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ABSTRACT

In this paper we explore a discriminative algorithm for com-

pacting large order mixture models. Several studies investi-

gated efficient algorithms for finding a reduced-order model

that best approximates a referenced model using only the

original mixture parameters. Recently, a discriminative ap-

proach named maximum correct association (MCA) was

introduced to efficiently construct a set of compact mod-

els for improved classification. In this paper we suggest a

two stage procedure that applies the MCA algorithm after

initially obtaining a compact model through the variational-

EM method (which is a non-discriminative algorithm). The

proposed method is validated in a language recognition task

where large order mixture models are compacted into low

order models. Experiments showed that the MCA-refined

models performed consistently better than reduced mod-

els derived with the non-discriminative methods including

boosting performance over the standard maximum-likelihood

trained from the original data.

Index Terms: Gaussian mixture models, hierarchical cluster-

ing, discriminative learning, language recognition

1. INTRODUCTION

The Gaussian Mixture Model (GMM) is a very powerful

framework, frequently used in statistical learning. Many ap-

plications that use Gaussian mixture models require large

order models to achieve adequate data representation. On

the other hand, using large-order models is expensive in

terms of computational complexity and therefor there is a

constant need to decrease model complexity. Reducing the

computational requirements can be helpful not only in the

testing phase, but also in the model training process. Given

an adequate model that is too large, a reasonable approach to

decrease its complexity is to efficiently reduce the number of

components of the mixture, using only the model’s parame-

ters, without returning to the original samples and avoiding

Monte-Carlo re-sampling of data-points. Recent studies pro-

posed hierarchical clustering algorithms for generating a

simplified model while trying to preserve the similarity to the

original mixture model [1]-[6].

The most natural and commonly used measure of distance

between two probability densities is the Kullback-Leibler

(KL) divergence, also known as the relative entropy. Since,

there is no closed-form expression for the KL measure be-

tween two mixture models, most approaches use an analytical

approximation. Goldberger and Rowies [1] introduced a com-

ponent grouping algorithm that minimizes an approximation

of the KL-divergence which is based on Gaussian match-

ing. Later, a soft version of the Gaussian-matching clustering

algorithm appeared in [2], based on maximizing the cross-

entropy approximation between the two models. Dognin et

al. [3], followed the variational KL approximation introduced

by Hershey et al. [7], to suggest the variational expectation-

minimization (varEM) algorithm for Gaussian component

clustering in the framework of automatic speech recogni-

tion. Other studies used several different approximations

for the KL divergence. Goldberger et al., in [2], introduced

the unscented-transform approximation and derived an EM-

based algorithm to learn the reduced representation. In [4],

a fast algorithm, based on the Bregman k-means clustering

was suggested. Garcia et al. introduced a clustering algo-

rithm based on Bregman divergence [5]. In [6], Zhang et al.

perform the simplification by minimizing an upper bound of

the approximation error using the L2 distance measure.

In the previously mentioned approaches, the simplifica-

tion is based on optimizing a parametric distance or similarity

measure related to the referenced model, while the discrimi-

nation characteristics between models of different classes are

discarded. Recently, we introduced the maximum correct as-

sociation (MCA) algorithm based on optimizing the proba-

bility of associating the components of the original models to

their correct class in the reduced representation [8]. The MCA

algorithm, also based on the variational approximation of the

KL divergence, provided superior results, on pure phone clas-

sification task, reducing 128-order mixture models to small-

order models. In the current study we introduce a two-stage

procedure for discriminative simplification of mixture mod-

els. In the first stage we apply the varEM algorithm (as in

[3]) to produce the initial reduced model set. Then, the MCA

algorithm is applied to refine the reduced models in the direc-

20th European Signal Processing Conference (EUSIPCO 2012) Bucharest, Romania, August 27 - 31, 2012

© EURASIP, 2012  -  ISSN 2076-1465 2203



tion of maximizing the correct association criteria.

In the next section, the MCA algorithm for simplifying

mixture models is described. In section 3 we evaluate the

suggested procedure by deriving reduced order GMMs in a

language recognition task. Finally, section 4 concludes the

paper.

2. THE MCA ALGORITHM

Assume a classification problem involves a decision among

N classes, where each class has a GMM representation

Fc(x) =

Nc
∑

i=1

αcifci(x) , c = 1, . . . , N , (1)

where fci(x) ∼ N (mci, Vci), and Nc is the model order of

class c. The objective is to use the given models {Fc} to

derive a new set of simplified mixture models of order Mc <

Nc,

Gc(x) =

Mc
∑

j=1

βcjgcj(x) , c = 1, . . . , N , (2)

where gcj(x) ∼ N (µcj ,Σcj), such that the reduced set ob-

tains a good discrimination for the classification problem.

2.1. The correct association criterion

A commonly used and most natural measure for the dis-

tance between two distributions, p(x) and q(x), is the relative

entropy also named the Kullback-Leibler (KL) divergence,

given by:

D(p‖q) =

∫

p(x) log
p(x)

q(x)
dx. (3)

We use the KL-divergence to define the following discrimina-

tive criterion:

Λ =

N
∑

c=1

[D(Fc‖Gw) − D(Fc‖Gc)] (4)

where

Gw(x) =
1

N

N
∑

c=1

Gc(x). (5)

Gw is regarded as the world model since it is defined as

a combination of all the simplified models to represent the

background distribution. Maximizing Λ with respect to the

parameters of {Gc} means that, in average, we wish to min-

imize the KL-divergence of the reduced model Gc from its

original respective (i.e. same-class) model Fc, while maxi-

mizing the KL-divergence between Fc and the world model

Gw. The KL-divergence between GMMs cannot be com-

puted analytically, and therefore we need to use an analytical

approximation. The authors of [7] introduced the variational

approximation and showed that it was superior to other meth-

ods, at measuring divergence among phonetic models.

2.2. The variational approximation of relative entropy

We consider two Gaussian mixture models: a source model,

F (x) =
∑

i αifi(x), where fi(x) ∼ N(mi, Vi), and a target

model G(x) =
∑

j βjgj(x), where gj(x) ∼ N(µj ,Σj). The

cross-entropy between the source and target models is defined

by

L (F‖G) ≡

∫

F (x) log G(x)dx

=
∑

i

αi

∫

fi(x) log
∑

j

βjgj(x)dx. (6)

We can find a variational lower bound for the cross-entropy

by introducing variational distribution parameters, q(j|i) > 0,

such that
∑

j q(j|i) = 1. The variational parameters q(j|i)

can be regarded as the association probability of component

i from model F , to component j of model G. By Jensen’s

inequality we obtain a lower bound for (6) as follows

L (F‖G) =
∑

i

αi

∫

fi(x) log
∑

j

q(j|i)
βjgj(x)

q(j|i)
dx

≥
∑

i

αi

∫

fi(x)
∑

j

q(j|i) log
βjgj(x)

q(j|i)
dx

=
∑

i

αi

∑

j

q(j|i)

[

log
βj

q(j|i)
+

∫

fi(x) log gj(x)dx

]

=
∑

i

αi

∑

j

q(j|i)

[

log
βj

q(j|i)
−D(fi‖gj) + H(fi)

]

:= Lq(F‖G), (7)

where H(fi) is the entropy of mixture component fi. The

lower bound Lq(F‖G) can be maximized with respect to the

variational parameters q(j|i), yielding the closest bound by

q̂(j|i) =
βje

−D(fi‖gj)

∑

j′ βj′e
−D(fi‖gj′ )

. (8)

Replacing q̂(j|i) in (7) yields the maximum of the lower bound

Lq̂(F‖G) =
∑

i

αi log
∑

j

βje
−D(fi‖gj)+H(fi). (9)

The approximation of the KL-divergence can be obtained di-

rectly by the variational approximation of the cross-entropy

in (9), and the equality D(F‖G) = L (F‖F ) − L (F‖G),
yielding

D̃(F‖G) = Lq̂ (F‖F ) − Lq̂ (F‖G)

=
∑

i

αi log

∑

i′ αi′e
−D(fi‖fi′ )

∑

j βje−D(fi‖gj)
. (10)

The variational approximation of (10) is tractable, since

the KL-divergence for two Gaussian distributions f(x) ∼
N (m, V ) and g(x) ∼ N (µ,Σ) has a closed-form expression
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D(f‖g) =
1

2
log

|Σ|

|V |
+

1

2
Tr(Σ−1V ) −

d

2

+
1

2
(m − µ)T

Σ
−1(m − µ)

where d is the dimension of x.

2.3. Algorithm Derivation

It can be easily shown that setting the approximation of (10)

into expression (4), yields (after dropping the log N term that

has no influence on the optimization) the following objective

function as approximation for the correct association criterion

Λ in (4):

J=
N
∑

c=1

Nc
∑

i=1

αci log

∑Mc

j=1 βcje
−D(fci‖gcj)

∑N

k=1

∑Mk

j=1 βkje−D(fci‖gkj)
. (11)

For further description of the algorithm, we introduce the

following definition

Pkj|ci ≡
βkje

−D(fci‖gkj)

∑N

k′=1

∑Mk′

j′=1 βk′j′e
−D(fci‖gk′j′ )

. (12)

Pkj|ci has a meaningful stochastic interpretation. It can be

shown to be the optimal probability of associating Gaussian

component i of the source model c (noted as fci), with Gaus-

sian component j of the reduced model k (noted as gkj) that

is obtained by maximizing the variational principle presented

in rate-distortion theory. Next, we use (12) to compute the

probability of correct association of fci by:

Pc|ci =

Mc
∑

j=1

Pcj|ci. (13)

Now, the optimization criterion (11) can be expressed in terms

of the expected “log-likelihood” of correct association:

J =

N
∑

c=1

Nc
∑

i=1

αci log Pc|ci. (14)

The choice of reduced models (2) that optimize J is regarded

as the maximum correct association (MCA) solution to the

GMM simplification problem.

Having defined the mean correct association functional

(14), the next step is to maximize it w.r.t. the parameters of

the reduced model set (2), βcj , µcj , and Σcj . Since J is not

convex the maximization is performed using gradient based

optimization. In order to ensure that the weights fulfill the

conditions βcj > 0 and
∑Mc

j=1 βcj = 1, and that the esti-

mated covariance matrices, Σcj , are positive definite, we use

the following transformations:

βcj =
ewcj

∑Mc

j′=1 ewcj′
(15)

Σcj = eV ′

cj , (16)

such that updating {wcj}
Mc

j=1 and V ′
cj yields a direct deriva-

tion of {βcj}
Mc

j=1 and Σcj , respectively. Differentiating the

objective function w.r.t. wcj , µcj , and V ′
cj yields the follow-

ing gradient rules; For the transformed weights,

∂J

∂wcj

=

(

Nc
∑

i=1

αci

Pcj|ci

Pc|ci

−

N
∑

k=1

Nk
∑

i=1

αkiPcj|ki

)

(1 − βcj) (17)

for the means,

∂J

∂µcj

=

Nc
∑

i=1

αci

Pcj|ci

Pc|ci

Σcj
−1 (mci − µcj)

−

N
∑

k=1

Nk
∑

i=1

αkiPcj|kiΣcj
−1 (mki − µcj),

(18)

and for the transformed covariance matrices,

∂J

∂V ′
cj

=
1

2

Nc
∑

i=1

αci

Pcj|ci

Pc|ci

[

Σcj
−1

h(mci, µcj , Vci) − I
]

−
1

2

N
∑

k=1

Nk
∑

i=1

αkiPcj|ki

[

Σcj
−1

h(mki, µcj , Vki) − I
]

,

(19)

where

h(mi, µj , Vi) ≡ Vi + (mi − µj) (mi − µj)
T

.

With this we obtain the analytical computation of the gradi-

ents of J w.r.t. the parameters of the reduced GMMs (equa-

tions (17)-(19)), using only the parameters of the original

GMMs. The optimization of the reduced set can be performed

by simple gradient ascent iterations, or by using other opti-

mizers (e.g. conjugate gradient) to avoid local maxima traps.

2.4. Implementation issues

We used a simple gradient ascent optimization. There are

methods to find the optimal step size in each iteration, but

they require more computations. We applied a simpler ap-

proach where we used an adjustable step size: in each iter-

ation, model parameters are updated and the new objective

function J is computed. When getting an improvement, the

step is increased by factor 1.1 and we continue to the next it-

eration. If the objective degrades the step is reduced by factor

2, model parameters are re-calculated and we check the new

objective. Only after the objective is improved we continue

to the next iteration. Another issue refers to ignoring extreme

errors during the learning process. The value of the correct

association probability greatly affects the update of the gra-

dients such that the algorithm emphasizes “learning from er-

rors”. When Pc|ci → 1, the update of the gradients regarding

component fci tends toward zero. As the correct association

probability becomes smaller, the updates become more sub-

stantial. Sometimes it is useful to ignore extreme errors in

order to avoid over-fitting to extreme situations. In the MCA

method, it is simple to define a threshold on the probability
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Pc|ci, such that for values under a certain Pthreshold the gra-

dients’ update is skipped. In all the experiments reported in

the next section the threshold Pthreshold = 0.02 was used.

3. EXPERIMENTS

Experiments were conducted on a basic language recognition

task, in order to compare the performance of reduced order

models obtained by varEM with and without the MCA algo-

rithm. In the language recognition framework every speech

frame was mapped to a 56-dimensional feature vector com-

posed from shifted delta cepstra (SDC) 7-1-3-7 coefficients

and additional 7 MFCC coefficients (including C0) as in [9].

RASTA (Relative Spectral Transform) filtering was applied

to reduce channel effects [10]. Language GMMs, with diag-

onal covariance matrices, were trained with the conventional

maximum-likelihood EM algorithm. Mixed-gender language

models were trained from a subset of the CallFriend Corpus,

and recognition was performed on the 30 sec segments from

NIST language recognition evaluation (LRE) 2003 and from

the evaluation part of NIST 1996 (noted as LRE 96e) 1. There

were 12 target languages in the evaluation. For performance

evaluation, we used the standard Detection Error Trade-off

(DET) curve and the Equal Error Rate (EER) measure. DET

is a plot of false accept probability against miss probability

dependent on the score threshold. The EER is the point were

the false-accept probability and the miss probability become

equal. A simple log likelihood ratio score was used for each

test utterance Xi, per language model Gc, as follows:

Sc(Xi) = log P (Xi|Gc) − max
k 6=c

{log P (Xi|Gk)}. (20)

To begin with, we examined the effect of different GMM or-

ders on the recognition performance in standard maximum-

likelihood (ML) training from the original samples. In Figure

1 we observe that performance keeps improving as model or-

der increases.
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LRE 96e

Fig. 1. Language recognition results for different orders of

GMMs, trained from the original data. Results were obtained

using the 30 sec excerpts of LRE 03 and of LRE 96e.

Figure 2 demonstrates the optimization process of the

MCA. The optimization starts with initial models obtained by

the varEM algorithm (appearing as iteration 0 in the figure).

1http://www.itl.nist.gov/iad/mig/tests/lre/
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Fig. 2. Demonstration of MCA iterations in reducing 4096-

order models to 128-order models. The upper plot brings the

values of the MCA objective function (10) in each iteration.

The middle and lower plots present the performance obtained

on LRE 03 and LRE 96e, respectively, expressed by EER eval-

uated every 5 iterations.

It is seen that the objective function (14) increases with each

iteration of the gradient ascent. Around the 30th iteration,

the objective improvement slows down and becomes irrel-

evant to the performance on the test set. Our experiments

studied the simplification of 4096-order GMMs into reduced

models with orders in the range of 16 to 256 components.

For comparison, reduced order models were generated using

three methods: the traditional ML training from the data,

the varEM algorithm, and the varEM followed by the MCA

algorithm.

The results in Figure 3, clearly indicate that the MCA

algorithm obtains improved performance when it is applied

after the non-discriminative EM algorithm. The improvement

grows from about 10% reduction in EER for higher order

models (256, 128) up to 25% reduction in EER for low or-

der models (16, 32). For a different view on the achieved

improvement we bring in Figure 4 the DET plot for one

instance where models of order 4096 were reduced to 256

components. Figure 4 shows that the MCA algorithm ob-

tains a significant improvement at each working point of the

graph. It is apparent that the MCA algorithm consistently

improves the performance of the reduced models compared

to the non-discriminative EM-based algorithm in all the lan-

guage recognition tests. While the efficient hierarchical EM

method (varEM) reaches, more or less, the performance of a

similar order model trained directly from the data by conven-

tional maximum-likelihood, the MCA algorithm consistently

outperforms both methods. A most remarkable effect consid-

ering the fact that it relies only on the given high order model

parameters without further accessing the original data.
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Fig. 3. Recognition results for several orders of reduced mod-

els. The conventional EM training from the original data in-

dicated as ML from data, serves as benchmark. The varEM

and MCA models were derived from original models of order

4096.

4. CONCLUSION

We proposed an efficient procedure for simplifying large or-

der mixture models through hierarchical discriminative learn-

ing. The procedure has two stages. First, a reduced order

model is created by the variational-EM algorithm. Then, the

parameters of the model are refined by a maximum correct

association (MCA) algorithm. The MCA algorithm is a hi-

erarchical discriminative algorithm that iteratively refines the

parameters of the compact GMMs in order to increase the

probability of associating original Gaussian components to

their correct class in the compact set. We applied the method

to a basic language recognition task. The experimental results

indicated a significant improvement in performance after the

MCA procedure was performed over the reduced model set.

The proposed algorithm is applicable to other parameter esti-

mation problems that use large order Gaussian mixture mod-

els.
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