
Circuits Syst Signal Process
DOI 10.1007/s00034-014-9824-3

Fraction-Free Unit Circle Stability Tests

Yuval Bistritz

Received: 6 October 2013 / Revised: 15 May 2014 / Accepted: 16 May 2014
© Springer Science+Business Media New York 2014

Abstract The paper considers five fraction-free (FF) tests to determine whether a
complex or a real polynomial has all its zeros inside the unit-circle. A FF test for
complex polynomial is applicable to both complex and real polynomials where the
FF property means that when it is applied to Gaussian or real integer coefficients,
it can be completed over the respective ring of integers, i.e., it is Gaussian integers
preserving (GIP) for Gaussian integer coefficient polynomials and integer preserving
(IP) for integer coefficient polynomials. Three of the FF tests are for both complex
and real polynomials. Two of the FF tests are specific for real polynomials and are IP
for a polynomial with integer coefficients. Two GIP tests and two corresponding IP
tests are immittance-type (stem from the Bistritz test). The third GIP test, a modified
test proposed by Jury, is scattering-type (stems from the Schur–Cohn test). The two
real immittance-type IP tests are significantly more efficient as integer algorithms than
using any of the GIP tests for a real integer polynomial. The focus of the paper is on
stability conditions. However, assuming normal conditions, stability conditions are
always embedded in rules for counting also zeros outside the unit-circle.

Keywords Unit-circle stability · Testing stability of discrete systems ·
The Schur–Cohn problem · Zero location of polynomials · Fraction free ·
Integer algorithms · Immittance algorithms

1 Introduction

Algebraic algorithms to test whether all the zeros of a polynomial reside inside the
unit-circle are well known as a means to test the stability of a linear discrete-time

Y. Bistritz
School of Electrical Engineering, Tel Aviv University, 69978 Tel Aviv, Israel
e-mail: bistritz@eng.tau.ac.il

Circuits Syst Signal Process

system. They also serve as a tool in filters design and systems control and bear intimate
relationships with some important problems in linear algebra and signal processing.
The current paper considers the testing of stability by algorithms that are fraction free
(FF). The FF property means that when the algorithm is applied to a polynomial with
Gaussian (i.e., complex) or real integer polynomials, it can be completed over the
same ring of integers. FF tests are not restricted to integer polynomials and we shall
discuss some good reasons to prefer them also for not integer polynomials. The term
integers preserving is often used as a synonym for FF in the literature. Our preference
is to use FF as a common term and use Gaussian integer preserving (GIP) and integers
preserving (IP) to distinguish complex and real FF algorithms. The FF property makes
stability tests more suitable for symbolic computation, engineering design problems,
and to test stability of higher dimensional systems, as will become apparent through
citations and comments during their presentation. We shall return to discuss these and
other advantages of the FF stability tests in the last section of the paper.

The first direct solution to the unit-circle stability problem was obtained by Schur
[31] and Cohn [19]. The Schur–Cohn method was subsequently studied by many
researchers with notable early contributions by Marden [29] and Jury [22,25]. Another
and more efficient stability test was proposed by Bistritz in [3,4]. It introduced a dif-
ferent approach that has become called the immittance formulation (also “split” in
related signal processing contexts) where, for distinction, the classical tests of Schur
Cohn Marden and Jury are called the scattering formulation (these two terms follow
from their possible interpretation as two different ways to describe wave propagation).
Immittance-type tests associate the tested polynomial with a sequence of symmetric
polynomials of descending degrees that are created by a three-term polynomial recur-
sion. In difference, scattering-type tests use a two-term polynomial recursion and
create a sequence of polynomials with no specific structure. The Bistritz test (BT)
was first noted for its improved computational efficiency. It involves a count of (stan-
dard) arithmetic operations that is lower by a factor of two or more (depending on
type) than the four possible types of scattering-type stability tests [6]. Subsequently,
it became appreciated also for its close similarity to the Routh test, the well-known
stability test for continuous-time linear systems. Jury and Mansour declared that the
BT is the discrete equivalent of the Routh test [26]. It also has an inherent ability to
accommodate smoothly abnormal cases that were previously treated as singularities
[12]. The current paper will support with further evidence the affinity between the
BT and the Routh test. The two tests share in common the situation where there is
a Gaussian integer version and a simpler real integer version as shown here for the
BT and was shown recently in [18] for the Routh test, a situation that has no parallel
within the scattering-type tests.

A polynomial D(z) = dn
∏n

k=1(z − zk) will be called in this paper “stable” if all
its zeros reside inside the unit-circle (IUC) , |zk | < 1. This is the familiar requirement
that the characteristic polynomial of a stable discrete-time linear system has to fulfill.
A typical stability test consists of an algorithm and a stability theorem. The algorithm
builds for D(z), in a finite number (of o(n2)) of arithmetic operations, a sequence
of descending degree polynomials. The theorem provides necessary and sufficient
conditions for stability posed typically on the sign of a set of n parameters taken
from the built polynomial sequence. A (unit-circle) zero location (ZL) test generalizes

Circuits Syst Signal Process

the stability test into counting the numbers of outside the unit-circle (OUC) zeros,
|zk | > 1, unit-circle (UC) zeros, |zk | = 1, and IUC zeros of D(z). In this paper, we
focus on FF stability tests. However, ZL rule for each FF test will also be provided,
assuming normal conditions (that roughly means, as long as the algorithm used to test
stability can still be completed “as is”).

The paper considers five FF stability tests, outlined for the sake of orientation in
Table 1. Three of them are applicable to both complex and real polynomials such that
they are GIP for Gaussian integer polynomial and IP for real integer polynomials.
One GIP test is the modified Jury test (MJT), a scattering-type test that Jury devised,
first for real polynomials and later, in [27], for complex polynomials, in order to get
directly the sequence of Schur–Cohn stability determinants. An early real version was
shown to be IP already in [1]. The two other GIP tests are FF versions of the BT. One
is the FFG (“FF for Gaussian integers”) test that follows the original initiation of the
BT in [3,4,12]. The second is the FFGM, test that follows the BT with the modified
initiation [7] (the ending M stands for “modified”). The remaining two tests are the
FFR (“FF for real integers”) and the FFRM tests. They are IP tests usable only for
real polynomials. The FFR and FFRM tests are more efficient integer algorithms than
using the FFG or the FFGM (or the MJT) test for a real integer polynomial.

The FFG and the FFGM tests were conceived in the context of developing stability
tests for two-dimensional (2D) discrete systems. The FFG test underlies the 2D tabular
test in [9] and the FFGM underlies the one in [8]. The MJT was too applied successfully
to test 2D stability [11,20]. However, only now they are presented and characterized as
GIP stability tests. As it will be discussed later, the application of these tests to testing
2D stability demonstrates a generalized use that relies on the fact that the algorithms
remain FF also for polynomials with coefficients over more general integral domains.

The paper states for each test the algorithm that produces a sequence of polynomials
of descending degrees, characterizes its integer properties, and presents for it the ZL
rule (for normal condition). The implied stability conditions are simplified, when
possible, into conditions with shorter integers. Section 2 brings some terminology and
introductory notes. Section 3 presents the FFG and the FFR tests. Section 4 brings the
corresponding FFGM and FFRM tests. Section 5 brings the MJT. Section 6 compares
the binary complexity of all the integer tests. The last section discusses the five FF test
from several perspectives and comments on applications and some planned further
work.

Table 1 A chart of the FF tests in this paper

Polynomial D(z) Immittance tests Immittance modified tests Scattering test

D(z) ∈ C[z] FFG FFGM MJT

GIP for D(z) ∈ Z j [z]
IP for D(z) ∈ Z[z]

Ĝ-sequence Sect. 3.1 (also
FFGr a, Sect. 3.2.1)

G̃-sequence Sect. 4.1 C-sequence Sect. 5

D(z) ∈ R[z] FFR FFRM No simpler

IP for D(z) ∈ Z[z] R-sequence Sect. 3.22 R̃-sequence Sect. 4.2 IP specific test
a The FFGr algorithm (G-sequence) follows the FFG recursion but admits a minor reduction for D(z) ∈
Z j [z] if D(1) ∈ R

Circuits Syst Signal Process

2 Preliminaries

Let C and R present the complex and the real numbers, respectively. We shall consider
the testing of the following complex polynomial

D(z) =
n∑

i=0

di z
i ∈ C[z], D(1) �= 0, dn �= 0, (1)

or, when dealing specifically with a real polynomial, we shall assume

D(z) =
n∑

k=0

dk zk ∈ R[z] , D(1) > 0, dn �= 0. (2)

Note that the assumptions are broad enough for stability testing. If D(1) = 0, then the
polynomial is not stable (has a UC zero at z = 1). Similarly, a polynomials of degree
n that is degree deficient (dn = 0) represents too a not stable case (vanishing leading
coefficients mean OUC zeros at infinity). Fixing D(1) �= 0 into D(1) > 0 in the
real case (2) often admits “nicer” expressions for the stability conditions. The same
“nice stability expression” would be reached also if the pair D(1) > 0 and dn �= 0
is interchanged with the pair dn > 0 and D(1) �= 0 (as can be verified by setting
z = 1 into a real polynomial D(z) = dn

∏n
k=1(z − zk) with |zk | < 1 for all its zeros).

However, the choice D(1) > 0 is more coherent with the central role of z = 1 in the
immittance-type algorithms.

Let Z denote the ring of real integers, and Zj the ring of Gaussian integers defined
by Zj = {a + jb | a, b ∈ Z}, j = √−1. We recall that we refer to an algorithm
that remains FF for D(z) ∈ Zj[z] or for D(z) ∈ Z[z], Gaussian integer preserving
(GIP) and integer preserving (IP), respectively. All the forthcoming GIP algorithms
are arranged such that they become IP for real integer polynomials. However, we shall
have two IP stability tests that can be used only for real polynomials.

A naive way to turn a stability test into an integer algorithm is to avoid divisions. For
example, the Marden test [29] and related tests listed in the “type D” category in the
classification of the scattering-type tests in [6] are actually integer tests because they
are division free. The problem with this approach is that it produces integers whose size
increases at an exponential rate from step to step making them very inefficient integer
tests (the terms “size of integers” and “efficiency of integers” will be explained in a
moment). The term FF algorithm infers efficiency that is manifested by a restrained
(linear rather than exponential) growth of the size of integers. Division-free tests often
provide an instrumental tool toward developing an efficient integer test. We used
a division-free intermediate stage in the derivation of the FFR IP test in [15] and
beforehand in the derivation of the 2D stability tests in [9] and [8] (that underlie the
current FFG and FFGM tests). The FF integer tests considered in this paper are not
division-free. They use division to remove recursively a common integer factors from
the coefficients of the produced sequence of polynomials and in this way restrain the
growth of the size of integers.

Circuits Syst Signal Process

By the size of an integer b (∈ Z or ∈ Zj) we mean a measure, denoted by �(b), that
is postulated to have two properties (i) it is additive when two integers are multiplied,
�(b1b2) = l(b1)+l(b2) and (ii) �(b1+b2) = max{�(b1), �(b2)}. It is possible to think
of �(b) as presenting the number of bits (or Log2(|b|)) or the number of decimal dig-
its (or Log10(|b|)) at least approximately (note that these interpretations do not obey
property (ii) exactly). We shall denote by �(D(z)) the integer-size of a polynomial
D(z) that can be defined as (say) the maximal size of its integer coefficients. The effi-
ciency of an integer algorithm takes into account not just the structure of the algorithm
(that affects the conventional measure of efficiency based on counting the number of
standard arithmetic operations) but also the size of the involved integers (multiplying
big integers is more expensive), using a measure that is called computing time [1] or
binary complexity [2]. We shall state the integer size as part of the presentation of each
algorithm and their implied respective binary complexity in Sect. 6.

As mentioned already, the immittance-type GIP tests in this paper were conceived
during the development of efficient 2D stability tests and the MJT was too applied
successfully to 2D stability testing. A brief digression on these applications provides
revealing insight on the power of FF tests. Stability of 2D systems poses a “no zeros
outside the unit bi-circle” requirement on a bivariate polynomial. Due to some helpful
auxiliary theorems, the latter requirement can be tested by treating the bivariate poly-
nomial as a univariate polynomial in one of the variables with coefficients that are poly-
nomials in an “auxiliary” variable. Assume, for the simplicity of the following descrip-
tion, that the bivariate polynomial has degree (N , N). Early 2D stability tests relied
on division-free 1D stability and consequently ended with 2D tests whose complexity
grows at an exponential rate with N making them quite messy and even impractical
(due to numerical inaccuracy) for already moderate values of N . The second genera-
tion of 2D tests in [8,9,20], called “tabular” or “polynomial array” tests, reduced the
complexity to o(N 6) by restraining the growth of the so-called “balanced polynomial”
coefficients (that involve both positive and negative powers of the auxiliary variable)
by extracting from the coefficients common divisor polynomials. The balanced poly-
nomial coefficients behave in this scheme in a manner that is analogous to Gaussian
integer coefficients. In this analogy, polynomial degrees of the coefficients correspond
to the size of integers, staying with polynomial coefficients corresponds to staying over
integers, and the overall count of arithmetic operations corresponds to the binary com-
plexity of the GIP algorithm. It is also relevant to mention here that a third generation
of 2D stability tests that attain o(N 4) of complexity, attain this complexity using the
MJT, FFG, and FFGM tests as “companion 1D stability tests” in [10,11,13], respec-
tively, to “telepolate” (interpolate) corresponding second generation tabular tests. The
foregoing notes will be used to deduce the FF properties from proofs in the 2D stability
context. They are also helpful to follow the count of binary operations by regarding
them as standard arithmetical operations in recursions with polynomial coefficients.

3 Immittance-Type FF Tests

Define for a polynomial D(z) = ∑n
i=0 di zi the reciprocal polynomial D�(z) =∑n

i=0 d�
n−i z

i , where � denotes the operation of complex conjugation. The immittance-

Circuits Syst Signal Process

type algorithms associate to the tested polynomial a sequence of symmetric poly-
nomials of descending degrees, where a polynomial D(z) is called symmetric if
D�(z) = D(z). It is noted that the coefficients of a complex or real symmetric
polynomial exhibit conjugate-symmetry, dk = d�

n−k , or real symmetry, dk = dn−k ,
k = 0, . . . , n, with respect to the center. Therefore, a symmetric polynomial is well
defined by about half of its coefficients.

3.1 Complex Polynomials (FFG)

We begin with a stability test for complex polynomials that is GIP and will be called
the FFG (Fraction-Free Gaussian) test.

The FFG algorithm Pre-scale D(z) ∈ C[z] as in (1) to form D̂(z) = D(1)� D(z)
and construct for it a sequence of symmetric complex polynomials Ĝm(z) =∑n−m

i=0 ĝm,i zi , m = 0, 1, . . . , n, as follows.

Ĝ0(z) = D̂(z) + D̂�(z) , Ĝ1(z) = D̂(z) − D̂�(z)

z − 1
, q̂0 = Ĝ0(1) (3a)

For m = 1, . . . , n − 1 do:

ĥm = ĝm−1,0 ĝ�
m,0, q̂m = |ĝm,0|2

zĜm+1(z) = (ĥm + ĥ�
m z)Ĝm(z) − q̂m Ĝm−1(z)

q̂m−1
. (3b)

Normal conditions are defined, here and in all the forthcoming algorithms, as the
case where all the polynomials in the sequence have nonzero leading coefficients.
Normal conditions provide a broad enough framework for testing stability because
they always form necessary conditions for stability. (Consequently, a polynomial can
be declared “not stable” as soon as a degree deficient polynomial is encountered.) Since
the immittance-type stability tests involve symmetric polynomials, normal conditions
also mean non zero free terms. Specifically, the FFG sequence is said to be normal if

Ĝm(0) �= 0, m = 0, . . . , n. (4)

Note that for Ĝ1(z) to be a polynomial, the numerator must vanish at z = 1. This
requirement is taken care by forming D̂(z) that is real at z = 1. We use the hat upper
script ˆ as an indicator that the recursion is actually applied to D̂(z) = D(1)� D(z). We
reserve the no ˆ notation to a corresponding G-sequence that applies directly to D(z).
The preliminary scaling is avoidable when D(z) ∈ C[z] happens to have D(1) ∈ R

and of course when D(z) ∈ R[z]. This admits a somewhat simpler integer algorithm,
see the FFGr algorithm in the next section.

Theorem 1 Assume that the FFG algorithm is applied to D(z) ∈ Zj[z] and obeys
normal conditions. Then all Ĝm(z) ∈ Zj[z] and the algorithm can be completed over

Circuits Syst Signal Process

Zj. Let B = �(D(z)), then the integer size of Ĝm(z) is

�Ĝ(m) = 2m B , m = 1, . . . , n. (5)

Proof The fact that each divisor q̂m , m ≥ 1 cancels out a common factor from all
the coefficients of the polynomial in the numerator (3b) was shown in [8, Lemma
2]. The origin of the factor q̂0 is different. It is created by the specific way that the
recursion is initiated. The fact that it is an exact divisor in the creation of Ĝ2 follows
by direct substitution as was detailed in [9, Lemma 2] (and it is similar to one we will
carry out here for the forthcoming FFGr algorithm). Assume �(D(z)) = B. Then the
integer-size for D̂(z) = D(1)�D(z) is 2B. Therefore, �Ĝ(0) = �Ĝ(1) = 2B (note
that the measure neglects by definition possible increase by one bit or digit during the
additive operations). Next �Ĝ(2) = 4B is obtained by adding up �(ĝ1,0) , �(ĝ0,0), and
�Ĝ(1) (or, equivalently, �(ĝ1,0), �(ĝ1,0), and �Ĝ(0)). For m ≥ 2, the recursion takes a
steady form that obeys the difference equation

�(m + 1) = 2�(m) − �(m − 1). (6)

The solution of this equation for the initial conditions �Ĝ(1) = 2B, �Ĝ(2) = 4B is
(5). ��

It was shown in [13], where the FFG test serves as a “companion 1D stabil-
ity tests” for 2D stability testing, that the polynomials of the FFG sequence are
proportional to respective degree polynomials of the original sequence in [4], say
Tm(z) = ∑n−m

k=0 tm,k zk (where the indexing of the polynomials here is in reversed
order to that in [4]), viz.

Ĝm(z) = β̂m Tm(z), (7)

where β̂m are given by β̂0 = β̂1 = 1 and for m = 2, . . . , n, by products of |tm,0|2 as
follows:

β̂m =
m−1∏

i=1

|ti,0|2
q̂0

, (8)

or by products of |̃gm,0|2,

β̂m =

⎧
⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎩

�∏

i=1

|ĝ2i,0|2
|ĝ2i−1,0|2 m = 2� + 1

|ĝ1,0|2
q̂0

�∏

i=2

|ĝ2i−1,0|2
|ĝ2i−2,0|2 m = 2�

(9)

Since all β̂m > 0, the zero location rule stated in the next theorem follows from [4] or
[12] assuming normal conditions there.

Circuits Syst Signal Process

Theorem 2 Assume the FFG algorithm produces for D(z) (2) a normal sequence.
Then, D(z) has ν IUC and n − ν OUC zeros, where ν presents the number of sign
variations in the sequence

ν = V ar{Ĝ0(1), Ĝ1(1), . . . , Ĝn(1)} (10)

The sign rule is well defined because the conjugation in the symmetry of Ĝm(z)
implies Ĝm(1) ∈ R and D(1) �= 0 plus normal conditions imply that Ĝm(1) �= 0 for
all m (set z = 1 into the polynomial recursion to realize that). We also remind that
normal conditions imply no UC zeros (because, as was shown for the original test,
UC zeros imply a premature termination with an identically zero polynomial).

Stability conditions for the FFG algorithm correspond to the special case of ν = 0.
Namely, all entries in (10) must have a common sign. This common sign must be
positive because G0(1) = 2|D(1)|2 > 0. So, D(z) is stable if, and only if,

Ĝm(1) > 0, m = 0, 1, . . . , n. (11)

Some further necessary conditions for stability are

Re{ĝm−1,0 ĝ�
m,0} > 0, m = 1, . . . , n (12)

This can be seen by setting z = 1 into the recursion (3b) to obtain

q̂m−1Ĝm+1(1) + q̂m Ĝm−1(1) = 2Re{ĥm}Ĝm(1) (13)

Since all q̂m > 0 and stability implies (11), it follows that all Re{ĥm} > 0, i.e.,
(12), holds for all m. It is seen from (12) that indeed the normal conditions (4) are
necessary for stability. By a similar reasoning, it will follow that normal conditions
for all the forthcoming immittance-type tests are necessary for stability. So that the
normal conditions always provide a broad enough framework for testing stability.

Example 1 Consider the next Gaussian integer polynomial.

D(c)(z) = j+ 3z + 2z2 + 4z3 + 8z4 + 7z5 + 5z6 + 8z7 (14)

Application of the FFG algorithm to (14) produces the following sequence of poly-
nomials.

Ĝ0(z) = 297 + 45j+ (296 + 2j)z + (333 + 5j)z2 + (444 + 4j)z3

+ (444 − 4j)z4 + (333 − 5j)z5 + (296 − 2j)z6 + (297 − 45j)z7

Ĝ1(z) = 295 − 29j+ (369 − 21j)z + (554 − 12j)z2 + 702z3 + (554 + 12j)z4

+ (369 + 21j)z5 + (295 + 29j)z6

Ĝ2(z) = 11360 − 1048j+ (18324 + 278j)z + (25230 + 676j)z2

+ (25230 − 676j)z3 + (18324 − 278j)z4 + (11360 + 1048j)z5

Ĝ3(z) = 596152 − 136j+ (855712 + 52896j)z + 901872z2

Circuits Syst Signal Process

+ (855712 − 52896j)z3 + (596152 + 136j)z4

Ĝ4(z) = 25766056 + 743380j+ (22309044 + 685512j)z

+ (22309044 − 685512j)z2 + (25766056 − 743380j)z3

Ĝ5(z) = 477929932 − 32791076j+ 240566688z + (477929932 + 32791076j)z2

Ĝ6(z) = 5525250784 − 1272045056j+ (5525250784 + 1272045056j)z

Ĝ7(z) = 90733722368

All Ĝm(1) > 0. Therefore, by Theorem 2 or (11), D(c)(z) is stable.

3.2 Real Polynomials

Consider now the testing of a real polynomial (2). Clearly, the FFG test can still be
used and it is readily realized that it remains over the real integers when D(z) ∈
Z[z]. However, the real case admits simpler integer algorithms. We begin with a
minor simplification of the initiation only and then proceed to a more substantial
simplification that modifies the whole form of the recursion.

3.2.1 A Minor Simplification (FFGr)

When D(z) ∈ R[z] then necessarily D(1) ∈ R. It is then possible to apply the FFG
recursion directly to D(z) without first forming D̂(z) = D(1)D(z). Actually, the same
is true also for D(z) ∈ C[z] when D(1) ∈ R. We refer to this situation as the FFGr
(reduced FFG) algorithm and assign to it a G-sequence with all ˆ’s removed. We spell
out here the FFGr case for the real case (it will be used later for further simplification)
and will add comments on its complex version at the end of this subsection.

The FFGr algorithm Construct for D(z) in (2) a sequence Gm(z) = ∑m
i=0 gm,i zi ,

m = 0, . . . , n of real symmetric polynomials as follows.

G0(z) = D(z) + D�(z) , G1(z) = D(z) − D�(z)

z − 1
(15a)

Set q0 = 2 and m = 1, . . . , n − 1 do:

hm = gm−1,0gm,0, qm = g2
m,0

zGm+1(z) = hm(z + 1)Gm(z) − qm Gm−1(z)

qm−1
. (15b)

The fact that the divisions by the qm’s for m ≥ 1 leave the recursion FF is inherited
from the FFG algorithm. To realize that the factor q0 = 2 leaves G2(z) over the
integers, substitute into q0(z − 1)zG2(z), g0,0 = d0 + dn and g1,0 = −d0 + dn and
obtain after some evaluation

q0(z − 1)zG2(z) = 2(d0dn − d2
o)(zD(z) − D(z)�) + 2(d0dn − d2

n)(zD(z)� − D(z)).

Circuits Syst Signal Process

Notice that overlooking the division by q0 = 2 at the beginning (i.e., using q0 =
1) produces a sequence of polynomials such that Gm+1(z) → 2m Gm+1(z), m =
1, . . . , n−1.

Lemma 1 The polynomials of the FFG sequence for a real D(z) and the polynomials
of the FFGr sequence are related by

Ĝm(z) = D(1)Gm(z) , m = 0, . . . , n (16)

Proof The relations evidently hold for m = 0, 1 from where ĥ1 = D(1)2h1 and
q̂1 = D(1)2q1 follow. Also, by their definition, q̂0 = 2D(1)2 = D(1)2q0. Next,

zĜ2(z) = ĥ1(z + 1)Ĝ1(z) − q̂1Ĝ0(z)

q̂0
= D(1)3

D(1)2 zG2(z)

verifies (16) for m = 2. Assume (induction step) that (16) holds for k ≤ m. Use
ĥk = D(1)2hk for k = m − 1, m and q̂m−1 = D(1)2qm−1 to evaluate

zĜm+1(z) = ĥm(z + 1)Ĝm(z) − q̂m Ĝm−1(z)

q̂m−1
= D(1)zGm+1(z),

shows that (16) holds also for m + 1 and proves the induction step. ��
It follows that the integer-size of the polynomials in the FFGr sequence is lower by

B than respective polynomials of the FFG sequence (5), viz.

�G(m) = (2m − 1)B , m = 1, . . . , n. (17)

It also follows that the zero location rule for the FFGr algorithm is still given by
Theorem 2 this time with

ν = V ar{G0(1), G1(1), . . . , Gn(1)} (18)

The necessary and sufficient conditions for stability are represented by ν = 0 in (18).
Since D(1) > 0 is a part of the assumption in (2), G0(1) = 2D(1) > 0, and it can be
stated that D(z) is stable if, and only if,

Gm(1) > 0, m = 0, . . . , n. (19)

However, notice that in difference from the stability rule for the FFG algorithm that is
given by (11) irrespective of the sign of D(1), here if D(1) < 0 then D(z) is stable if
and only if all Gm(1) < 0. A further set of necessary conditions for stability of D(z)
in (2) is given by

gm,0 > 0, m = 0, . . . , n. (20)

To prove (20), take (12) and (16) and run (13) for m = n, n − 1, ... starting with
gn,0 = Gn(1) > 0.

Circuits Syst Signal Process

Example 2 Consider the next real polynomial

D(r)(z) = 1 + 3z + 2z2 + 4z3 + 8z4 + 7z5 + 5z6 + 8z7 (21)

Testing (21) with the FFGr algorithm produces the next sequence of polynomials.

G0(z) = 9 + 8z + 9z2 + 12z3 + 12z4 + 9z5 + 8z6 + 9z7

G1(z) = 7 + 9z + 14z2 + 18z3 + 14z4 + 9z5 + 7z6

G2(z) = 308 + 504z + 714z2 + 714z3 + 504z4 + 308z5

G3(z) = 18304 + 26488z + 27984z2 + 26488z3 + 18304z4

G4(z) = 881920 + 715520z + 715520z2 + 881920z3

G5(z) = 15476000 + 3985600z + 15476000z2

G6(z) = 121180000 + 121180000z

G7(z) = 1653360000

It is obvious that the conditions (19) hold. Therefore, the polynomial D(r)(z) is
stable.

FFGr for a complex polynomial A reduced FFG algorithm is possible also for
D(z) ∈ C[z] if D(1) ∈ R. The realness of D(1) allows the application of the FFG
recursion directly to D(z). The algorithm begins with (15a) and q0 = 2 instead of
(3a). It proceeds with a recursion similar to (3b) except that all the ˆ’s are removed.
Again, each Gm(z) saves, compared to Ĝm(z), a factor D(1) as in (16). The number
of OUC zeros is given by the rule (18). The stability conditions are given by (19) (if
D(1) > 0), and (12) with ˆs removed provides a set of further necessary conditions
for stability.

3.2.2 A Major Simplification (FFR)

It turns out that it is possible to test stability of a real polynomial by a significantly
more efficient IP test than the FFGr or the FFG tests. We call it here the FFR (fraction-
free real) test and show its relation to the real FFGr test from where its ZL rule can
also be deduced. The test was presented before in a previous paper in this journal [15].
Its ZL rule in Theorem 4 is derived here from the ZL location of the FFGr algorithm
through relations between the two sequences of polynomials. During the preparation
of this paper, we realized that a simplified set of necessary and sufficient conditions
in [15, Theorem 7] is not correct. We derive in this section two sets of necessary and
sufficient conditions for stability (Theorem 6) where each of them attain the intended
strength of simplification, in offering about n conditions of shorter integers (shorter
than using the “no change of signs” condition in the ZL rule).

The FFR algorithm Construct for D(z) ∈ R[z] in (2) a sequence of real symmetric
polynomials Rm(z) = ∑n−m

k=0 rm,k zk m = 0, . . . , n, as follows:

R0(z) = D(z) + D�(z), R1(z) = D(z) − D�(z)

z − 1
(22a)

Circuits Syst Signal Process

Set η0 = 2 , η1 = 1 and for m = 1, 2, . . . , n − 1 do:

ηm+1 = rm,0

z Rm+1(z) = rm−1,0(1 + z)Rm(z) − rm,0 Rm−1(z)

ηm−1
. (22b)

The normal conditions for the FFR algorithm are

Rm(0) �= 0 m = 0, . . . , n . (23)

The FFR algorithm is FF over real integers and produces integers that grow at a rate
lower by a factor of about 2 than using the FFG or FFGr algorithms for a real integer
polynomial. Both parts of the next theorem were proved in [15].

Theorem 3 Assume the FFR algorithm is applied to D(z) ∈ Z[z] and obeys normal
conditions. Then, all Rm(z) ∈ Z[z] and the algorithm can be completed over Z. Let
B = �(D(z)), then the integer-size of R̃m(z), �R(m) = �(R̃m(z)), is

�R(m) = m B, m = 1, . . . , n (24)

Lemma 2 The relationship between the polynomials produced by the FFR and (real)
FFGr algorithms is as follows. G0(z) = R0(z), G1(z) = R1(z) and

Gm(z) = rm−1,0 Rm(z), m = 2, . . . , n (25)

Proof by induction.

zG2(z) = g1,0[g0,0(z + 1)G1(z) − g1,0G2(z)]/2

= r1,0[r0,0(z + 1)G1(z) − r1,0 R2(z)]/2 = r1,0z R2(z)

shows that (25) holds for m = 2. Assume (25) holds for k = 2, 3, . . . , m. Then,

zGm+1(z) = gm,0gm−1,0(1 + z)Gm(z) − gm,0Gm−1(z)]
g2

m−1,0

= rm−1,0rm,0[rm−2,0r2
m−1,0(z + 1)Rm(z) − rm−1,0rm,0rm−2,0 Rm−1(z)]

r2
m−2,0r2

m−1,0

= rm,0

[
rm−1,0(z + 1)Rm(z) − rm,0 Rm−1(z)

rm−2,0

]

= rm,0z Rm+1(z)

implies that (25) holds also for k = m + 1. ��
The next zero location rule was stated in [15, Theorem 9]

Circuits Syst Signal Process

Theorem 4 Assume the FFR algorithm produces for D(z) in (2) a normal sequence.
Then D(z) has ν IUC and n − ν OUC zeros, where ν presents the number of sign
variations in the sequence

ν = V ar{R0(1), R1(1), r1,0 R2(1), . . . , rn−1,0 Rn(1)} (26)

It can now be deduced from Theorem 2. It amounts to setting (25) into the FFGr ZL
conditions in (18). Stability is represented by ν = 0 in (26). Since R0(1) = 2D(1) > 0
by the assumption in (2), it follows that D(z) is stable if, and only if,

R0(1) > 0, R1(1) > 0 and rk−1,0 Rk(1) > 0 , k = 2, . . . , n (27)

Next, we prove that in this case each term in the product rk−1,0 Rk(1) > 0 must be
positive.

Theorem 5 Assume the FFR algorithm is applied to the real polynomial D(z) in (2)
and produces a normal sequence. Then D(z) is stable if, and only if,

Rm(1) > 0, rm,0 > 0 , m = 0, 1, . . . , n (28)

Proof If all the conditions in (28) hold then all the entries in (27) are positive and
stability follows. For the converse, assume that D(z) in (2) is stable. Then D(1) > 0
implies dn > 0. Stability also implies |dn| > |d0|. Therefore, r0,0 = dn + d0 >

0, r1,0 = dn −d0 > 0. Use the necessary conditions for stability of the FFGr algorithm
in (20), gm,0 > 0, and (25) to get gm,0 = rm−1,0rm,0 > 0 for m ≥ 2. The latter implies
rm,0 > 0 for also m = 2, . . . , n. The positivity of all rm,0 in combination with the
positivity of all terms in (27) imply that positivity of all Rm(1). ��

Beyond ruling out the possibility that two negatives multiplicands make a positive
product, the set (28) is also more attractive in that it involves shorter integers than
the product terms rm−1,0 Rm(1) in (27). This is a desirable simplification when the
testing of stability involves symbols. For example, suppose one of the coefficients is
not numerical, but letteral, say dk = K , and the goal is to find the range of values
of K for which the polynomial is stable. In such a situation, it can be argued that
the coefficients evolve into polynomial in K of degree up to the bound found for the
integers size in (24). So, Theorem 5 admits separate consideration of two polynomials
of degrees up to m −1 and m instead of the examination of rm−1,0 Rm(1), a polynomial
in K of degree up to 2m − 1.

Theorem 5 halves the integer size at the expense of doubling the number of the
integers that have to be examined. At least two obvious duplicities, Rn(1) = rn,0
and Rn−1(1) = 2rn−1,0 can be readily dropped from the set (28). Actually, about
half of the conditions in the set (28) are redundant. The next theorem provides two
reduced sets of necessary and sufficient condition for stability each uses about half of
the conditions in (28).

Theorem 6 Assume the FFR algorithm produces for the real polynomial D(z) (2)
a normal sequence. Then, each of the next two sets provides a set of necessary and

Circuits Syst Signal Process

sufficient conditions for the stability of D(z).

Set I:

r2i,0 > 0 , i = 0, . . . ,
⌊ n

2

⌋

R2i−1(1) > 0 , i = 1, . . . ,
⌊ n+1

2

⌋
(29)

Set II:

r0,0 > 0, r2i−1,0 > 0 , i = 1, . . . ,
⌊ n+1

2

⌋

R2i (1) > 0 , i = 1, . . . ,
⌊ n

2

⌋
(30)

where
x� denotes the integer floor of x.

Proof All the participating entries are positive if the polynomial is stable because they
are members of the set of conditions in Theorem 5 that provide necessary conditions
for stability. To prove the converse, we need to show that each set is enough to make
all the entries in (26) positive. Let us write out, step by step, the equations that result
by setting z = 1 into (22b)

m = 1 : 2r0,0 R1(1) = 2R2(1) + r1,0 R0(1)

m = 2 : 2r1,0 R2(1) = R3(1) + r2,0 R1(1)

m = 3 : 2r2,0 R3(1) = r1,0 R4(1) + r3,0 R2(1)

m = 4 : 2r3,0 R4(1) = r2,0 R5(1) + r4,0 R3(1)

...
...

m ≥ 3 : 2rm−1,0 Rm(1) = rm−2,0 Rm+1(1) + rm,0 Rm−1(1)

Set I ensures that each real number that appears in the right-hand side of the equa-
tions labeled by m = 2, 4, 6, ... are positive. Notice then that this implies not just the
positivity of the respective left-hand sides, but also the positivity of the left-hand sides
of the respective next equation. Altogether, the requested positivity of all the entries
in (26) is ensured. Set II, is designed to cover the positivity of each real number in
the right-hand side of the lines labeled m = 1, 3, 5, Then, it follows similarly that
all the left hand sides are also positive and that altogether, all the terms in (26) are
positive. ��

Note that both sets contain n + 1 terms (not counting R0(1) = 2D(1) > 0 that is
part of the assumption in (2)).

Example 3 Testing the polynomial D(r)(z) in (21) with the FFR algorithm produces
the next sequence of polynomials.

R0(z) = 9 + 8z + 9z2 + 12z3 + 12z4 + 9z5 + 8z6 + 9z7

R1(z) = 7 + 9z + 14z2 + 18z3 + 14z4 + 9z5 + 7z6

Circuits Syst Signal Process

R2(z) = 44 + 72z + 102z2 + 102z3 + 72z4 + 44z5

R3(z) = 416 + 602z + 636z2 + 602z3 + 416z4

R4(z) = 2120 + 1720z + 1720z2 + 2120z3

R5(z) = 7300 + 1880z + 7300z2

R6(z) = 16600 + 16600z

R7(z) = 99600

It is apparent that the sequence meets the stability requirement in Theorem 4 (or
5). According to set I (say) of Theorem 6, it is possible to conclude stability from
the positivity of just r0,0, r2,0, r4,0, r6,0 and R1(1), R3(1), R5(1), R7(1). The smaller
size of integers here in comparison to Example 2 illustrates well the about half size of
integers in (24) compared to (17).

4 FF Immittance-Type Tests with Modified Initiation

In this section, we bring two FF tests, the FFGM and the FFRM tests that form the
modified BT test [7] counterparts of the FFG and the FFR tests (“M” is added for
“modified”). The modified test in [7] differs from the original BT in the way the recur-
sion is initiated. In the complex case, it circumvents the pre-scaling of D(z) by D(1)�.
In the real case, it produce a sequence of polynomials that are proportional to symmet-
ric parts of scattering-type sequence of polynomials [5]. The modified initiation also
affects the way that the FFGM and FFRM relate to stability determinants (an aspect
that is left out from the scope of the current presentation). It was shown in [7] that
the modified test assigns to a polynomial D(z) a same sequence of polynomials that
the original test form would assign to the polynomial (z − 1)D(z). Similar relation-
ships exist between the FFGM and the FFG tests and between the FFRM and the FFR
tests. This implies readily the FF properties of the FFGM and FFRM leaving the main
remaining required attention to ZL and stability rules. For brevity, the presentation
will be without numerical illustrations.

4.1 Complex Polynomials (FFGM)

Although the following FFGM test has not pointed out never before as a GIP test, the
2D stability test in [8] can be regarded as its application to testing 2D stability and it
appeared as the “companion 1D stability test” for its interpolation in [10].

The FFGM algorithm Construct for the complex polynomial D(z) in (1) a
sequence of complex symmetric polynomials, G̃m(z) = ∑n−m

k=0 g̃m,k zk , m = −1, 0,

1, . . . , n, as follows.

G̃−1(z) = (z − 1)(D(z) − D�(z)) , G̃0(z) = D(z) + D�(z) , q̃−1 = 2 (31a)

For m = 0, . . . , n − 1 do:

Circuits Syst Signal Process

h̃m = g̃m−1,0 g̃�
m,0, q̃m = |g̃m,0|2

zG̃m+1(z) = (h̃m + h̃�
m z)G̃m(z) − q̃m G̃m−1(z)

q̃m−1
(31b)

The normal conditions for the FFGM algorithm are

G̃m(0) �= 0 m = −1, 0, . . . , n . (32)

Theorem 7 Assume the FFGM algorithm is applied to D(z) ∈ Zj[z] and obeys nor-
mal conditions. Then all G̃m(z) ∈ Zj[z] and the algorithm can be completed over Zj.
Let B = �(D(z)) then the integer-size of G̃m(z) is

�G̃(m) = (2m + 1)B , m = 1, . . . , n (33)

Proof The algorithm produces the same sequence that the FFG algorithm without
pre-scaling would produce for the complex polynomial (z − 1)D(z). (We mean the
FFGr algorithm for a complex polynomial with q0 = 2 mentioned at the end of the
Sect. 3.2.1). Therefore the FFGM algorithm is GIP for D(z) ∈ Zj[z]. The integer-size
of the polynomials begins with �G̃(−1) = B, �G̃(0) = B, �G̃(1) = 3B. Next, for
m ≥ 1, the integer sizes obey the difference Eq. (6) whose solution for the current
�G̃(0) = B and �G̃(1) = 3B is (33). ��

Zero location rule for the FFGM test can be obtained from the ZL rule for the
modified BT in a similar way that Theorem 2 was obtained from the original BT.
Denote the polynomials in [7] by {T̃m(z) = ∑n−m

k=0 t̃m,k zk, m = −1, 0, 1, . . . , n}.
The polynomials {G̃m(z)} of the FFGM sequence are proportional to polynomials of
corresponding degree {T̃m(z)} of the modified BT

G̃m(z) = β̃m T̃m(z), m = −1, 0, 1, . . . , n (34)

where β̃−1 = 1 β̃0 = 1 and afterwards for m = 1, . . . , n, it can be shown by induction
that β̃m are given by products of and |̃ti,0|2 like in (8) or products of |̃gm,0|2 like in (9).
Therefore, all β̃m > 0. It follows that, assuming normal conditions, D(z) has ν OUC
and n − ν IUC zeros, where ν is given by (if G0(1) �= 0, else by (38) below!)

ν = V ar{G̃0(1), G̃1(1), . . . , G̃n−1(1), G̃n(1)}. (35)

The expression (35) fails to give the number of OUC zeros when Re{D(1)} = 0.
We have G−1(1) = 0 by definition. If Re{D(1)} = 0, that is not excluded by the
assumption in (1), then G0(1) = 2Re{D(1)} = 0. It then follows that G̃m(1) = 0 for
all m (verifiable by setting z = 1 into the recursion). In [7] this situation was avoided
by setting the assumption Re{D(1)} �= 0. This is a not restrictive assumption for a
stand alone test because otherwise the test can be applied, e.g., to j D(z). However, for
certain generalized applications occasional change of the actually tested polynomial
is not adequate. We encountered such a situation in the 2D testing context [8,10] and

Circuits Syst Signal Process

showed there that it is possible to adhere to the assumption (1) by creating a sequence
of auxiliary parameters γ̃m by the next recursion. Set γ̃−1 = 0, γ̃0 = 1 then for m ≥ 0
do:

γ̃m+1 = (h̃m + h̃�
m)γ̃m − q̃m γ̃m−1

q̃m−1
. (36)

The γ̃m’s are related to the values Gm(1) by

γ̃m = G̃m(1)

G̃0(1)
, m = 1, . . . , n (37)

However, they remain nonzero (if normal conditions hold) also when G0(1) =
2Re{D(1)} = 0. So, to avoid the requirement Re{D(1)} �= 0, the ZL rule for the
FFGM algorithm can be stated as follows.

Theorem 8 Assume the FFGM algorithm produces for D(z) in (1) a normal G̃-
sequence with parameters γ̃m (36). Then D(z) has ν IUC and n −ν OUC zeros, where
ν is given by

ν = V ar{1, γ̃1, . . . , γ̃n−1, γ̃n}. (38)

When D(z) ∈ R[z] or when D(z) ∈ C[z] and G̃0(1) �= 0, ν is also given by (35).

In particular, D(z) is stable if, and only if,

γ̃m > 0 , m = 1, . . . , n (39)

Note that if D(z) ∈ Zj[z] then all γ̃m are real integers (because the recursion (36) used
to create them is IP) of size �(γ̃m) = 2m B, in accordance with (33) and (37).

Setting z = 1 into (31) and using (35) shows that next set of condition are necessary
for stability

Re{g̃m−1,0 g̃�
m,0} > 0, m = 0, . . . , n. (40)

When D(z) is real (2), the conditions (40) simplify into the next set of necessary
conditions for stability

g̃m,0 > 0, m = −1, 0, . . . , n. (41)

We shall use (41) later in the proof for Theorem 11. It can be realized as follows. For
a real and stable D(z), D(1) > 0 implies dn > 0, and since |dn| > |d0| is a necessary
condition for stability, it follows that g̃−1,0 = dn − d0 > 0. It then follows via (40)
that all subsequent g̃m,0 are too positive.

4.2 Real Polynomials (FFRM)

The forthcoming FFRM test is the only FF stability test in this paper that was not
presented neither as stability test (without attention to its FF property) nor utilized
before implicitly in some generalized way. It complements the FFR test with simple
dual relations to stability inner determinants whose relation to the BT was studied [30]
and offers a particularly simple relations to the polynomials of the MJT sequence. It

Circuits Syst Signal Process

relates to the FFGM test like the FFR test relates to the FFG test. However, here there
is no intermediate stage in moving from FFGM to FFRM, like the FFGr test that stands
between the FFG and the FFR tests. The reason for this is that the FFGM involves no
pre-scaling of the tested polynomial that the FFGr test drops.

The FFRM Algorithm Construct for the real polynomial D(z) (2) a sequence of
real symmetric polynomials R̃m(z) = ∑n−m

k=0 r̃m,k zk , m = 0, . . . , n, as follows.

R̃−1(z) = (z − 1)(D(z) − D�(z)) , R̃0(z) = D(z) + D�(z) (42a)

Set η̃−1 = 2 , η̃0 = 1 and for m = 0, 1, . . . , n do:

η̃m+1 = r̃m,0

z R̃m+1(z) = r̃m−1,0(1 + z)R̃m(z) − r̃m,0 R̃m−1(z)

η̃m−1
(42b)

Theorem 9 Assume the FFRM algorithm is applied to D(z) ∈ Z[z] and obeys normal
conditions. Then all R̃m(z) ∈ Z[z] and the algorithm can be completed over Z. Assume
B = �(D(z)) then the integer-size of R̃m(z) is

�R̃(m) = (m + 1)B , m = 0, . . . , n (43)

Proof The FFRM is FF because it can be regarded as application of the FFR test to
(z − 1)D(z) that is FF by Theorem 3. The recursion obeys for m ≥ 2, the integer-size
difference equation �(m + 1) = �(m) + �(m − 1) − �(m − 2) (same as for the FFR
algorithm). Solving it for the initial conditions �(0) = B, �(1) = 2B and �(2) = 3B
gives (43). ��
Lemma 3 The relationship between the polynomials produced by the FFRM and the
FFGM algorithm, applied to a real D(z), is G̃−1(z) = R̃−1(z), G̃0(z) = R̃0(z) and

G̃m(z) = r̃m−1,0 R̃m(z) m = 1, . . . , n (44)

Proof Similar to the proof for Lemma 2. ��
Theorem 10 Assume the FFRM algorithm produces for the real polynomial D(z) (2)
a normal sequence. Then D(z) has ν IUC and n − ν OUC zeros, where ν is given by

ν = V ar{R̃0(1), r̃0,0 R̃1(1), . . . , r̃n−2,0 R̃n−1(1), r̃n−1,0 R̃n(1)} (45)

Proof For the current case of real polynomial, the assumption that D(1) > 0 allows the
use of Theorem 8 with ν given by (35). The expression (45) follows from substitution
of the relations in Lemma 3 into (35). ��

Let us look more intensively into the stability conditions. The common sign required
by ν = 0 in (45) must be positive because R̃0(1) = 2D(1) > 0 by assumption (2).
The next theorem states that in the product terms r̃m−1,0 R̃m(1) both factors must be
positive.

Circuits Syst Signal Process

Theorem 11 Assume the FFRM algorithm produces for D(z) in (2) a normal
sequence. Then D(z) is stable if and only if

R̃m(1) > 0 , r̃m,0 > 0 , m = 0, . . . , n (46)

Proof Use the ZL rule (45), the FFGM necessary condition for stability in the real
case (41), and (44) to write g̃m,0 = r̃m−1,0̃rm,0 > 0. Then follow the proof of Theorem
5. ��

Similarly to the FFR test case, about half of the conditions in (46) are redundant.

Theorem 12 Each of the next two sets provides necessary and sufficient conditions
for stability of a real polynomial (2) treated by the FFRM algorithm.
Set I

r̃−1,0 > 0 , r̃2i,0 > 0 , i = 0, . . . ,
⌊ n

2

⌋

R̃2i−1(1) > 0 , i = 1, . . . ,
⌊ n+1

2

⌋
(47)

Set II:

r̃2i−1,0 > 0 , i = 1, . . . ,
⌊ n+1

2

⌋

R̃2i (1) > 0 , i = 1, . . . ,
⌊ n

2

⌋
(48)

Proof The conditions are subsets of the conditions in Theorem 11 therefore are nec-
essary for stability. To prove that each set is sufficient for stability, set z = 1 into (42b)
to write

m = 0 : r̃−1,0 R̃0(1) = R̃1(1)

m = 1 : 2̃r0,0 R̃1(1) = R̃2(1) + r1,0 R̃0(1)

m = 2 : 2̃r1,0 R̃2(1) = r̃0,0 R̃3(1) + r̃2,0 R̃1(1)

m = 3 : 2̃r2,0 R̃3(1) = r̃1,0 R̃4(1) + r̃3,0 R̃2(1)

...
...

m ≥ 2 : 2̃rm−1,0 R̃m(1) = r̃m−2,0 R̃m+1(1) + r̃m,0 R̃m−1(1)

The rest of the proof proceeds in a manner similar to the proof of Theorem 6. Set I
covers positivity of all terms in (45) by making the right of equation lines labeled by
m = 0, 2, 4, ... positive, while set II achieves the same by ensuring that right sides of
the equation lines labeled by m = 1, 3, 5, ... are positive. ��

5 FF Scattering-Type Test

The FF test within the scattering-type class of stability tests is the modified Jury
test. Jury proposed this test first for a real polynomial in several variations [21,22, p.

Circuits Syst Signal Process

104, 23,24] and then for complex polynomials in [27]. His original intention was to
devise a stability test that produces explicitly the Schur–Cohn sequence of stability
determinants. In all the mentioned references Jury presents the test in a table form
(a long standing tradition for stability tests). In [6] they were collected into class C
type of tests and converted into polynomial recursions. The next algorithm follows
the so-called “prototype for C-type tests” there (which is an arrangement that does not
conform exactly with no one of variations in the above cited references).

The MJT algorithm Construct for the complex polynomial D(z) (1) a sequence
of polynomials Cm(z) = ∑n−m

i=0 cm,i zi , m = 1, . . . , n, as follows:

zC1(z) = d�
n D(z) − d0 D�(z) , q0 = 1 (49a)

For m = 1, . . . , n − 1 do:

zCm+1(z) = cm,n−mCm(z) − cm,0C�
m(z)

qm−1
, qm = cm,n−m (49b)

The normal condition, for the MJT algorithm are

cm,n−m �= 0 m = 1, . . . , n (50)

Theorem 13 Assume the MJT algorithm obeys for D(z) in (1) normal condition. Then,
D(z) has ν OUC and n − ν IUC zeros, where ν is given by

ν = V ar{1, c1,n−1, c2,n−2 , . . . , cn,0} (51)

A formal proof for the above theorem was given in [6]. We also proved there
(apparently for the first time) that the leading coefficients cm,n−m of this sequence
are indeed the principal minors of the Schur–Cohn–Fujiwara matrix (a matrix also
known as the unit-circle Bezoutian matrix). Since the Schur–Cohn–Fujiwara matrix
was designed to provide a matrix whose inertia corresponds to the distribution of
the zeros of D(z) with respect to the unit-circle, once the cm,n−m are recognized to
be its principal minors, (51) also follows from a familiar rule to get the inertia of a
Hermitian matrix. The relation of the MJT to the Schur–Cohn principal minors led
Jury to suggest, already in [27], to use this test to test stability of 2D discrete systems.
This application was implemented by Hu and Jury in [20]. This was the first tabular
(or “polynomial array”) 2D stability test that attained o(N 6) complexity as shown in
[11], where it was further simplified into an o(N 4) test carried out by a collection of
1D MJT’s that interpolate it.

Theorem 14 Assume the MJT algorithm is applied to D(z) ∈ Zj[z] then all Cm(z) ∈
Zj[z] and the algorithm can be computed over Zj. Let B = �(D(z)) then the integer-
size for Cm(z) is

�C (m) = 2m B , m = 1, . . . , n (52)

Proof Anderson et al proved in [1] the IP property of the real MJT in [23]. Their
proof, that involves manipulation of a unit-circle Sylvester matrix, can be extended to

Circuits Syst Signal Process

the complex case. An alterative possible proof could be successive substitution till the
claimed common factors are identified. The proof that Hu and Jury used in [20] to show
that the all entries of the 2D array remain polynomials can be used to deduce this proof
from the analogy, mentioned in Sect. 2, between the GIP property of a polynomial
recursion and a corresponding recursion of polynomial whose coefficients are the
“balanced polynomial.” The rate of growth (52) was stated already in [1]. The proof
goes like this. Clearly, �c(1) = 2B, �c(2) = 2B (no division yet). Then for m ≥ 2,
�c(m + 1) = 2�c(m) − �c(m − 1) whose solution for the given initial conditions is
(52). ��

The size of integers in the MJT is similar to that of the FFG or the FFGM tests.
The scattering-type algorithm framework does not seem to admit an IP test specific
for real polynomials with half-sized integers like that FFR or FFRM tests.

Example 4 We illustrate the algorithm with only the real polynomial D(r)(z) (21).
The MJT produces for this polynomial the next sequence of polynomials.

C1(z) = 19 + 9z + 24z2 + 60z3 + 54z4 + 37z5 + 63z6

C2(z) = −136 + 486z + 2640z2 + 2946z3 + 2160z4 + 3608z5

C3(z) = 32496 + 157552z + 174416z2 + 124752z3 + 206336z4

C4(z) = 7886560 + 8403680z + 5715360z2 + 11507360z3

C5(z) = 250221200 − 2459200z + 340326000z2

C6(z) = −19256000 + 4624096000z

C7(z) = 62827680000

D(r)(z) is stable according to Theorem 14 because the leading coefficients of all the
polynomials are positive. Notice that this time, the polynomial of the sequence is
not symmetric, a feature that characterizes the immittance-type algorithm (and saves
computation). It is also possible to compare the integers here with Examples 2 and 3.
The integers in Example 2 are slightly shorter and in Example 3 significantly shorter,
in accordance with (52) (17) and (24).

6 Binary Complexity

As mentioned earlier, the efficiency of an integer algorithm is measured by its so-
called computing time [1] or binary complexity [2]. The binary complexity regards
multiplication of integers like multiplications between power-of-two-based polyno-
mials. Therefore, the task of measuring binary complexity is conceptually similar to
counting of the number of standard arithmetic operations in the context of estimating
the complexity of tabular 2D stability tests. Namely, at step m of the recursion, it is
possible to treat the coefficients of length �(m) as polynomials of degree �(m) and
proceed with count of standard operations. It can readily be realized that the binary
complexity of all the FF stability tests is o(B2n4). The exact count of binary opera-
tions is a bivariate polynomial in the variable B and n. For better resolution, we use

Circuits Syst Signal Process

O
(
αB2n4

)
to mean that the leading coefficient of this bivariate polynomial is αB2n4

and can reach with relative ease by ignoring at each step of the calculation terms
of lower than the leading degree. The next reported counts use the structure of each
recursion plus the length values at each step and carry out the implied count of binary
operations, taking the binary cost of multiplication of two integers whose size are b1
and b2 bits to be b1b2 and the cost of exact division of an integer of size b1 + b2 by an
integer of size b2(< b1) as b2

1/2. We also ignore difference between the binary cost
of multiplication of two Gaussian or two real integers. With these assumptions, the

binary complexities of the MJT algorithm are O
(

5
6 B2n4

)
. The binary complexity of

the FFG and FFGM algorithms is O
(2

3 B2n4
)
, and the binary complexity of FFR or

FFRM algorithm is O
(

5
48 B2n4

)
.

7 Concluding Remarks

The paper presented five fraction-free unit-circle stability tests as summarized in Table
1. Three of them, the FFG, FFGM and the MJT tests are applicable to both complex
and real polynomials such that they are GIP for Gaussian integer polynomials and IP
for real integer polynomials. The FFG and FFGM tests are somewhat more efficient
than the scattering-type MJT test. The FFR and FFRM tests are restricted to real
polynomials but produce integers of half size by comparison with using a GIP test for
a real integer polynomial and are significantly more efficient integer algorithms.

The MJT was applied to test stability of 2D discrete systems and the immittance-
type FFG and FFGM tests were conceived in this context. The 2D stability tests
appeared first as “tabular tests” (i.e., they look like 1D stability “tables” whose entries
are univariate polynomials) in [8,9,27]. These tabular tests have o(N 6) complexity
(for a bivariate polynomial of degree (N , N)), a significant reduction of complexity
compared to previous tests of exponential order of complexity. These 2D stability tests
present an important generalized application for the underlying 1D FF test in which
the coefficients are assumed to be polynomials instead of over integers. Roughly, their
o(N 6) complexities correspond to the o(B2n4) binary complexity here with B and
n replaced by N and the integers sizes here presenting the degree of the polynomial
coefficients. In a third generation of 2D stability, called the “telepolation” approach,
the FFG, FFGM, and MJT tests were used directly (though not us integer tests) to
reduce the overall complexity of 2D stability tests to o(N 4) by interpolations [10,13]
and [11]. The use of FFR test to test 2D stability by a tabular test was studied in [14]
and by interpolation in [16]. It turns out that 2D stability tests based on real integer
tests are less efficient than the use of GIP tests, except that [16] circumvents complex
number arithmetics that occurs in more efficient telepolation tests. It follows that 2D
stability testing illustrates a situation that is handled better by complex FF stability.
The telepolation o(N 4) 2D tests do not compete with the tabular o(N 6) 2D tests in
tasks that involve symbolic computation. For example, a tabular 2D stability test can
handle better determination of stability range for a bivariate polynomial with one or
more designable letteral (i.e., symbolic) parameter.

Circuits Syst Signal Process

The role of the FF tests in 2D stability tests illustrates well the usability of the
FF tests for polynomials whose coefficients are not integers but belong to an integral
domain that behaves like the Gaussian or the real integers.

When it comes to testing 1D systems, especially with symbols, the advantage appar-
ently moves from GIP tests to the real immittance-type FF tests. Determining the sta-
bility range for a designable free parameter is handled better with the FFR test (or the
FFRM test) [15,17] because shorter integers (compared to GIP tests) mean polyno-
mials (of the symbols) of lower degrees and using Theorems 6 (or 12), the number of
constraints remain about n.

An often quoted advantage of integer algorithms is their numerical exactness
because integer arithmetic is exact. Each of the presented FF test has a predeter-
minable bound on the integers size that it may reach. If this bound challenges a size
limitation for a computational platform, it can be alleviated by modular arithmetics
[1]. It can be argued that a zero location test is not fully reliable because the parame-
ters whose signs are inspected are produced at the end of number crunching that may
accumulate numerical inaccuracy. Integer arithmetics can eliminate this concern. It
also worths attention that the numerical accuracy of the integer algorithms lends itself
to also not integer polynomial because a polynomial with decimal coefficients can be
scaled into an integer polynomial).

The FFG test and its further simplification in the real case into the FFR test (and
similarly the FFGM and FFRM tests) share this property with the Routh test (used to
determine whether all zeros are in the left half of the complex plane). It was shown
recently in [18] that there exists a FF Routh test for complex polynomials and a FF test
that is specific for real polynomial that runs integers whose size is lower by a factor of
two than running the real integer polynomial with the complex FF test (even a parallel
to the intermediate FFGr test here is noticed also for the Routh test). This analogy
between the immittance-type tests and the lack of a corresponding simplification for
real integer polynomials within the scattering-type of tests, strengthens the view stated
in [26] that BT forms the discrete equivalent of the Routh test. Actually, the trigger for
the work reported in [18] was searching after Routh test equivalents to the immittance-
type FF tests in this paper.

Stability tests are closely related to stability criteria that express stability as condi-
tions posed on the signs of a sequence of determinants of sub-matrices of a matrix built
from the polynomial coefficients. Best known for the unit-circle stability problem is
the Schur–Cohn Fujwara matrix, that was mentioned in the context of Theorem 13,
which is a Bezout-type matrix of size n whose positive definiteness is necessary and
sufficient for stability. In this case, the relevant determinants are its principal minors.
Schur originally considered sub-matrices of a Sylvester-type square matrix of size 2n.
This matrix was afterward arranged in several other forms and some simpler deter-
minants for real polynomials were also studied [25,28]. Premaratne and Jury studied
in [30] the relationships between these determinant and the original form of the BT.
The current immittance-type FF tests bear some very direct relationships with these
determinants as will be explored in some separate article (because their derivation is
rather long and involves tools not used in the current presentation). It will be shown
that the FFR and FFRM tests for real polynomials and the FFG and FFGM tests for
complex polynomials relate in two complementary ways to the unit-circle stability

Circuits Syst Signal Process

criteria determinants. These relationships provide an additional important perspective
to the FF tests in this paper that, like their stability testing capacity, is pertinent for
both integer and non-integer polynomials.

References

1. P.G. Anderson, M.R. Garey, L.E. Heindel, Combinational aspects of deciding if all roots of a polynomial
lie within the unit circle. Computing 16, 293–304 (1976)

2. S. Basu, R. Pollack, M.F. Roy, Algorithms in Real Algebraic Geometry, 2nd edn. (Springer, New York,
2008)

3. Y. Bistritz, Zero location with respect to the unit circle of discrete-time linear system polynomials.
Proc. IEEE 72(9), 1131–1142 (1984)

4. Y. Bistritz, A circular stability test for general polynomials. Syst. Control Lett. 7(2), 89–97 (1986)
5. Y. Bistritz, H. Lev-Ari, T. Kailath, Immittance-type three-term Levinson and Schur recursions for

quasi-Toeplitz complex Hermitian Matrices. SIAM J. Matrix Anal. Appl. 12(3), 497–520 (1991)
6. Y. Bistritz, Reflection on Schur–Cohn matrices and Jury–Marden tables and classification of related

unit circle zero location criteria. Circuits. Syst. Sig. Process. 15(1), 111–136 (1996)
7. Y. Bistritz, A modified unit-circle zero location test. IEEE Trans. Circuits. Syst. I 43(6), 472–475

(1996)
8. Y. Bistritz, Stability testing of two-dimensional discrete linear system polynomials by a two-

dimensional tabular form. IEEE Trans. Circuits Syst.I 46(6), 666–676 (1999)
9. Y. Bistritz, Immittance-type tabular stability test for 2D LSI systems based on a zero location test for

1D complex polynomials. Circuits Syst. Sig. Process. 19(3), 245–265 (2000)
10. Y. Bistritz, Stability testing of 2D discrete linear systems by telepolation of an immittance-type tabular

test. IEEE Trans. Circuits Syst. I 48(7), 840–846 (2001)
11. Y. Bistritz, Stability testing of two-dimensional discrete time systems by a scattering-type stability

table and its telepolation. Multidimens. Syst. Sig. Process. 13, 55–77 (2002)
12. Y. Bistritz, Zero location of polynomials with respect to the unit-circle unhampered by nonessential

singularities. IEEE Trans. Circuits Syst. I 49(3), 305–314 (2002)
13. Y. Bistritz, On testing stability of 2D discrete systems by a finite collection of 1D stability tests. IEEE

Trans. Circuits Syst. I 49(11), 1634–1638 (2002)
14. Y. Bistritz, Real polynomial based immittance-type tabular stability test for two-dimensional discrete

systems. Circuits Syst. Signal Process. 22(3), 255–276 (2003)
15. Y. Bistritz, An efficient integer-preserving stability test for discrete-time systems. Circuits Syst. Sig.

Proces. 23(3), 195–213 (2004)
16. Y. Bistritz, Testing stability of 2D discrete systems by a set of real 1D stability tests. IEEE Trans.

Circuits Syst. I 51(7), 1312–1320 (2004)
17. Y. Bistritz, Critical stability constraints for linear discrete systems and their efficient evaluation. IEEE

Trans. Circuits Syst. II 53(2), 95–99 (2006)
18. Y. Bistritz, Optimal fraction-free Routh tests for complex and real integer polynomials. IEEE Trans.

Circuits Syst. I 60(9), 2453–2464 (2013)
19. A. Cohn, Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. Math. Zeit.

14, 110–148 (1922)
20. X. Hu, E.I. Jury, On two-dimensional filter stability test. IEEE Trans. Circuits Syst. II 41(7), 457–462

(1994)
21. E.I. Jury, Further remarks on a paper ‘Über die Wurzelvelteilung von linearen Abtastsystemen’, by M.

Thoma [8], Regelnungstednik, 2, 75–79 (1964).
22. E.I. Jury, Theory and Application of the Z-transform Method (Wiley, New York, 1964)
23. E.I. Jury, A modified stability table for linear discrete systems. Proc. IEEE 53, 184–185 (1965)
24. E.I. Jury, Inners approach to some problems of system theory. IEEE Trans. Autom. Control 16, 233–240

(1971)
25. E.I. Jury, Inners and the Stability of Linear Systems (Wiley, New York, 1982)
26. E.I. Jury, M. Mansour, On the terminology relationship between continuous and discrete systems

criteria. Proc. IEEE 73(4), 884 (1985)
27. E.I. Jury, Modified stability table for 2D digital filter. IEEE Trans. Circuits Syst. 35, 116–119 (1988)

Circuits Syst Signal Process

28. E.I. Jury, A note on the modified stability table for linear discrete time system. IEEE Trans. Circuits
Syst. 38(2), 221–223 (1991)

29. M. Marden, The Geometry of the Zeros of a Polynomial in the Complex Plane, 2nd edn. (American
Mathematical Society, New York, 1966)

30. K. Premaratne, E.I. Jury, On the Bistritz tabular form and its relationship with the Schur–Cohn minors
and inner determinants. J. Frankl. Inst. 330(1), 165–182 (1993)

31. I. Schur, Über Potenzreihen, die in Innern des Einheitskreises Beschränkt Sind, Journal für die Reine
und Angewandte Mathematik. 147, 205–232, (1917), and 148 122–145, (1918). [English translation
in I Schur Methods in Operator Theory and Signal Processing, Operator Theory: Advances and Appli-
cations, I. Gohberg (ed.) 18 31–88, (Birkhaüer Verlag, 1986).].

	Fraction-Free Unit Circle Stability Tests
	Abstract
	1 Introduction
	2 Preliminaries
	3 Immittance-Type FF Tests
	3.1 Complex Polynomials (FFG)
	3.2 Real Polynomials
	3.2.1 A Minor Simplification (FFGr)
	3.2.2 A Major Simplification (FFR)

	4 FF Immittance-Type Tests with Modified Initiation
	4.1 Complex Polynomials (FFGM)
	4.2 Real Polynomials (FFRM)

	5 FF Scattering-Type Test
	6 Binary Complexity
	7 Concluding Remarks
	References

