this property [1]. (The various versions of the modified Jury
test (MJT), their interrelations, and some of their properties are summarized under
the C-type category in the classification of the SCMJ tests into four types in [3].)
Jury arrived to this modification through a search for a stability test that directly
produces the principal minors of the Schur–Cohn matrix. This interest was in

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 197

turn motivated by its usefulness in developing stability tests for 2D discrete-time
systems. The MJT led to the very efficient 2D stability test [9], [4]. The test in
this paper will be shown to be more efficient than this alternative IP stability test.

An obvious approach to achieve integer preservation is to avoid the division
operation. This approach leads to a division-free stability test, which is explored
in Section 2. Its analysis is shown to lead to a very rapid (exponential) growth of
coefficient lengths. Section 3 identifies the rapid growth of coefficient as caused
by certain common factors that the division-free algorithm creates and magnifies
from step to step of the recursion.

Section 3 then discusses a very simple, but not obvious, modification of the
division-free recursion that restrains the coefficients’ growth. The modified recur-
sion brings back the division operation, but now it acts to extract exact integer
factors that cause the inflated coefficients’ growth. Consequently, the modified
algorithm remains integer preserving. Necessary and sufficient conditions for sta-
bility are derived for the modified recursion. This fraction-free stability test is
shown to have only linear growth of coefficients.

Section 4 examines the efficiency of the test in terms of count of integer (or
“binary”) operations. The test is shown to exhibit an efficiency that exceeds by a
large factor the corresponding efficiency of the MJT, the only other available IP
stability test for discrete systems.

The paper focuses essentially only on testing the stability of a real polynomial.
A desirable extension to a general IP unit-circle zero location procedure will not
be considered. However, zero location rules for polynomials that can be run by
the recursion without requiring changes in its normal form can be obtained in a
reasonably straightforward manner from respective rules in [2] and will therefore
be presented. Numerical examples are given for both the division-free and the
fraction-free form tests to illustrate their behavior as stability tests and, for the
fraction-free test, also to illustrate its use as a zero location procedure and to
determine intervals of stability for a symbolic parameter.

2. Division-free test

We begin by presenting as the following algorithms and theorem the stability test
in [2] or [5] for real polynomials. This and some subsequent comments will be
helpful for the following developments and will provide the reader independence
from reading a paper on the original test form. We shall use I, Q, and R to denote
the ring of integers, the field of rational numbers, and the field of real numbers,
respectively, and I[z], Q[z], and R[z] will denote the set of polynomials with
coefficients in the respective domains.

Assume a polynomial

Dn(z) =
n∑

i=0

di z
i ∈ R[z], Dn(1) > 0, dn �= 0. (1)

198 BISTRITZ

Let the reciprocal of a polynomial Dn(z) be defined and denoted by D�
n(z) :=∑n

i=0 dn−i zi . A polynomial is called symmetric if Dn(z) = D�
n(z). (The term

“reciprocal” stems from the property that the zeros of D�
n(z) = zn D(z−1) are the

reciprocal of the zeros of Dn(z). Calling a polynomial symmetric refers to the fact
that its coefficients exhibit symmetry with respect to their center, i.e., dn−i = di ,
i = 0, . . . , n. A real polynomial is either symmetric or antisymmetric if and only
if it is self-reciprocal.)

Algorithm 1: Original Form. Consider Dn(z) (1) and assign to it a sequence
of n + 1 symmetric polynomials {Tm(z) = ∑m

i=0 tm,i zi , m = n, n − 1, . . . , 0} as
follows:

Tn(z) = Dn(z) + D�
n(z), Tn−1(z) = Dn(z) − D�

n(z)

(z − 1)
. (2)

For m = n − 1, . . . , 1 do:

zTm−1(z) = δm+1(z + 1)Tm(z) − Tm+1(z), δm+1 = tm+1,0

tm,0
. (3)

Theorem 1. A polynomial Dn(z) (1) is stable (i.e., if Dn(zi) = 0, then |zi | < 1)
if and only if Algorithm 1 yields for it

Tm(1) > 0 m = n, . . . , 0. (4)

If Dn(z) is stable, then the following condition holds as well:

tm,0 > 0 m = n, . . . , 0. (5)

Normal conditions for Algorithm 1 are defined as

tm,0 �= 0, m = n, . . . , 0. (6)

If we call a polynomial like Dn(z) normal if its leading coefficient dn �= 0 and
abnormal when dn = 0, then normal conditions present the situation where all
Tm(z) are normal. It is apparent that an abnormal Tm(z) interrupts the normal
recursion. In such a case not all the terms required in (4) are defined. To avoid
such a concern, the second part of the theorem states that normal conditions are
necessary conditions for stability. Thus, normal conditions provide a sufficient
framework for using the procedure as a stability criterion.

Remark 1. Two noteworthy clarifications on the assumptions made in (1) are as
follows. The condition Dn(1) > 0 implies that the test should start by examining
Dn(1). If Dn(1) = 0, then Dn(z) is not stable and the test terminates (when
the purpose is to find the distribution according to [2], the zeros at z = 1 can
first be factored out). A Dn(z) such that dn = 0 is again not stable as it has
a zero outside the unit circle at ∞. (Again if zero location is sought, the zero
location test can proceed with the lower degree normal polynomial.) The second
clarification regards the assumption in (1) that the sign of Dn(1) is positive. First,
note that, for a stable polynomial, dn and Dn(1) have the same sign. (This is

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 199

realized by setting z = 1 into Dn(z) = dn
∏n

i=1(z − zi).) Thus, the pair of
conditions dn > 0 and Dn(1) �= 0 is interchangeable with the pair dn �= 0 and
Dn(1) > 0 used in (1). Most often, the sign assumption in (1) is not restrictive
because if it does not hold (for a normal Dn(z) that does not vanish at z = 1),
the stability of the negated polynomial −Dn(z) can be tested instead. However,
on some occasions the test might be embedded in applications where a change of
sign is not permitted. It turns out that staying uncommitted to the sign of Dn(1)

or dn (i.e., requiring only that they do not vanish) complicates unnecessarily the
manner in which subsequent theorems have to be stated and proved. We therefore
will present theorems and prove them assuming the positivity condition as in (1)
and afterward will remark on the changes that occur in the complementary case
of negative sign.

Suppose now that Algorithm 1 is applied to a Dn(z) ∈ I(z). Obviously, the
first two polynomials are also Tn(z), Tn−1(z) ∈ I[z] but subsequently, for m ≤
n − 2, Tm(z) ∈ Q[z] in general. In other words, in general Algorithm 1 will test a
Dn(z) ∈ I(z) over the field of rational numbers. Clearly, the departure to rational
coefficients is caused by the division operation contained in the δm’s. Hence, an
obvious way to ascertain that all Tm(z) ∈ I[z] is to avoid divisions. The remainder
of this section explores a division-free stability test based on this simple idea.

Algorithm 2: Division-Free Form. Assume Dn(z) (1) and assign to it a se-
quence of n + 1 symmetric polynomials {Fm(z) = ∑m

i=0 fm,i zi , m = n, . . . , 0}
as follows:

Fn(z) = Dn(z) + D�
n(z), Fn−1(z) = Dn(z) − D�

n(z)

(z − 1)
. (7)

For m = n − 1, . . . , 1 do:

zFm−1(z) = fm+1,0(z + 1)Fm(z) − fm,0 Fm+1(z). (8)

It is clear that Algorithm 2 produces for a Dn(z) ∈ I [z] a sequence of sym-
metric polynomials such that Fm(z) ∈ I [z] for all m = n, . . . , 0, i.e., that it is
integer preserving. Normal conditions are again defined as the case when all the
produced symmetric polynomials are normal, viz.,

fm,0 �= 0, m = n, . . . , 0. (9)

This time an fm−1,0 = 0, m < n does not cause division by zero, but it
still obstructs the degree reduction mechanism and prevents the completion of
Algorithm 2. Normal conditions provide a sufficient framework for Algorithm 2
to produce the complete sequence {Fm(z) = ∑m

i=0 fm,i zi , m = n, . . . , 0} and, as
will be shown shortly, a sufficient framework for testing stability.

Lemma 2. For a given Dn(z), Algorithm 2 is normal if and only if Algorithm 1

200 BISTRITZ

is normal. Assuming normal conditions, the respective polynomials are propor-
tional,

Fm(z) = ψm Tm(z), (10)

where the scalars ψm ∈ R are given by ψn = 1, ψn−1 = 1 and then (when the
sequence of {Tm(z)} is given) can be computed recursively by

ψm = ψm+2ψm+1tm+1,0, m ≤ n − 2 (11)

or (when the sequence of {Fm(z)} is given) by

ψm = ψm+2 fm+1,0, m ≤ n − 2. (12)

Proof. Set (10) and its consequence fm,0 = ψmtm,0 into the right-hand side of
(8),

zFm−2(z) = ψmtm,0(z + 1)ψm−1Tm−1(z) − ψm−1tm−1,0ψm Tm(z)

= ψmψm−1tm−1,0

[
tm,0

tm−1,0
(z + 1) − Tm(z)

]

= ψmψm−1tm−1,0zTm−2(z)

to obtain (11). Use again fm,0 = ψmtm,0 to conclude (12). �

Theorem 3. A polynomial Dn(z) (1) is stable if and only if Algorithm 2 yields for
it

Fm(1) > 0 m = n, n − 1, . . . , 0. (13)

If Dn(z) is stable, then the following condition holds as well:

fm,0 > 0 m = n, n − 1, . . . , 0. (14)

Proof. If Dn(z) is stable, then Theorem 1 implies that all tm,0 > 0. Therefore, by
(11), all ψm > 0. Therefore, (10) implies (13) and then (12) implies (14). To show
the converse, denote ϕm := Fm(1) and set z = 1 into (8) to obtain the recursion

ϕm−1 = 2 fm+1,0ϕm − fm,0ϕm+1. (15)

Assume that (13) holds, i.e., all ϕm > 0. Then f0,0 = F0(1) > 0, f1,0 =
F1(1)/2 > 0 proceed with the recursion (15) upward with indices for m =
1, 2, . . . , n − 1 to show, step after step, that fm+1,0 > 0. This proves that (13)
implies (14). The latter implies that ψm > 0 for all m via (12). Then use (10)
to also conclude (4), which in turn offers sufficient conditions for the stability of
Dn(z) according to Theorem 1. �

Note that the recursion (15) initiated with ϕn = Fn(1) ϕn−1 = Fn−1(1) can be
added to Algorithm 2 and used to obtain more efficiently the values required for
(13).

Remark 2. If Dn(1) < 0 (instead of the assumption in (1)), then the signs in both
(13) and (14) have to be changed from all positive to the following pattern −, −,
+, −, −, +, . . . for m = n, n − 1, For example, the necessary and sufficient

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 201

conditions for stability are Fn(1) < 0, Fn−1(1) < 0, Fn−2(1) > 0, Fn−3(1) < 0,
Fn−4(1) < 0, Fn−5(1) > 0, etc.

Example 1. Consider testing the polynomial D7(z) = 1 + 3z + 2z2 + 4z3 +
8z4 + 7z5 + 5z6 + 8z7 by the division-free test. Algorithm 2 yields the next
table, arranged as in [2]. Namely, the rows that correspond to the coefficients of
successive polynomials of the sequence and entries available by symmetry are put
in parentheses (and also partly truncated to save space).

9 8 9 12 (12) . . .

7 9 14 18 (14) . . .

88 144 204 (204) . . .

832 1204 1272 (1204) . . .

59360 48160 (48160) . . .

17987200 4632320 (17987200)

476431155200 (476431155200)

14932343380770816000

The integer preservation property already acquires the division-free test with
some immunity to roundoff error for integer polynomials (by using integer arith-
metics or rounding to integers numbers in a floating-point environment). How-
ever, as the preceding relatively low-degree polynomial already hints, the major
drawback of the algorithm is a very rapid growth of the integers.

To characterize the growth of coefficients, one needs some measure for the
length of coefficients. Some possibilities are the number of decimal digits or the
number of bits required for the presentation of the integer (or, say, the log on
base 10 or 2 of the number rounded to integers). Any of these measures is equally
qualifying and has the properties that the product of two integers of lengths b1
and b2 has length less than or equal to b1 + b2, and that their sum or difference
has length less than or equal to max(b1, b2) + 1. (As a matter of fact, we need not
make any specific choice among them for the sake of our qualitative analysis.) Let
B characterize the length of coefficients of Dn(z) ∈ I(z) (say, we characterize the
length of coefficients of a polynomial by its longest coefficient). Then the length
of the coefficients of Tn(z), Tn−1(z) ∈ I (z) is at most B+1 and B+2, respectively
(they are formed by one and two passes, respectively, of additive operations). For
further simplicity of the estimate in the following proposition, it will be assumed
that B presents the lengths of the coefficients of Dn(z) and also of Tn(z) and
Tn−1(z).

Theorem 4. The coefficients’ length in Algorithm 2 grows at an exponential rate.
With B presenting the length of the coefficients of Dn(z) ∈ I (z) (and also of Fn(z)
and Fn−1(z) as explained above), the lengths for Fn−k(z) for k = 0, 1 . . . , n are

approximately given by � f (k) = 1√
5

[(
1+√

5
2

)(k+1) −
(

1−√
5

2

)(k+1)
]

B.

Proof. Let � f (k) denote a bound on the length of the coefficients of Fn−k(z) ∈
I[z] produced by Algorithm 2. It is apparent from (8) that � f (m) evolves as a
Fibonacci sequence � f (k) = � f (k − 1) + � f (k − 2) for k = 2, . . . , n. The

202 BISTRITZ

solution of this difference equation for the assumed initial conditions � f (k) = B

for k = 0, 1 is 1√
5

[(
1+√

5
2

)(k+1) −
(

1−√
5

2

)(k+1)
]

B. �

Evidently, the mode λo := 1+√
5

2 > 1 causes an exponential growth of the
integers’ length as a function of n. This exponential growth impairs the use of the
division-free stability test for already moderate-degree polynomials that arise in
practical application. It may create integers that exceed the computer wordlength
(or in multiprecision mode pose exhaustive demands on memory). Using it with
floating-point arithmetic, the rapid growth of coefficients would deteriorate accu-
racy by rounding error. Other generalized applications like using it to determine
stability intervals for parameters also suffer from such rapid growth of coeffi-
cients. The following example illustrates such an application.

Example 2. Suppose that in Example 1 we leave an indeterminate as follows:
D7(z; K) := K + 3z + 2z2 + 4z3 + 8z4 + 7z5 + 5z6 + 8z7 and that the problem
is to determine an interval of K for which D7(z; K) is stable.

First one has to construct the sequence Fm(z; K) using Algorithm 2. We skip
the resulting polynomials. Then setting into them z = 1 yields

F7(1) = 74 + 2K

F6(1) = 85 − 7K

F5(1) = 768 + 116K − 12K 2

F4(1) = 5488 + 30K − 184K 2 + 10K 3

F3(1) = 214528 + 17408K − 16920K 2 − 304K 3 + 344K 4 − 16K 5

F2(1) = 57405440 − 8471040K − 9479616K 2 + 789768K 3 + 407256K 4 − 40832K 5

−4992K 6 + 760K 7 − 24K 8

F1(1) = 1760978534400 − 328639447040K − 550548275200K 2 + 27063975936K 3

+48297764864K 4 − 2520729344K 5 − 1967714944K 6 + 166673408K 7 + 36661568K 8

−5056448K 6 − 127488K 7 + 53888K 8 − 3264K 9 + 64K 10

F0(1) = 28148607920111616000 − 2600163429947801600K − 12575810016562380800K 2

+159489352143994880K 3 + 1988975345742643200K 4 − 34102243524345856K 5

−170456022185803776K 6 + 7946796620759040K 7 + 8869929111477248K 8

−780314115361280K 9 − 276734510590464K 10 + 39586114907904K 11

+4285091708928K 12 − 1091853806848K 13 + 5154840576K 14 + 14569554432K 15

−1163694080K 16 − 37160960K 17 + 10955264K 18 − 717056K 19 + 21504K 20 − 256K 21

Stability intervals for K occur when the preceding set of polynomials satisfies the
conditions in Theorem 2. Namely, one has to find values of K for which all these
polynomials are commonly positive. Note that the degrees in K attain the bounds
prescribed in Theorem 4 until �(7) = 21 (where “length” is measured in powers
of K and initially the length for K is bounded by its degree B = 1 in D7(z; K)).
We shall not solve this problem for now but will get back to it later, in Example
4, solving it instead with the proposed procedure.

Note that solving the problem in Example 2 using the original stability test is

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 203

not easy either. It would lead to inequalities posed on n +1 = 8 rational functions
of K , which means examining pairs of polynomials in K (with numerator and
denominator of degrees of up to n = 7) for being either both positive or both
negative.

The division-free algorithm also raises difficulties in other potential applica-
tions for a stability test over other integral (“integer-like”) domains. For example,
using it for testing the stability of 2D systems has a vast cost of computation [6].
The next section brings a very simple and effective remedy to the rapid growth of
coefficients length.

3. Reducing coefficients’ growth

This section first shows that the rapid growth of coefficients in the division-
free recursion is caused by the fact that Algorithm 2 produces polynomials with
coefficients that contain common factors of elements of their domain of definition
and it tends to pile up these common factors. A modification of the recursion into
a fraction-free algorithm that eliminates these common factors in a systematic and
simple manner is obtained. Stability conditions (as well as the zero location rule in
normal conditions) for the fraction-free algorithm are derived afterwards. Finally,
the growth of coefficients of the fraction-free test is shown to be only linear.

3.1. Redundant common factors

The next lemma shows and characterizes the fact that applying the division-free
algorithm to Dn(z) ∈ I[z] creates and piles up integer factors common to all the
coefficients of each Fm(z).

Lemma 5. Consider the sequence {Fm(z)}n
0 produced by Algorithm 2 for a

Dn(z) ∈ I[z].
(a) Let Gi (z) = Fm−i (z), i = 0, 1, 2, 3, 4 denote consecutive polynomials

Gi (z) = ∑
gi,0zi in this sequence, for any n ≥ m ≥ 4. Then g1,0 divides

G4(z), i.e., G4(z)/g1,0 ∈ I[z].
(b) 2 divides Fn−2(z), i.e., 1

2 Fn−2(z) ∈ I[z], and its elimination does not inter-
vene with the mechanism described in (a).

(c) If f ∈ I divides Fm(z), i.e., Fm(z)/ f ∈ I[z], for any m ≤ n − 1, then f
also divides all subsequent polynomials as well, i.e., Fk(z)/ f ∈ I[z] also
for k = m − 1, . . . , 0.

Proof. The proof of claim (a) can be completed by carrying out the implied
sequence of substitution. Denote the coefficients of each Gi (z) as a row vector,

Gi = [gi,0, gi,1, . . . , gi,1 , gi,0].

204 BISTRITZ

Starting with i = 0, 1, the recursion forms

[0, G2, 0] = g0,0 { [G1, 0] + [0, G1] } − g1,0G0 (16)

= [0 , g2,0 , g2,1, . . . , g2,1 , g2,0 , 0]

[0, 0, G3, 0, 0] = g1,0 { [0, G2, 0, 0] + [0, 0, G2, 0] } − g2,0[0, G1, 0]
= [0 , 0 , g3,0 , g3,1 , . . . , g3,1 , g3,0 , 0 , 0] (17)

[0, 0, 0, G4, 0, 0, 0] = g2,0 { [0, 0, G3, 0] + [0, G3, 0, 0] } − g3,0[0, 0, G2, 0, 0],
(18)

where the zeros are padded to match vanishing coefficients that the degree-
reducing recursion introduces. It is possible to alleviate somewhat the awkward
process of backward substitution until G4 is expressed by the claimed common
factor by using an insight in to the nature of the recursion as follows. An inherent
(and readily verified) property of the recursion is that a term on the right-hand
side sum that is divisible by a certain factor (where we shall be focusing on g1,0)
contributes to the linear combination of terms that composes future polynomials,
terms that also contain that factor. This property will be used to drop in a sum
of terms, terms that are already seen to contain the factor g1,0. Begin by reading
from (16) that

g2,0 = g0,0g1,1 + g0,0g1,0 − g1,0g0,1 	→ g0,0g1,1, (19)

where the notation 	→ is used to denote that the new expression is obtained after
dropping terms that are seen to contain the g1,0 factor. It is also possible to replace
[0, G2, 0] with

[0, G2, 0] 	→ g0,0{[G1, 0] + [0, G1]}. (20)

Continuing in this manner, one needs to keep from G3 only the last term and can
substitute into it (19) to obtain

[0, 0, G3, 0, 0] 	→ −g0,0g1,1[0, G1, 0]. (21)

We also deduce from this last expression that

g3,0 	→ −g0,0g1,1g1,1. (22)

Finally, the substitution of the terms (19)–(22) into (18) gives

[0, 0, 0, G4, 0, 0, 0] 	→
g0,0g1,1(−g0,0g1,1) { [0, G1, 0, 0,] + [0, 0, G1, 0] }

−(−g0,0g1,1g1,1)g0,0 { [0, G1, 0, 0,] + [0, 0, G1, 0] } = 0.

According to the above 	→ convention, the last expression says that G4(z) consists
of terms that contain the factor g1,0 (and thus were already dropped) plus more
terms that sum up to zero. This completes the proof of the first assertion.

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 205

To prove the first part of claim (b), substitute into zFn−2(z) the initiation (7)
and the implied fn,0 = dn + d0 and fn−1,0 = dn − d0 to obtain

zFn−2(z) = 2d0[zDn(z) − D�
n(z)] + 2dn[Dn(z) − zD�

n(z)]
z − 1

.

For the second part of claim (b), it can be shown that carrying out this division
(alone) alters the remainder of the sequence (from the second term and on) in
a way that is identical to producing the sequence starting with Fn(z) replaced
by Fn(z)/2. Then it remains to realize that the proof of part (a) is indifferent to
starting it with G0 = Fn or G0 = Fn/2.

Claim (c), that Fm(z)/ f ∈ I[z] implies Fk(z)/ f ∈ I[z] also for k = m −
1, . . . , 0, is obvious from the form of the recursion (8). It implies that the exposed
common factors “g1,0” propagate and multiply as the recursion proceeds. �

3.2. Fraction-free stability test

Lemma 5 shows that each polynomial Fm(z), m ≤ n − 4 that is produced by
Algorithm 2 is divisible by all the previous elements fm+k,0 k = 4, . . . , n −m −1
and passes them on to future polynomials. The compounded presence of such
factors as the recursion goes on explains the rapid growth of integer lengths.
Fortunately, Lemma 5 also identifies the buildup mechanism of these factors. The
next algorithm implements the insight gained from Lemma 5 and eliminates these
common factors in a recursive manner as soon as they are produced.

Algorithm 3: Fraction-Free Form. Assume Dn(z) (1) and assign to it a se-
quence of n + 1 symmetric polynomials {Rm(z) = ∑n−m

k=0 rm,k zk , m = n, . . . , 0},
as follows:

Rn(z) = Dn(z) + D�
n(z), Rn−1(z) = Dn(z) − D�

n(z)

(z − 1)
. (23)

Set ηn = 2 (or ηn = 1, see Remark 4), then ηn−1 = 1, and for m = n − 1, n −
2, . . . , 1 do:

z Rm−1(z) = rm+1,0(z + 1)Rm(z) − rm,0 Rm+1(z)

ηm+1
; ηm−1 = rm,0. (24)

Because Algorithm 3 implements the elimination of factors identified in
Lemma 5, it follows that if Dn(z) ∈ I[z], then Rm(z) ∈ I[z] for all m = n, . . . , 0.
The name fraction-free is used to distinguish it from the division-free algorithm
and stress that the division it involves is exact, i.e., Algorithm 3 is integer
preserving.

Remark 3. A straightforward thinking of how to reduce the coefficients’ growth
might be carrying a greatest common divisor (gcd) algorithm after each step.
This approach might have made sense had our sole purpose been reduction of

206 BISTRITZ

common factors. (Though it could be argued that even to such an end it would
severely increase the computational complexity.) However, we are interested in
systematic elimination of only structured common factors. A brute-force elimi-
nation of common factors might also eliminate factors dependent on the tested
polynomial. Losing control over the pattern of elimination of factors renders such
a technique useless for stability because it becomes impossible to associate to it
general necessary and sufficient conditions for stability. This technique can be
argued to be equally counterproductive from the perspective of other prospective
implementations of the method that this paper proposes.

Normal conditions are defined for Algorithm 3 by

rm,0 �= 0 m = n, n − 1, . . . , 0. (25)

Again, they present sufficient conditions for the algorithm to end without inter-
ruption and produce a sequence of normal Rm(z) for all m = n, . . . , 0, and, as
will be shown in Theorem 7, a broad enough framework for testing stability.

Next we establish relations between the two sequences {Rm(z)} and {Tm(z)}
that will help to associate Algorithm 3 with stability conditions.

Lemma 6. For any fixed Dn(z), Algorithm 3 is normal if, and only if, Algorithm
1 is normal. Assuming normal conditions, polynomials of respective degrees pro-
duced by the two algorithms are proportional. When ηn = 1, the relations are

Rm(z) = αm Tm(z), m = n, . . . , 0 (26)

where the scaling factors are given by: αn = 1, αn−1 = 1 and for m ≤ n − 2

αm = tm+1,0αm+1 m ≤ n − 2 (27)

αm = rm+1,0 m ≤ n − 2. (28)

For ηn = 2, denote the sequence produced by {R̃m(z) = ∑n−m
k=0 r̃m,k zk , m =

n, . . . , 0} (where tildes were added for distinction from the polynomials Rm(z)
that, momentarily, will be assumed to correspond only to the choice ηn = 1). The
relations are

R̃m(z) = α̃m Tm(z), m = n, . . . , 0 ˜(26)

where for α̃n = α̃n−1 = 1

α̃m = h(n − m) tm+1,0α̃m+1 m ≤ n − 2 ˜(27)

α̃m = h(n − m) r̃m+1,0 m ≤ n − 2 ˜(28)

where h(k) = 1/2 for even k and h(k) = 1 for odd k.

Proof. We shall prove the relations for only ηn = 1. Note that (28) follows readily
from (27). Equation (27) can be proved by induction as follows. Set (26) into the
right-hand side of (24) for m = n − 1, n − 2 (note that there is no division yet)

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 207

z Rm−1(z) = rm+1,0(z + 1)Rm(z) − rm,0 Rm+1(z)

= αm+1tm+1,0(z + 1)αm Tm(z) − αmtm,0αm+1Tm+1(z)

= αm+1αmtm,0zTm−1(z).

Thus αm−1 = αm+1αmtm,0 for m = n − 1, n − 2. This verifies (27) for m =
n − 2, n − 3 because αm = 1 for n, n − 1. Now, assuming (for the induction) that
(27) holds for n − 2, n − 3, . . . , m, set (26) into the right hand side of (24) (notice
that now the non trivial division is included)

z Rm−1(z) = rm+1,0(z + 1)Rm(z) − rm,0 Rm+1(z)

rm+2,0

= αm+1tm+1,0(z + 1)αm Tm(z) − αmtm,0αm+1Tm+1(z)

αm+2tm+2,0

= αmαm+1tm,0

αm+2tm+2,0
zTm−1(z)

to obtain

αm−1 = αmαm+1tm,0

αm+2tm+2,0
.

Set into the above tm+2,0 = αm+1/αm+2, true by the induction assumption, to
obtain that (27) holds also for the next step. This completes the proof of (27). �

Remark 4. The choice ηn = 1 removes the factors depicted in part (a) of Lemma
5. These factors are a feature of the form of the recursion (only). The choice
ηn = 2 adds extraction of powers of 2 depicted by property (b) in Lemma 5
which is dependent also on the choice of the two polynomials that initiate the
recursion. The similar proof for the relations ˜(26)– ˜(28) can be drawn except that
attention to distinction between steps with h = 1 and steps with h = 1/2 makes
it longer. The use of ηn = 2 instead of ηn = 1 leads to elimination of additional
common powers of 2 factors up to 2�n/2�, where �n/2� denotes integer part of
n/2. Thus the effect of this definite advantage of using ηn = 2 increases rapidly
with the degree of the tested polynomial. The exact pattern of the extra saving is

R̃n−2k(z) =
(

1

2

)k

Rn−2k(z), R̃n−2k−1(z) =
(

1

2

)k

Rn−2k−1(z), k = 1, ..., �n/2�.
(29)

Reference in the following proof to equations (26)–(28) is interchangeable with
respect to ˜(26)– ˜(28). All subsequent theorems hold equally for ηn = 2, 1 and
no further distinction between the “tilde” and no “tilde” case will be made. The
forthcoming examples use ηn = 2.

Theorem 7. A polynomial Dn(z) (1) is stable if and only if rn−1,0 (= dn−d0) > 0
and Algorithm 3 yields for it

Rm(1) > 0 m = n, n − 1, . . . , 0 . (30)

208 BISTRITZ

If Dn(z) is stable, then the following conditions hold as well:

rm,0 > 0 m = n, n − 1, . . . , 0. (31)

Proof. Assume that Algorithm 3 is normal for Dn(z) and that it produces poly-
nomials such that condition (30) holds and rn−1,0 = dn − d0 > 0. Examine
the recursion (24) from the last term upward, after setting into it z = 1. r0,0 =
R0(1) > 0. r1,0 = R1(1)/2 > 0. Then, use r3,0 R0(1) + r1,0 R2(1) = 2r2,0 R1(1)

and invoke positivity at z = 1 of the involved Rk(z) to conclude that r3,0 > 0 ⇒
r2,0 > 0. Use similarly rk+1,0 Rk−2(1)+rk−1,0 Rk(1) = 2rk,0 Rk−1(1) to conclude
that rk+1,0 > 0 ⇒ rk,0 > 0 also for k = 3, . . . , n − 2. The last conclusion
rn−1,0 > 0 ⇒ rn−2,0 > 0 holds because rn−1,0 > 0 by assumption. Therefore,
rk,0 > 0 for all k ≤ n − 2. Then (28) implies that all αm > 0. Therefore, (26)
implies that all Tm(1) > 0 and Dn(z) is stable by Theorem 1.

Conversely, assume that Dn(z) is stable. Then |dn| > |d0| (one of a few visible
necessary conditions for stability that are often suggested as worth inspection
before proceeding with any stability criterion [2, Lemma 2.3]). The assumption
Dn(1) > 1 in (1) implies dn > 0 (see Remark 1). It follows that rn−1,0 = dn −
d0 > 0. Stability implies, according to Theorem 1, that all Tm(1) > 1 and all
tm,0 > 0. Therefore, all αm > 0 by (27). Then (26) implies (30). Also, (31)
follows via (28). �

Remark 5. Note that the conditions in (30) are not sufficient for stability without
dn > d0. This point is emphasized because it differs from what one might expect
after (4) and (13), which present both necessary and sufficient conditions for
stability for their respective algorithms. A counter example that illustrates this
point will be provided later (see Example 5).

The values ρm := Rm(1) required for Theorem 7 may also be calculated with
fewer arithmetic operations using the next recursion

ρm−2 = 2rm,0ρm−1 − rm−1,0ρm

ηm
(32)

that has to be initiated by ρn = Rn(1), ρn−1 = Rn−1(1). It is obtained by setting
z = 1 into (24) and can be made part of Algorithm 3.

Remark 6. When Dn(1) < 0, the following changes in the stability conditions
in Theorem 7 can be shown to occur. The necessary and sufficient conditions
for stability become rn−1,0 < 0 and Sgn{Rn−k(1)} = (−1)k , k = 1, . . . , n,
where Sgn denotes “sign of” (because Rn(1) = 2Dn(1) it may be omitted from
the conditions both here and in (30)). The remaining necessary condition in (31)
changes to rn,0 < 0 and Sgn{rn−k,0} = (−1)k , k = 1, . . . , n. It is also possible
to arrange the stability conditions for Algorithm 3 here and in Theorem 7 into a
combined expression that relates them to Sgn Dn(1) (cf. Theorem 9).

Example 3. We return to the polynomial D7(z) used to illustrate the division-free

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 209

test in Example 1 and apply to it the fraction-free test. Algorithm 2 produces the
following stability table for D7(z).

9 8 9 12 (12) (9) (8) (9)

7 9 14 18 (14) (9) (7)

44 72 102 (102) (72) (44)

416 602 636 (602) (416)

2120 1720 (1720) (2120)

7300 1880 (7300)

16600 (16600)

99600

Clearly, all Rm(1) > 0 (the sum of each row is positive) and rn−1,0 = 7 >

0. Therefore, D7(z) is stable. Notice the reduction in the length of integers by
comparison with Example 1.

The next theorem quantifies the superiority of Algorithm 3 over Algorithm 2 in
reducing coefficients’ growth. It uses the term coefficient length and the value B
as discussed in the paragraph that precedes Theorem 4.

Theorem 8. The coefficients’ length in Algorithm 3 grows linearly with the de-
gree of a Dn(z) ∈ I(z). More specifically, assume that B presents the length of
Dn(z) (and, as in Theorem 4, also of Rn(z) and Rn−1(z)); then the length of the
coefficients of Rn−k(z) is bounded by k B, k = 2, . . . , n.

Proof. Let �r (k) denote the bound on the length of Rn−k(z) ∈ I[z]. It follows
from the algorithm that �r (k) = �r (k − 1) + �r (k − 2) for k = 2, 3 and �r (k) =
�r (k − 1) + �r (k − 2) − �r (k − 3) for k ≥ 4. By assumption, �r (0) = B and
�r (1) = B. Therefore, the second difference equation has to be solved for the
initial values �r (1) = B, �r (2) = 2B, �r (3) = 3B. The solution is �(k) = k B for
all k ≥ 1. In particular, the maximal length for the last entry of the table is nB. �

Higher-degree polynomials, which may be encountered in practice, will exhibit
a more dramatic reduction in the coefficients’ length than the comparison of
Example 3 to Example 1 reveals.

Example 4. Here we try again to find the stability intervals for K in the polyno-
mial D7(z, K) considered in Example 2. The properties shown for Algorithm 2
imply that all the coefficients of the polynomials are now in I [k] and not only the
integers but also the powers of K grow linearly from step to step. The algorithm
is initiated with the pair of polynomials:

R7(z) = 8 + K + 8z + 9z2 + 12z3 + 12z4 + 9z5 + 8z6 + 8z7 + K z7

R6(z) = 8 − K + (10 − K)z + (15 − K)z2 + (19 − K)z3 + (15 − K)z4

+(10 − K)z5 + (8 − K)z6.

After completing all the remaining polynomials (we shall skip them), one has to
set into them the value z = 1 to obtain

R7(1) = 74 + 2K

210 BISTRITZ

R6(1) = 85 − 7K

R5(1) = 384 + 58K − 6K 2

R4(1) = 2744 + 15K − 92K 2 + 5K 3

R3(1) = 6704 + 1382K − 356K 2 − 54K 3 + 4K 4

R2(1) = 22424 − 3309 ∗ K − 2792K 2 + 104K 3 + 56K 4 − 3K 5

R1(1) = 49760 − 2836K − 12204K 2 − 1778K 3 + 230K 4 + 30K 5 − 2K 6

R0(1) = (7 − K)R1(1)

2

The last expression incorporates a useful simplification that has a general validity.
Namely, R1(1)/2 ∈ I and it is a factor of R0(1). To prove this property, note
that R1(1) = 2r1,0 and R0(z) = r1,0(2r2,0 − r2,1)/r3,0. Next the stability con-
ditions in Theorem 7 have to be examined. The first three inequalities, R7(1) >

0, R6(1) > 0, R5(1) > 0, hold commonly for only −4.799 < K < 7.104. The
latter interval already also fulfills the condition r1,0 = 8− K > 0. The subsequent
three requirements, R4(1) > 0, R3(1) > 0, and R2(1) > 0, keep shrinking the
admissible interval until −3.938 < K < 2.517. Next R1(1) > 0 reduces it to
−3.812 < K < 1.758, and finally R0(1) = (7− K)R1(1)/2 > 0 poses no further
restriction. Thus stability holds for −3.812 < K < 1.758, and (because we tested
conditions that are necessary and sufficient for stability) this is also the largest
interval of stability for K .

Recall that trying to solve this problem in Example 3 led to polynomial in-
equalities with degrees in K up to 21. Solving the above problem with the test
in its original form would lead to a set of inequalities posed on rational functions
so that pairs of numerator and denominator polynomials in K would have to be
checked to be either both positive or both negative.

The next example is designed to prove that (30) are not sufficient conditions for
stability (cf. Remark 5).

Example 5. Consider D4(z) = 3−33z+84z2 −24z3 +z4. The resulting fraction-
free stability table is

4 −57 168 (−57) (4)

−2 7 (7) (−2)

−47 196 (−47)

31 (31)

4495

The sum of rows {R4(1), . . . , R0(1)} = {62, 10, 102 , 62 , 4495} are all positive,
thus the conditions (30) hold. However, rn−1,0 = −2 �> 0. Therefore, according
to Theorem 7, the polynomial is not stable. (We shall return to this polynomial in
Example 6.)

It is beyond the scope of this paper to generalize the proposed stability test
into a general IP zero location method. However, the framework of the current

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 211

exposition is broad enough to readily generalize the test here to also determine
the zero location of a polynomial for which Algorithm 3 remains normal. In the
following, a zero zi of D(z), D(zi) = 0 is called an inside unit circle (IUC) or
unit circle (UC) or outside unit circle (OUC) zero if |zi | < 1, or |zi | = 1, or
|zi | > 1, respectively.

Theorem 9. Assume that Algorithm 3 produces for Dn(z) for which Dn(1) �= 0
(the sign may be either positive or negative) a sequence {Rm(z), m = n, . . . , 0}
of normal polynomials (i.e., (25) holds). Then Dn(z) has ν OUC zeros and n − ν

IUC zeros (and no UC zeros), where ν presents the number of sign variations in
the sequence

ν = Var{γn, . . . , γ0}, (33)

where γm := Rm(1)ηm.

Proof. The proof of the theorem follows, using relations established in Lemma
6, from the extension of Theorem 1 (in this paper) to a zero location rule in [2,
Theorem 2.2]. Accordingly, assuming that Algorithm 1 obeys normal conditions
(6), then Dn(z) has ν = Var{Tn(1), . . . , T0(1)} OUC and n − ν IUC zeros. �

It is notable that the stability conditions in Theorem 7 are stated in a more
refined manner than what setting ν = 0 in Theorem 9 immediately implies.

Example 6. Let us return to the polynomial D4(z) in Example 5 to illustrate
Theorem 9. Taking from there {R4(1), . . . , R0(1)} = {62, 10, 102 , −94 , 44495}
and {η4, . . . , η0} = {1, 1, −2 , −94 , 62} and setting them into (33) gives

ν = Var{62 · 1, 10 · 1, 102 · (−2), 4495 · (−94), 44495 · 62} = 2.

Therefore, according to Theorem 9, D4(z) has ν = 2 OUC zeros and 4 − ν = 2
IUC zeros.

4. Complexity

An adequate measure to evaluate the efficiency of an IP algorithm is counting the
number of binary operations it requires, which also amounts to the “computing
time” [1]. Let ADD and MULT refer to addition and multiplication operations
between elements that correspond to the way we measured the length of coef-
ficients. If, say, in Theorems 4 and 8, lengths B and so forth are measured in
numbers of bits, then ADD presents addition (or substraction) and MULT mul-
tiplications (or exact divisions) between bits. We assume the case of the normal
algorithm. The other assumptions that underlie the following estimated counts
are as follows. (i) The sum and difference of two integers of lengths b1 and b2
require max(b1, b2) + 1 ADDs. (ii) Their product costs (b1 + 1)(b2 + 1) FLOPs
(i.e., MULT+ADDs). (iii) The exact division of an integer of length b1 + b2 by a
divisor of length b2 yields an integer of length b1 and costs b2(b2 + 1)/2 FLOPs
(assuming, as the case is here, that b1 < b2).

212 BISTRITZ

Theorem 10. The integer computational complexity (or “binary computational
cost” or “computing time”) of the fraction-free test (Algorithm 3) is given by
5

48 B2n4 + terms with lower powers of B and/or n FLOPs.

Proof. These assumptions on counting binary operations make the complexity
evaluation comparable to counting real arithmetic operations for an integral ring
of polynomials. Therefore, the cost evaluation in [6, Section 5.2] can be used. The
figure 5

2 n2
1n4

2 in [6] should be translated to our need here through the correspon-
dences: n1 ↔ B (the measures for the two initial conditions) and n2 ↔ n/2 (the
1/2 appears because a doubling of degree that is used in [6] is not relevant for the
setting here). The figure in the theorem follows at once. �

It can be similarly deduced from analogy with the evaluation of the intermediate
algorithm in [6, Section 3.4] that the division-free test, i.e., Algorithm 3 has an

exponential complexity dominated by the term B2λ2n
o , where λo := 1+√

5
2 > 1

(cf. Theorem 4).
The MJT stability test [10], [11], [12], which is the only other available IP 1D

stability test [1], has binary complexity with a leading term of 5
2 B2n4 FLOPs.

This figure can be deduced from the cost analysis held in [4] for the 2D stability
testing table based on the MJT test in [9]. Accordingly, the current IP stability
test is more efficient binary-wise (is faster in computing time) by approximately
a factor of 24.

Obviously, the use of the proposed stability test need not be restricted to integer
polynomials. In terms of conventional count of real arithmetic operations, the
complexity counts look different. The count of real operations is higher for an IP
property than for the original form of the stability test. The original test requires
approximately 1

4 n2 multiplications and 1
2 n2 additions. The division-free test has

two multipliers in the recursion and hence requires 1
2 n2 multiplications and 1

2 n2

additions. The latter would also be the cost of the fraction-free test if it is carried
out with two multipliers (rm+1,0

ηm+1
and rm,0

ηm+1
). However, the preferable procedure

(even for real polynomials) is to first compute the numerator on the right-hand side
of (24) and only afterward divide it. This mode of calculation adds to the overall
count 1

4 n2 divisions. However, it is expected to improve numerical accuracy when
testing a real polynomial because the algorithm then works in a manner that col-
laborates with the way real numbers are registered and manipulated by a compute
(because binary mathematics resembles operation over a power-of-two ring of
polynomials). Of course, when using the stability test to real polynomials given
by decimal coefficients, it is possible to enforce increased accuracy simply by
turning the tested polynomial into an integer polynomial by scaling it up properly.

5. Conclusion

This paper has presented a modification of the author’s stability test [2], [5], which
turns it into an efficient IP stability test for discrete-time linear systems.

STABILITY TEST FOR DISCRETE-TIME SYSTEMS 213

The paper illustrated the possible advantage of the new test as a design tool
with symbolic computational examples and illuminated its capacity to increase
numerical accuracy when testing ill-conditioned or high-degree real polynomials.

The proposed test may also be used over other integer-like domains (integral
rings). Successful demonstrations of an implementation within this capacity are
the stability tests for 2D discrete-time systems in [6], [7]. The test may also affect
digital signal processing and filter design algorithms related to stability testing
algorithms.

References

[1] P. G. Anderson, M. R. Garey, and L. E. Heindel, Combinational aspects of deciding if all roots
of a polynomial lie within the unit circle, Computing, vol. 16, pp. 293–304, 1976.

[2] Y. Bistritz, Zero location with respect to the unit circle of discrete-time linear system polyno-
mials, Proc. IEEE, vol. 72, pp. 1131–1142, Sept. 1984.

[3] Y. Bistritz, Reflection on Schur–Cohn matrices and Jury–Marden tables and classification
of related unit circle zero location criteria, Circuits Systems Signal Process., vol. 15, no. 1,
pp. 111–136, 1996.

[4] Y. Bistritz, Stability testing of two-dimensional discrete-time systems by a scattering-type
tabular form and its telepolation, Multidimen. Systems Signal Process., vol. 13, pp. 55–77,
Jan. 2002.

[5] Y. Bistritz, Zero location of polynomials with respect to the unit-circle unhampered by
nonessential singularities, IEEE Trans. Circuits and Systems Part I, vol. 49, pp. 305–314,
Mar. 2002.

[6] Y. Bistritz, Real-polynomial based immittance-type tabular stability test for two-dimensional
discrete systems, Circuits Systems Signal Process., vol. 22, no. 3, pp. 255–276, 2003.

[7] Y. Bistritz, Testing stability of 2-D discrete systems by a set of real 1-D stability tests, IEEE
Trans. Circuits and Systems Part I, to appear.

[8] Y. Bistritz, H. Lev-Ari, and T. Kailath, Immittance domain three-term Levinson and Schur
recursions for quasi-Toeplitz complex Hermitian matrices, SIAM J. Matrix Anal. Appl., vol. 12,
pp. 497–520, July 1991.

[9] X. Hu and E. I. Jury, On two-dimensional filter stability test, IEEE Trans. Circuits and Systems,
Vol. 41, pp. 457–462, July 1994.

[10] E. I. Jury, A modified stability table for linear discrete systems, Proc. IEEE, vol. 53, pp. 184–
185, Feb. 1965.

[11] E. I. Jury, Modified stability table for 2-D digital filter, IEEE Trans. Circuits and Systems,
vol. 35, pp. 116–119, Jan. 1988.

[12] E. I. Jury, A note on the modified stability table for linear discrete time system, IEEE Trans.
Circuits and Systems, vol. 38, 221–223, 1991.

[13] S. J. Orfanidis, Optimum Signal Processing: An Introduction, 2nd edition, Macmilan, New
York, 1988.

