
This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS 1

Optimal Fraction-Free Routh Tests
for Complex and Real Integer Polynomials

Yuval Bistritz, Fellow, IEEE

Abstract—The Routh test is the simplest and most efficient al-
gorithm to determine whether all the zeros of a polynomial have
negative real parts. However, the test involves divisions that may
decrease its numerical accuracy and are a drawback in its use for
various generalized applications. The paper presents fraction-free
forms for this classical test that enhance it with the property that
the testing of a polynomial with Gaussian or real integer coeffi-
cients can be completed over the respective ring of integers. Two
types of algorithms are considered one, named the G-sequence,
which is most efficient (as an integer algorithm) for Gaussian in-
tegers, and another, named the R-sequence, which is most efficient
for real integers. The G-sequence can be used also for the real case,
but the R-sequence is by far more efficient for real integer polyno-
mials. The count of zeros with positive real parts for normal poly-
nomials is also presented for each algorithm.

Index Terms—Continuous-time systems, integer algorithms,
linear network analysis, polynomials, Routh-Hurwitz criterion,
stability.

I. INTRODUCTION

R OUTH devised in 1877 [1] an algorithm to determine
whether a real polynomial has all its

zeros in the left half-plane, . We shall refer to a poly-
nomial with this property as ‘stable’ (the term Hurwitz polyno-
mial is also widely used) because a continuous-time constant
linear system with a stable characteristic polynomial is stable.
The Routh test involves just of standard arith-
metic operations making it the most efficient algorithms to test
stability of . It is worth noting that Routh was motivated
by a practical stability problem that was proposed to him by
Maxwell and he won a respectable prize for his solution.
The paper considers integer preserving (IP) Routh tests for

complex and real integer polynomials. The IP property means
that when the test is applied to a polynomial whose coefficients
are Gaussian integers or real integers, all the calculations can
be completed over the respective integral domain (i.e., without
encountering rational numbers). The algorithms are called frac-
tion-free (FF) to emphasize that they remain over the integers
even though they do involve exact divisions (cancellation of
common factors of the coefficients). The adjective optimal is
a saying about the efficiency of the algorithms as integer algo-
rithms that will be clarified later. The FF property makes the test
a more suitable system design tool with nowadays symbolic lan-
guage softwares. It also guarantees accuracy for high degree and
ill conditioned polynomials because integer arithmetics is exact.

Manuscript received June 21, 2012; revised October 19, 2012; accepted Jan-
uary 07, 2013. This paper was recommended by Associate Editor M. Frasca.
Y. Bistritz is with the School of Electrical Engineering, Tel Aviv University,

Tel Aviv 69978, Israel (e-mail: bistritz@eng.tau.ac.il).
Digital Object Identifier 10.1109/TCSI.2013.2246232

More prospective applications will arise through comments and
citations along the paper. Therefore, the discussion of usages for
FF Routh tests will be resumed in the concluding remarks.
The problem is often called the Routh-Hurwitz problem be-

cause Hurwitz, again motivated by a stability problem, derived
in [2] (18 years after Routh but independently) a stability crite-
rion that requires the positivity of all the principal minors of
an (not symmetric) matrix (known today as the Hur-
witz matrix) whose entries are a simple outlay of the coeffi-
cients of the real polynomial. The Hurwitz criterion provides
important supporting theory, but testing stability by direct eval-
uation of the sequence of Hurwitz determinants (without at-
tending to their relation to the Routh test) has higher order of
complexity than the Routh test. The method belongs to a group
of stability criteria, often called determinant methods, that ex-
press stability by conditions posed on matrices. These alterna-
tive methods started earlier with works by Bezout, Sylvester and
Hermite (who, lacking the stability incentive, actually consid-
ered criteria for the closely related problem of zeros in the upper
half-plane). Since then, matrix stability methods have been the
subject of a vast amount of publications. Due to space limita-
tion, we shall keep out of the current scope matricial aspects
of the theory. A gentle introduction to both the Routh test and
related determinant methods with rich bibliographical notes can
be found in Barnett’s book [3]. The earlier books of Marden and
Gantmacher also devote special chapters to the Routh-Hurwitz
problem [4], [5] .
The Routh test has been presented in the literature in several

ways. Originally, Routh presented it in an array that has become
known as the Routh table. This is still the popular way for pre-
senting the test in undergraduate textbooks on linear systems.
Continued fraction expansions (CFE) were used by Wall [6]
and by Frank who, advised byWall, generalized the Routh algo-
rithm to complex polynomials in [7]. The CFE presentation at-
tracted analog circuit theory researchers like Cauer, Darlington
and others as a means to realize two-element-kind networks by
RLC ladders, see e.g., [8]. A third possible presentation for the
Routh test is by three-term recursions of polynomials. This will
be the form used also in the current paper because it is compact
and very convenient for manipulations and proofs.
Much attention in the literature on the Routh test was directed

to ways to overcome certain singular cases. Singular cases must
be resolved in order to generalize the stability test into a full zero
location (ZL) procedure, one that can determine the distribution
of zeros with respect to the imaginary axis for any polynomial.
The current paper restricts the presentation to the non-singular
case (which is broad enough for testing stability). However, as
long as the recursion remains non-singular, the paper goes be-
yond stability and presents for each algorithm also ZL rules. A

1549-8328/$31.00 © 2013 IEEE

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

2 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

comprehensive treatment of singularities in the complex Routh
test appeared in [9].
Some related research considered the positioning of the

original Routh test in a larger family of polynomial recursions
that can equally perform the same task. The original Routh test
uses a three-term polynomial recursion with degree reduction
achieved by extraction at (elimination of the leading
coefficients of successive pairs of polynomials). However, it is
possible to devise variants that use other points of extraction.
It is also possible to use, instead of three-term polynomial
recursions, two-term polynomial recursions reminiscent of
those used in the classical stability tests for discrete systems
by Schur Cohn Marden and Jury (in the following ‘the SCMJ
class of tests’ [10]). Research on these issues includes [11],
[12] and [13] (for real polynomials) and [14] (that considers
also complex polynomials). It follows that two-term poly-
nomial recursion versions are less efficient algorithms with
less attractive settings and zero location rules than those with
three-term recursions. Among the three-term recursion tests,
the only equally simple alternative to the original setting occurs
when the extraction point is at (that will be used in
this paper). So these studies, beyond their theoretical value,
reinforce the success of Routh to hit from the start a stability
test that has never been surpassed in efficiency and simplicity
since its introduction in 1877.
The paper presents FF Routh tests that involve three-term re-

cursions in two, not trivially related, forms. One is designed for
polynomials with Gaussian (i.e., complex) integer coefficients
and the other is specific for real integer polynomials. The main
result for complex polynomials is named the G-sequence and is
stated in Algorithm 2. The other main result for the real case is
named the R-sequence and is stated in Algorithm 5. Each algo-
rithm is shown to be the most efficient integer algorithm for its
designed task. By comparison with the G-sequence, that is of
course a valid integer algorithm also for the real case, the R-se-
quence produces integers of half size and is by far a more effi-
cient integer algorithm for a real polynomial (where the terms
’size of integers’ and ’efficiency of integer algorithms’ will be
clarified later).
The research reported in this paper stems from seeking Routh

analogs for FF versions of the Bistritz test that were discov-
ered during its application to testing stability of two-dimen-
sional (2-D) discrete systems, see the complex “accompanying
1-D stability test” in [15] and the real test in [16] (and refer-
ences there in). The original (not FF) Bistritz test is a Routh-like
stability test for discrete-time systems introduced about three
decades ago [18] (this later reference is proposed instead be-
cause it brings the test in its most accomplished form as a gen-
eral unit-circle ZL procedure). Unlike the classical unit-circle
stability tests (the aforementioned SCMJ class) that use two-
term recursions to propagate polynomials of no specific struc-
ture, the newer test showed that it is possible and more efficient
(in counts of standard arithmetic operations) to use a certain
three-term recursion that propagates symmetric polynomials.
The Bistritz test also evoked the above mentioned studies on
alternative two-term and three-term Routh tests [11]–[14] and
inspired studies of alternative algorithms in some more contexts
(e.g., the Levinson algorithm) called collectively ‘immittance’

(or ‘split’) algorithms for distinction from their classical ‘scat-
tering’ counterparts.
One can not be too careful in claiming a new contribution

in a field with a long history like the Routh-Hurwitz problem.
While scanning the literature to wrap up this paper, we discov-
ered that our R-sequence algorithm is similar to the ‘optimal’
Routh array proposed by Jeltsch [19]. The other contributions
in this paper seem to be fully new. This includes the complex
FF Routh test (the G-sequence), some intermediate algorithms,
the relation among the complex and the real FF algorithms, and
the accompanying stability and zero location rules. By closer
comparison of the R-sequence with the Routh array in [19], the
R-sequence here is presented by a polynomial recursion (and a
reversed setting), the FF property is proved differently, the algo-
rithm is accompanied with stability and zero location rules, and
it is put in context and relationship with the complex FF case.
As a matter of fact, the paper establishes the G-sequence and the
R-sequence and their properties in a fully self containedmanner,
without reliance on extraneous stability criteria or matrix ma-
nipulations. Jeltsch used the term optimal to describe the min-
imal size of integers that the array attains. We adopted this term
for the title of our paper and shall argue that both the G-sequence
and the R-sequence are most efficient stability tests—one for a
general Gaussian integer and the other for real integer polyno-
mial, where the efficiency of the integer algorithms is measured
by their binary complexity, see e.g., [20].
The paper is constructed as follows. The next section presents

the complex Routh test that will serve as a template for fur-
ther evaluations. It differs somewhat from the classical setting in
ways that will be discussed. Section III is devoted to FF Routh
tests for Gaussian integer polynomials. Section IV considers
real integer Routh tests. Section V compares the efficiency of
all the presented FF Routh tests as integer algorithms and the
paper concludes with some remarks.

II. THE ROUTH TEST FOR COMPLEX POLYNOMIALS

Let and denote the fields of real and complex numbers,
respectively. The test is assumed to be applied to a polynomial

of the form

(1)

where and . Let
denote its conjugated-coefficient polynomial and

its para-conjugate polynomial. The
polynomial can be decomposed into its even and odd parts,

(2)

(3)

where a polynomial is called even if , and odd
if . Even and odd complex polynomials ex-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BISTRITZ: OPTIMAL FRACTION-FREE ROUTH TESTS FOR COMPLEX AND REAL INTEGER POLYNOMIALS 3

hibit alternatingly real and pure imaginary coefficients as illus-
trated above.
Our reference for all the forthcoming FF algorithms will be

the next complex Routh algorithm.
Algorithm 1: The D-sequence Construct for a polynomial

as in (1) a sequence of polynomials
as follows.

Initiation: Set and
to the even and odd parts given in (3). Obtain :

(4)

Recursion: For do:

(5)

(6)

Note that the completion of the algorithm requires that
for . We add to this

(assumed already in (1) with no loss of
generality) and and say that the algorithm obeys
normal conditions for if

(7)

It follows from the next theorem that normal conditions are
necessary conditions for stability. The presentation in this paper
will be restricted throughout to such normal conditions. How-
ever, given normal conditions, we shall always bring not just
stability conditions but also ZL rules.
Theorem 1: Assume that Algorithm 1 produces for
as in (1) a normal D-sequence. Then has zeros in

the right half-plane (RHP), , and zeros in the
left half-plane (LHP), where is the number of sign variations
of the sequence at , viz.

(8)

Usually we shall write the last term in a sign variation sequence
as above (i.e.,), even though the last polynomial of the se-
quence will always have zero degree (e.g., here).
Note that is equivalently given by the number of negative ’s

(9)

A proof of Theorem 1 is brought in Appendix A. It uses the so
called argument principle (or Rouché’s theorem) which is also
the tool used by Frank [7]. Spelling out a proof seems to be the
best way to cover a couple of diversions of the D-sequence here
from the form it assumed by Frank that will be discussed in the
last paragraph of this section. In addition, since all forthcoming
ZL rules will be deduced from Theorem 1, bringing for it a rig-
orous full proof supports our effort to make the derivation of the
FF Routh tests in this paper fully self contained.

Remark 1: Note that Theorem 1 implicitly states that there
are no zeros on the imaginary axis . This
happens as a direct consequence of the GCD (greatest common
divisor) property of the recursion. Let us briefly discuss this
property because it will be used repeatedly as an argument in
several forthcoming proofs. The recursion (6) can be regarded
as an Euclidean algorithm. So it acts as a GCD algorithm on
its two initial polynomials (as well as on any subsequent suc-
cessive pair of polynomials in the sequence). It then becomes
evident that it also acts as a GCD algorithm on and

. Suppose now that the algorithm produces a sequence
such that a , , is followed by . Then

contains all the common zeros of and (that
necessarily are either zeros on the imaginary axis, or occur
in pairs). Since normal conditions imply termination
with . It follows that normal
conditions imply no zeros on .
The case presents necessary and sufficient conditions

for stability. Notice that normal conditions are necessary for
stability and thus provide a broad enough framework for testing
it. A practical use of this observation is that it is possible to
conclude that a polynomial is not stable (has at least one zero
in) as soon as a is encountered (a
situation known as ‘singularity’). On the other hand, when the
sequence ends normally, the rule (8) provides full information
on the location of the zeros with respect to the imaginary axis.
This will be the situation also in all the forthcoming algorithms.
Assuming normal conditions, each algorithm will be associated
with an expression for such that the polynomial has
RHP and LHP zeros (and no zeros on).
Remark 2: The polynomials

are all even, . Consequently, and
alternatingly, and the free terms is

real (and also nonzero by the assumption of normal conditions).
It follows that and nonzero and that (possibly
zero). Incidently notice that it also follows that using a simple
substitution, , the algorithm could be arranged into a
recursion of real polynomials in the argument and be carried
out with only real arithmetics.
Example 1: To illustrate the D-sequence and forthcoming

Gaussian integer Routh algorithm we shall use the polynomial:

(10)

Applying to it Algorithm 1 produces

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

4 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

Use (8) or (9) to obtain . Therefore, the polynomial has 2
RHP zeros and 3 LHP zeros.
Notice that for a with , the recursion can

be initiated with the pair of polynomials:

(11)

When , all and the polynomials
become real and even (have only powers of). The algorithm
reduces to the classical Routh test (up to reversion). It starts
with the pair (11) and proceeds for with the
recursion

(12)

The ZL rules is still given of course by Theorem 1.
Example 2: We shall use the next polynomial to illustrate

algorithms for real polynomials.

(13)

The D-sequence can be initiated with (11)

(14)

and the rest of it obtained by the recursion spelled out for the
real case in (12),

By Theorem 1, is stable.
Algorithm 1 differs somewhat from the Routh test for com-

plex polynomials of Frank [7]. Frank, uses (a CFE that is equiv-
alent to) a three-term recursion with extraction at which
has been the customary form in the literature also for the more
familiar real Routh test. He also assumes (with no loss of gen-
erality for his study) that the given polynomial, say

is monic, . If is even (resp.
odd), then the first polynomials is the odd (resp. even) and the
second is the even (resp. odd) parts of . If one assumes a

with and take to be the reversion
of , i.e., , than Frank’s algorithm
would produce a sequence of polynomials related by reversion
to the polynomials of the D-sequence. (Note that and
have the same distribution of zeros with respect to the imaginary
axis.) The D-sequence uses instead a three-term recursion with
extraction at . It also removes the restriction be-
cause the assumption (and even) is restrictive

for the forthcoming derivation of a general Gaussian integer al-
gorithm. One consequence is that the D-sequence has a same
initiation for both parities of , a nicety that is maintained also
in the real case and in all the forthcoming FF tests. A second dif-
ference is that all the polynomials of the sequence (here as well
as in forthcoming algorithms) are even (in the classical setting
they are alternatingly even and odd). The third difference is that
in the current setting the stability and the ZL rule are posed (here
and in all subsequent algorithms) on the free coefficient of the
polynomials instead of on the leading coefficient of the polyno-
mials in the classical setting. Note that removing the restriction

on a introduces an extra preliminary step
(4) (that is not needed (11) if). From here on, we adhere
to just our chosen setting. However, should there be a reason,
this and any of the forthcoming FF Routh tests can be readily
converted into the dual setting by applying the reversion oper-
ation.

III. FF TESTS FOR A COMPLEX POLYNOMIAL

Let denote the ring of real integers, and the ring of
Gaussian integers defined by . We want to
test the stability of a complex polynomial by an algorithm
that is IP. Namely, we want an algorithm that has the property
that if then it can be fully carried out by operations
within (i.e., without encountering rational numbers).1 As
Example 1 demonstrates, the D-sequence is not IP. An obvious
way to turn it into an integers algorithm is to avoid divisions.
We shall see in a moment that this simple approach creates
an integer algorithm that is quite not attractive, though it will
serve as a good beginning for further improvements. Before
that, we must say some words on size of integers and efficiency
of integer algorithms.
The efficiency of an algorithm carried out over integers is not

measured well by the conventional count of arithmetic opera-
tions because a simple count ignores the fact that multiplica-
tion of big integers is more expensive than that of small in-
tegers. The efficiency of an integer algorithm is measured in-
stead by what is called binary complexity [20] or computing
time [21] that aims at estimating the number of operations be-
tween bits required to carry out the algorithm. The binary com-
plexity depends on the form the algorithm and on the size of
the integers that it produces. The size of a (Gaussian or real)
integer is measured by where is postulated to have
two properties (i) it is additive when two integers are multiplied,

, and (ii) .
It is possible to think of as presenting (approximately) the
number of bits (or or the number of decimal digits
(or) (these interpretations obey property (ii) only ap-
proximately). We also define for an integer polynomial

as the maximal size of (the real and imaginary parts of)
its integer coefficients and call it the integer-size of the polyno-
mial.
Suppose, we attempt to turn the D-sequence algorithm

into an integer algorithm simply by avoiding divisions.

1A ring without division operation other than cancellation is called an integral
domain (also a unique factorization domain).

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BISTRITZ: OPTIMAL FRACTION-FREE ROUTH TESTS FOR COMPLEX AND REAL INTEGER POLYNOMIALS 5

We then assign to a sequence of polyno-
mials . The initiation would be

, and

(15)

followed by recursion for as follows:

(16)

Clearly, if then all . So the al-
gorithm is IP. This approach to the Routh array for real poly-
nomials was considered by Barnett [3]. It is possible to go on
and deduce for it stability and ZL rules from Theorem 1. The
problem is that the outcome will be an inefficient IP stability
test because the recursion produces integers of size that grows
too rapidly. Using and to
represent integer-sizes for the indicated polynomials, it can be
shown that for is given by

This shows that the size of integers increases at an exponential
rate with the degree of the polynomial (governed by powers
of). So this scheme presents an extremely inefficient
integer algorithm even though it has complexity in terms
of conventional count of operations. (A good demonstration for
why the conventional count of arithmetic operations is not a
good measure for the efficiency of an integer algorithm.) The
next lemma shows how the size of integers can be restrained.
Lemma 1: Suppose the above division-free algorithm is

applied to and assume it obeys normal conditions
(all). Then
(a) (read “ divides ”). Namely,

.
(b) For , . Namely, .

Proof: Each is equal to multiplied by a
product of positive powers of that accumu-
late because the divisions that appear in the denominators of (5)
are avoided. Since all are real and nonzero it fol-
lows that all are real and non zero. In principle, a proof for
(a) follows by carrying out the required substitutions. To sim-
plify it, we shall use here (and repeatedly in the following) a
congruence technique that is admitted by the GCD property of
the recursion. For instance to prove that has as a
GCD of all its coefficients (the claim in part (a)), it is allowed
in the process of substitutions to drop a term, in a sum of terms,
as soon as the term is seen to contain the factor . We shall
use to denote equality modulo the (claimed) divisor.2 So to
prove part (a) we use to present congruent equality modulo

. Begin with and conclude from
here also that . Next,
and . Therefore

. This
completes the proof of part (a).

2Note that the claimed exact division follows if the process ends with showing
that the dividend .

To prove part (b), we first rename (to improve clarity)
four consecutive polynomials of the F-sequence as:

, , ,
. It is given that

(17)

with and and that

(18)

with and . The goal is to prove
. So in the following stands for equality mod . Use

(17) to write

(19)

From the above conclude also that

(20)

Next, by (18) and (19),

(21)

Consider the product . Clearly, its free term
. The coefficient of consists of

plus . So it too sums up to . Therefore, (21)
simplifies into

(22)

Next, evaluate the product . Deduce from (19) that

Therefore,

Multiply it by ,

Use the evaluation of in (20) to write

Therefore . It follows via (22) that .
This completes the proof of part (b).
Algorithm 2: The G-sequence. Construct for

as in (1) a sequence of polynomials ,
as follows.

Initiation: Set and to the
even and odd parts in (3). Set and

and obtain :

Recursion: For do:

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

6 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

(23)

Theorem 2: The G-sequence algorithm is fraction-free over
. Namely, if then all and the whole
algorithm can be completed over .

Proof: The algorithm implements recursively the elimina-
tion of the exact divisors exposed in Lemma 1. The recursive
elimination is admitted due to the GCD nature of the underlying
three-term recursion bywhich if divides , then it divides
also all subsequent , .
The recursive elimination of the factors restrains the

growth of integers from exponential rate in the F-sequence to a
linear rate as follows.
Proposition 1: Let be the integer-size for

and denote the integer-size of the polynomial in
the G-sequence. Then,

(24)

Proof: Clearly, , ,
(involves division by only). From here on, the

recursion becomes uniform and implies that the sizes obey the
difference equation whose
solution for the initial conditions ,

is (24).
The polynomials of the G-sequence differ from polynomials

of respective degree in the D-sequence by certain scaling factors
as shown next.
Lemma 2: The polynomials of the D-sequence and the G-se-

quence are related by

(25)

with , and then, , i.e.,

(26)

Proof: Compare the two recursions using induction.
because by definition .

Therefore,
shows that . Use these to

prepare ,
,

and . Setting
them into (23) with gives

Compare the above to (6) with :
, verifies that . Assume

(the induction assumption) that: holds for
. Use the assumption to prepare:

, and
for . Set these values into (23) and at

the end compare the outcome to (6):

This proves the induction step: .
The normal conditions (7) induce normal conditions for the

G-sequence given by

(27)

Theorem 3: Assume that Algorithm 2 produces for
as in (1) a normal G-sequence. Then has RHP and
LHP zeros, where is given by

(28)

Proof: By (26), for all , .
Then implies
and therefore, . Set this
into (8) to obtain

. The expression (28) follows from
here because dividing out the common from all the entries
of the sequence does not affect the count of sign variations.
The implied stability conditions are: is stable, if and

only if,

(29)

Example 3: Apply Algorithm 2 to in (10).

Notice that all the coefficients and the parameters of the
recursion belong to . Use (28) to form

. Therefore, by Theorem 3, has
2 RHP and 3 LHP zeros.
Consider next a with . Then and

consequently . It becomes tempting to
remove the apparent factor and use instead as the
second polynomial of the sequence, if this can be done without
compromising the IP property afterwards. We next show that a
superfluous factor can be removed from all subsequent poly-
nomials by just a slight modification at the beginning of the al-
gorithm. For distinction we call the resulting sequence the -se-
quence and put tildes over all its entries.
Algorithm 3: The -sequence. Assume as in

(1) and that .

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BISTRITZ: OPTIMAL FRACTION-FREE ROUTH TESTS FOR COMPLEX AND REAL INTEGER POLYNOMIALS 7

Initiation: Set , and
shown in (11).

Recursion: For do:

(30)

Theorem 4: The -sequence algorithm is fraction-free over
for with . Namely, all and

the whole computation can be completed over .
Proof: Assume then

by their definition. Then also
(because its creation involves no division

yet). From the next step on, the recursion complies with the
terms covered by case (b) in Lemma 1. Therefore subsequent
divisions by present cancellation of common factors of
the numerator coefficients.
Lemma 3: The relations between polynomials of respective

degrees in the -sequence and the G-sequence are:
and

(31)

Proof: Use induction to compare the polynomials
and for (in a fashion similar to that in
the proof for Lemma 2).
Proposition 2: The integer-sizes of the polynomials in the
-sequence for with real are

(32)

Proof: obeys a difference equation similar to that
in the proof for Proposition 1 except that now it has to be solved
for the initial conditions and .

Theorem 5: Assume Algorithm 3 obeys normal conditions
(for all) for with . Then

has RHP and LHP zeros with given by

(33)

Proof: Use (31) to get and set it into
(28)
The implied stability conditions: is stable, if and only

if,

(34)

Note that in difference from the G-sequence where the nice sta-
bility conditions (29) hold with no assumption on , in
order to have a similar expression for the -sequence, the as-
sumption has to be added.

IV. FF TESTS FOR REAL POLYNOMIALS

In this section we consider real polynomials. The goal is to
test the stability of

(35)

by an efficient IP algorithm. Clearly both the G-sequence and
the -sequence remain IP also for where the latter
involves somewhat smaller real integers. We first spell out the
application of the -sequence algorithm to a real polynomial.
Then, in the second part of this section, we shall show that it can
be further simplified into a significantly more efficient integer
algorithm.

A. Applying the Complex FF Algorithm to a Real Polynomial

When the -sequence algorithm is applied to a ,
all the terms with odd powers of in the polynomials (those that
in the complex have purely imaginary coefficients) are absent
and all the purely imaginary recursion parameters vanish.
For clarity and convenience of subsequent manipulation, we
shall refer to the application of -sequence algorithm to a real
polynomial as the -sequence. The polynomials of -sequence
are even, i.e., have only even powers of . So the actual de-
gree of will be if is even and if is odd,

with or .
Algorithm 4: The -sequence. Construct for in (35)

a sequence as
follows.
Initiation: Set and

(36)

Recursion: For do:

(37)

The next theorem and proposition follow from Theorem 4
and Proposition 2, respectively, simply because the -sequence
is the application of the -sequence to a real polynomial.
Theorem 6: The -sequence algorithm is fraction-free over
. Namely, if then all and the whole
algorithm can be completed over .
Proposition 3: The integer-size of the polynomials in the
-sequence for is

(38)

Theorem 7: Assume that Algorithm 4 obeys for in (35)
normal conditions (all). Then has RHP and

LHP zeros, where given by

(39)

Proof: By Theorem 5, we can write for the -sequence

(40)

Notice that and . The replacement
of with is admitted because .
This is a tricky observation that we shall prove later using a
forthcoming relation (48), see Remark 4.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

8 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

The stability conditions correspond to a same sign in (39),
i.e., . If may be added as a presumption, then the
set of necessary and sufficient conditions for stability becomes

(41)

Example 4: To illustrate Algorithm 4 we apply it to
in (13). The resulting -sequence (where the

values of are omitted for brevity) is:

It is apparent that the conditions (41) hold. Therefore is
stable.

B. Optimal FF Test for a Real Polynomial

In this subsection we derive a far better FF stability test for
real integer polynomials based on the following algorithms.
Algorithm 5: The R-sequence. Construct for

as in (35) a sequence of real polynomials
as follows.

Initiation: Set , and

(42)

Recursion: For do:

(43)

Lemma 4: Consider four successive polynomials
(for any) that

obey a division-free version of (43). Namely, assume they are
related by

(44)

Then . Namely, .
Proof: We carry out the involved substitutions using to

present congruent equality modulo . Obtain from the first
recursion step

Get from here also . Obtain from the second
recursion step

that also implies . Take the third recursion step
and multiply its two sides by . Then set into it the above con-
gruent values for and

where the last follows from the congruent value of . We
reached that means that is a common divisor of
all the coefficients of .
Similar to the reasoning that led from Lemma 1 to Theorem

2, Lemma 4 implies
Theorem 8: The R-sequence algorithm is fraction-free over
. Namely, if then all the polynomials
and the whole algorithm can be completed over .
Proposition 4: Let denote the integer-size of

in the R-sequence for . Then,

(45)

Proof: Inspection at the algorithm reveals that
, then , . From

here on, the recursion takes its steady form and the difference
equation becomes

. This is a third order difference equation
whose solution for the given initial conditions is (45).
Lemma 5: The polynomials of the R-sequences and the -se-

quences are related by ,
and

(46)

Proof: Compare and for
using induction (like in the proof for Lemma 2).
It follows that the R-sequence inherits the normal conditions:

(47)

The next lemma states a simple but very useful relation.
Lemma 6: The last term of a normal R-sequence obeys the

relation

(48)

Proof: Use (43) to obtain the next relation between the
leading coefficients of the polynomials

Notice that for odd . Start with and proceed
with ’s of even upward: , substitute
into it gives , substitute
in the latter gives and
so forth till reaching at the last step, using ,

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BISTRITZ: OPTIMAL FRACTION-FREE ROUTH TESTS FOR COMPLEX AND REAL INTEGER POLYNOMIALS 9

But when and when
(take a look at (42)). Thus (48) holds for both

parities of .
Theorem 9: Assume the R-sequence obeys for

as in (35) the normal conditions (47). Then has RHP and
LHP zeros, where is given by

(49)

Proof: Use (40) and Lemma 5 to write

(50)

where and . But (48) implies
. Namely, . There-

fore, the last entry in (50) can be replaced by .
Remark 3: The ability to determine ZL with (49) instead of

(50) is valuable because it uses that is known from the outset
instead of formed at the last step of the recursion. From
the perspective of integers, saving the last step also reduces the
largest integer required for completing the test.
The stability conditions for the R-sequence correspond to

in (50) or (49). The product of adjacent pairs
in these expressions can be decoupled. If then the
remaining necessary and sufficient conditions for stability are

while if (a worthy
convenient presumption) then necessary and sufficient condi-
tions for stability are given by the more pleasant set:

(51)

Remark 4: In the proof of Theorem 7 for the -sequence, the
property was used with a promise for
a forthcoming proof. Use Lemma 5 to write

. Then use (48) to write it as implies the
required property.
Example 5: To illustrate the R-sequence, we apply Algorithm

5 to in (13) and obtain

By Theorem 9, or by the conditions (51), the polynomial is
stable. Notice the reduction in size of integers in comparison
with Example 4. It illustrates reasonably well the near factor of
two gain in the size of integers of the R-sequence compared to
the -sequence featured in (45) and (38), respectively.
Jeltsch mentions [19] that there exists another Routh array

for real polynomials that can be deduced to be too FF via the
subresultant polynomial remainder sequence theory [21]. It is
mentioned there quite casually and dismissed as less attractive
because it involves integers of double size compared to the op-
timal Routh array. It can be readily realized that this alternative
array corresponds to our -sequence (up to our reversed set-

ting). Here the FF property of the -sequence is established di-
rectly, it is complemented with stability and zero location rules
and its relation to the R-sequence is presented. Not less impor-
tant is that the paper now shades light on the somewhat enig-
matic dual FF array mentioned briefly in [19] and puts it into an
interesting perspective. Namely, it can be regarded as the ‘pro-
jection’ of the complex FF Routh test on the real case. The hi-
erarchy begins with the G-sequence algorithm that is the best
FF Routh test for a general Gaussian integer polynomial. The
G-sequence, or more precisely its simplification into the -se-
quence, inherits for real polynomials the -sequence that is FF
but no longer optimal for real integer polynomials. For the real
case, further systematic extraction of common integers is pos-
sible and yields the nearly half-sized integer R-sequence. So far
the relative performances of these integer Routh tests were com-
pared just by the size of the integers they produce. We next at-
tend to measure their efficiency by binary complexity.

V. COMPLEXITY

The efficiency of an integer algorithm is measured most ad-
equately by what is called “binary complexity” [20] or “com-
puting time” [21]. The measure estimates the number of binary
operations required to carry it out. The required calculations for
the FF Routh algorithms begin by regarding the measures
found for the G-sequence, the -sequence and the R-sequence
in (24), (38) and (45), respectively, as measuring the size of the
integer coefficients in bits. Then, a count of the overall number
of binary flops (one flop means one real multiplication plus one
addition) for each algorithm can be carried out, taking into ac-
count the structure of the respective recursion, the number of
coefficients at each step (that descend with the degrees from
step to step) and using expressions for the cost of multiplica-
tion or cancellation (exact division) of two integers (e.g., the
multiplication of two integers of lengths , requires about

binary flops, see similar counts carried out for the integer
unit-circle test in [16]). It is relatively easy to realize that the
counts for each of these algorithms must be of order ,
a notation that is used to mean terms with lower power
of and/or . Skipping tedious details, the for the R-se-
quence is . The binary complexity of the -sequence
is more than 10 times higher, with . For the G-se-
quence (recall that its coefficients are either real or
purely imaginary, never both). The higher binary complexity of
the G-sequence in comparison to the -sequence is contributed
by the extra multiplier in the numerator of the recursion (23)
and by the doubling of the number of nonzero coefficients (in
the real case only powers of participate).
The above efficiency counts disregard possible common fac-

tors in the coefficients of . Common integer factor grow at
an exponential rate through the recursion. So removing apparent
integer common factors may results an impressive reduction in
integers size. If suitable, the systematic way to ensure the re-
moval of all common factors is the preliminary running of an
extraneous integer GCD algorithm over all the coefficients of
the tested polynomial. Latent common factors are not expected
when one or more of the coefficients involve literal parameters.
The G-sequence is the most efficient integer algorithm for

a general . This is so because (16) is the sim-

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

10 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

plest Euclidean degree-reducing step between two complex
even polynomials that remains over Gaussian integers, and
Lemma 1 presents all the possible cancelations of common
factors that its repeated application produces. Consequently,
the recursion involves the smallest possible size of integers.
The claim of least size of integers assumes a fully complex
coefficient polynomial, namely, that all the coefficients and
, participate. For instance, when the supposed

to be complex is real, we saw that the simpler -sequence
becomes possible. It was also assumed that there is access to
the real and imaginary parts and of each coefficient .
This may not be the case in a situation where access to some
of the coefficients is granted only through the symbol
and its conjugate . The remedy for such a situation is to
use and , i.e., to initiate the
algorithm with and instead. The consequence
is that subsequent ’s are scaled up by factors of ,

. Similarly (and without corresponding reserva-
tions), the R-sequence is optimal for a real integer polynomial
because (44) is the simplest Euclidean degree reducing step
between two real even polynomials that remains over integers,
and Lemma 4 exposes all the common factors that its repeated
use creates.

VI. CONCLUDING REMARKS

The paper presented two different fraction-free Routh tests.
One is the G-sequence algorithm that is most efficient for
Gaussian integer polynomials. The second is the R-sequence
that is about 10 times more efficient for an integer polynomial
(in binary complexity) than using the G-sequence for a real
polynomial. These FF tests have interesting relations with sta-
bility determinants of Bezout Hermite Sylvester and Hurwitz
matrices that due to space restrictions were not covered in the
current scope. At the same time, the fact that the paper has
established the FF Routh tests without reliance on matricial
stability theory contributed to making the presentation self
contained and demonstrates once again that efficient stability
tests and their possible relation to matricial stability criteria are
two separable issues.
Following the terminology suggested in [17], the G-sequence

in this paper can be regarded as the continuous equivalent of the
FF Bistritz test for Gaussian integer polynomials appearing in
[15] (that also underlies earlier 2-D tabular stability tests for dis-
crete systems cited there). Similarly, the R-sequence is the con-
tinuous equivalent of the FF IP Bistritz test for real integer poly-
nomials in [16]. Thus, the work presented in this paper provides
further justification to the perception that led Jury and Mansour
[17] to name the Bistritz test as the discrete equivalent of the
Routh test and distinguish it from the previous Jury-Marden
stability test that provides only a discrete counterpart for the
Routh test. The emerging new distinction is that the modified
Jury test in [22] (presented by Jury already earlier in several
variants summarized in the type C tests in [10]), which is actu-
ally the FF test for the SCMJ class of stability tests for discrete
systems, does not have two forms, one for Gaussian integers and
a different and simpler one for real integers.

The FF Routh algorithms are in general more suitable for
today’s computer algebra systems and in conjunction with a
symbolic language software provide useful design tools for con-
tinuous-time systems. For example, they may be used to deter-
mine stability range for designable parameters similar to the
use of the FF Bistritz test in [16]. In addition, since integer
arithmetics is exact, these FF tests introduce definiteness to the
Routh test because in its original form rounding error may af-
fect the sign rules when testing high degree or ill-conditioned
polynomials. Note that accuracy can be granted also for polyno-
mial with decimal coefficients by first scaling them by a proper
power of 10 into an integer polynomial. More applications are
expected to arise based on the fact that these algorithms remain
fraction-free also for polynomials with coefficients over more
general Gaussian-integer-like and real-integer-like integral do-
mains.

APPENDIX
PROOF FOR THEOREM 1

Assume Algorithm 1 obeys for (1) normal con-
ditions. Then the sequence of even polynomials
is well defined and obeys the recursion (6). We shall use the next
properties.
— Property 1. is a real polynomial in .
— Property 2. Two successive polynomials of the sequence
can not vanish at a common finite zero on .

— Property 3. No two successive polynomials in the D-se-
quence can be degree deficient.
Proof: Properties 1 was explained in Remark 2. Property 2

is implied by normality and the GCD property of the recursion
discussed in Remark 1. It remains to prove property 3. The as-
sumption that implies that and can not
be both degree deficient. This can be realized as follows.

even
odd

even
odd

Therefore,

even

odd

For even, if then else if
then . For odd if then

else if then . Subsequently,
two consecutive polynomials and ,
can not be both degree deficient because this degree deficiency
(that can be regarded as a common zero at) would propagate
downward and imply premature termination of the sequence, in
contradiction to the assumption that normal conditions hold.

Lemma A: Assume that Algorithm 1 produces for a
normal D-sequence. Associate to each pair of adjacent polyno-
mials, the complex polynomial
for . Let denote the number of zeros
of the polynomial in the open RHP, . Then for

(A1)

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

BISTRITZ: OPTIMAL FRACTION-FREE ROUTH TESTS FOR COMPLEX AND REAL INTEGER POLYNOMIALS 11

Proof of Lemma A: Write , for any
, as follows:

By adding and subtracting obtain

The above can be written as follows:

(A2)

with

(A3)

We aim at showing that does not vanish on the
boundary of the RHP that can be thought of as the limit

of in which
and denotes an arc of radius in the RHP supported

by .
Factor (A3) into where

Examine first . Since is real and nonzero and
is imaginary, it follows that , that for all
, , and that

. Therefore for all .
Next, consider . Clearly and

. By
property 3, and may vanish but not simulta-
neously, also (sum of a real number
and a pure imaginary number). So .
Else, for all , has the form
where is real and finite. Therefore,

for all . Combining the analysis of the
two factors of , we showed that for
all . (Notice that we showed the strict inequality also
at). It follows that the factor in (A2)
does not vanish for all . So the Argument Principle (or
Rouché’s theorem) can be applied to conclude that

The zero of the first term is in the RHP if and in the LHP
if (recall that and). Therefore

.
Proof of Theorem 1: Apply (A1) recursively (from bottom

upward) to obtain that

, ,
and so forth, , till

It remains to show that . Write the re-
lation between and

as follows:

where

The first factor is independent of and has absolute value less
than 1. The second factor is similar to
analyzed above. Thus on . Hence
on . Invoking again the Argument Principle, it follows that

. This completes the proof of (9) that is
equivalent to (8).

REFERENCES

[1] E. Routh, A Treatise on the Stability of a Fiven State of Motion.
London, U.K.: MacMillan & Co., 1877.

[2] A. Hurwitz, “Über die Bedingungen unter welchen eine Gleichung nur
Wurzeln mit negativen reellen Teilen besitzt,”Math. Ann., vol. 46, pp.
273–284, 1895, (English translation by H. G. Bergmann in Selected
Papers in Mathematical Trends in Control Theory, R. Bellman and R.
Kalaba, Eds. New York: Dover, 1964, pp. 70–82.).

[3] S. Barnett, Polynomials and Linear Control Systems. Basel, NY,
USA: Marcel Decker, 1983.

[4] M. Marden, The Geometry of the Zeros of a Polynomial in a Complex
Variable. New York, NY, USA: American Math. Society, 1949.

[5] F. R. Gantmacher, Matrix Theory. New York, NY, USA: Chelsea,
1959, vol. II, ch. XV.

[6] H. S. Wall, Analytic Theory of Continued Fractions. New York, NY,
USA: Chelsea, 1948, ch. 10.

[7] E. Frank, “On the zeros of polynomials with complex coefficients,”
Bull. Amer. Math. Soc., vol. 52, pp. 144–157, 1946.

[8] V. Belevitch, Classical Network Theory. San Francisco, CA, USA:
Holden-Day, 1968.

[9] D. Pal and T. Kailath, “Displacement structure approach to singular
root distribution problems: The imaginary axis case,” IEEE Trans. Cir-
cuits Syst. I, vol. 41, no. 2, pp. 138–148, 1992.

[10] Y. Bistritz, “Reflections on Schur-Cohn matrices and Jury-Marden ta-
bles and classification of related unit-circle zero location criteria,” Cir-
cuits Syst. Signal Process., vol. 51, no. 1, pp. 111–136, 1996.

[11] H. C. Reddy and P. K. Rajan, “All pass function based stability test
for continuous time systems,” in Proc. IEEE Int. Symp. Circuits and
Systems, 1985, pp. 824–826.

[12] A. Lepschy, G. A. Mian, and U. Viaro, “Splitting of some s-domain
stability-test algorithms,” Int. J. Control, vol. 50, pp. 2237–2247, 1989.

[13] W. Krajewski, A. Lepschy, G. A. Mian, and U. Viaro, “A unifying
frame for stability-test algorithms for continuous-time systems,” IEEE
Trans. Circuits Syst., vol. 37, pp. 290–296, 1990.

[14] H. Lev-Ari, Y. Bistritz, and T. Kailath, “Generalized Bézoutians and
families of efficient zero-location procedures,” IEEE Trans. Circuits
Syst., vol. 38, pp. 170–186, Feb. 1991.

[15] Y. Bistritz, “On testing stability of 2-D discrete systems by a finite
collection of 1-D stability sets,” IEEE Trans. Circuits Syst. I, vol. 49,
no. 11, pp. 1634–1638, 2002.

[16] Y. Bistritz, “An efficient integer-preserving stability test for dis-
crete-time systems,” Circuits Syst. Signal Process., vol. 23, no. 3, pp.
195–213, 2004.

[17] E. I. Jury and M. Mansour, “On the terminology relationship between
continuous and discrete systems criteria,” Proc. IEEE, vol. 73, no. 4,
p. 884, 1985.

This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

12 IEEE TRANSACTIONS ON CIRCUITS AND SYSTEMS—I: REGULAR PAPERS

[18] Y. Bistritz, “Zero location of polynomials with respect to the unit-circle
unhampered by nonessential singularities,” IEEE Trans. Circuits Syst.
I, vol. 49, no. 3, pp. 305–314, 2002.

[19] R. Jeltsch, “An optimal fraction free Routh array,” Int . J. Control, vol.
30, no. 4, pp. 653–660, 1979.

[20] S. Basu, R. Pollack, and M. F. Roy, Algorithms in Real Algebraic Ge-
ometry, 2nd ed. New York, NY, USA: Springer-Verlag, 2008.

[21] W. S. Brown, “The subresultant PRS algorithm,” ACM Trans. Math.
Software, vol. 4, pp. 237–249, 1978.

[22] K. Premaratne and E. I. Jury, “On the Bistritz tabular form and its
relationship with the Schur–Cohn minors and inner determinants,” J.
Franklin Inst., vol. 330, no. 1, pp. 165–182, 1993.

Yuval Bistritz received the B.Sc. degree in physics
and the M.Sc. and Ph.D. degrees in electrical engi-
neering from Tel Aviv University, Tel Aviv, Israel, in
1973, 1978, and 1983, respectively.
From 1979 to 1984 he held various assistant and

teaching positions in the department of Electrical
Engineering, Tel Aviv University, and in 1987 he
joined the department as a Faculty Member. From
1984 to 1986 he was a research scholar in the In-
formation System Laboratory, Stanford University,
Stanford, CA, USA, working on fast signal pro-

cessing algorithms. From 1986 to 1987 he was with AT&T Bell Laboratories,
Murray Hill, NJ, USA, and from 1994 to 1996 with DSP Group, Santa Clara,
CA, USA, working on speech processing algorithms. His research interests are
in the area of digital signal processing and system theory.

