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A parallel implementation of a fully pressure–velocity coupled multigrid solver based on analytical solu-
tion accelerated coupled line Gauss Seidel (ASA-CLGS) smoother with grid partitioning is carried out. The
parallelized algorithm is characterized by an enhanced scalability that results from a formulation
enabling an intermediate analytical solution for the entire row (column) of control volumes. General
strategies of applying single- or multigrid approach depending on flow characteristics are discussed. Per-
formance of the parallelized algorithm is studied for up to 2048 processors. The developed approach is
applied to analysis of a time-dependent three-dimensional incompressible lid-driven cavity flow. The
steady state results of benchmark quality are reported for Re = 103, 1.5 � 103 and 1.9 � 103. A new bench-
mark case of a fully 3D flow in a cubic cavity driven by the lid moving at 45� relatively to its lateral
boundaries is proposed and the corresponding data is reported.

� 2010 Elsevier Ltd. All rights reserved.
1. Introduction telescope manner by the grid partitioning approach, the scalability
This note presents a study of scalability properties of a fully
pressure–velocity coupled CFD solver that implements the multi-
grid approach with the ASA-CLGS smoother developed in [1]. The
original sequential version of the solver was successfully verified
on a time-periodic supercritical flow in a differentially heated
two-dimensional cavity of height/length ratio 8, and steady flow
inside three-dimensional cubic box. Then the parallelized algo-
rithm was implemented for the study of the steady – oscillatory
transition of 3D lid-driven flow in a cube [2]. The analysis was per-
formed on massively parallel platform and involved up to 2048
CPU cores. This study was primarily dedicated to the physical prob-
lem leaving out of scope examination of the scalability characteris-
tics of the developed solver. The latter is reported in the present
paper along with the description of some important properties of
the applied numerical methodology. It also outlines general solu-
tion strategies, which are applicable for a wide range of various
CFD approaches and are not restricted to specific examples re-
ported here.

Commonly used multigrid methods employ relaxation schemes
acting upon local data (e.g., Jacobi or Gauss Seidel iteration) whose
single-grid scalability is well studied [3]. However when they are
used as an internal multigrid iteration which is parallelized in a
ll rights reserved.
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of the whole algorithm is expected to degrade [4]. This is due to in-
crease of communication/computation ratio as the multigrid algo-
rithm descends to the coarser levels while the main part of the
communication time is spent in updating overlapping regions.
Degani and Fox [5] were the first who analytically estimated the
uppermost limit of a three-dimensional multi/single grid efficiency
degradation factor. Then a number of studies were performed to
investigate scalability of the grid partition approach applied to
multiple semi-coarsening algorithms [6,7], to segregated methods
where algorithms employing various pressure–velocity decoupling
approaches were used [8–10], as well as to pressure–velocity cou-
pled algorithms [11] with Vanka type smoother [12]. A more de-
tailed overview of parallelization of geometric multigrid methods
applied to computational fluid dynamics can be found in [13]. An
attractiveness of grid partition parallelization with Vanka type
smoother was outlined recently by Manservisi [14] who formally
proved its monotonic convergence for the steady Stokes problem.

To examine the scalability properties of the parallelized ASA-
CLGS multigrid CFD solver [1,2] we consider a classical benchmark
problem of lid-driven flow in a cubic cavity. To make the three-
dimensionality of the flow equally emphasized along every spatial
direction, we alter the classical formulation and consider the lid
moving along the diagonal, so that its velocity forms the angle of
45� with the side wall. Following the results in [2], benchmark-
quality data is extracted by applying Richardson extrapolation to
the results obtained on two finest grids.
-grid CFD on massively parallel computers: Numerical experiments on lid-
uids (2010), doi:10.1016/j.compfluid.2010.08.009
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2. Governing equations

A cubic lid-driven cavity with the side of length L is considered.
The upper boundary moves with a constant velocity U while all
other boundaries are stationary. The no-slip boundary conditions
are applied on all the boundaries. The flow is described by the con-
tinuity and momentum equations

r � u ¼ 0 ð1Þ

@u
@t
þ ðu � rÞu ¼ �rpþ 1

Re
r2u ð2Þ

where dimensionless variables are velocity u = (u, v, w), pressure p,
and time t. The equations are rendered dimensionless using the
scales L, U, t = L/U and P = qU2 for length, velocity, time and pres-
sure, respectively. Here q is the fluid density. The Reynolds number
is defined by Re = UL/m, where m is the kinematic viscosity. The flow
region is defined in the dimensionless Cartesian coordinates x, y,
and z each of which varies between �0.5 and 0.5.

3. Parallelization technique

Parallelization of the ASA-CLGS multigrid algorithm is per-
formed by utilizing a standard telescoping approach, i.e. the num-
ber of unknowns per level reduces as the level number is reduced.
Taking advantage of the developed ASA-CLGS smoother [1] based
on the intermediate analytical solution for the entire column
(row) of finite volumes we utilize the two-dimensional virtual
topology for the three-dimensional configuration. Therefore, at a
specific grid level each CPU is responsible for its sub-domain con-
sisting of L �M columns in x and z directions, respectively, as
shown in Fig. 1. The parallel implementation of the smoother,
PAR-ASA-CLGS, is developed for distributed memory machines
using MPI approach. Developing the parallel version of the algo-
rithm we tried to minimize the difference from its scalar version.

For simplicity, only a top view of a typical segment of computa-
tional domain distributed on a specific processor is shown in Fig. 2.
This implies that all mathematical and data communication oper-
ations performed on a specific finite volume cell are performed on
the corresponding three-dimensional column of finite volumes.

Due to the fact that ASA-CLGS smoother is based on a block
relaxation concept applied to unknowns distributed on a staggered
grid, the i, i + 1 and j, j + 1 velocities are updated simultaneously
during a single relaxation sweep. Therefore for a given spatial loca-
tion a standard finite volume discretization of convective terms
[15] entering into Eq. (2) depends on velocity values located at
the grid points i, i ± 1, i ± 2, j, j ± 1, j ± 2 in x and z directions respec-
tively. Thus, a parallel implementation of the ASA-CLGS smoother
z 

y 

Fig. 1. The whole and the distrib
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utilizing Gauss–Seidel iteration cannot be constructed using usual
zebra ordering. To avoid these dependences we use the three-plane
smoother approach as was proposed by Oosterlee et al. [16]. Im-
plied by the two-dimensional virtual topology it restricts the min-
imal redistributed sub-domain to the size of 3 � 3 in x and z
directions respectively. It also determines the topology of the over-
lapping region as a band of a single finite volume width attached to
the sub-domain along its whole perimeter (see Fig. 2) and defines
the maximal number of cores involved in the multigrid mode,
which is strictly bounded by the coarsest grid resolution. Consider,
for example, a typical multigrid configuration consisting of four
subsequent grids with 25, 50,100 and 200 nodes in each direction.
In this case a maximal number of the sub-domains positioned in
the each direction is 25:3 � 8 and therefore the maximal number
of cores that can be involved is 82 = 64. Use of larger number of
cores will lead to significantly off balance work load and commu-
nications between CPUs. In contrast, for the single grid 200:3 �
66 that allows one to utilize simultaneously up to 662 = 4356
cores.

For a given distributed sub-domain a relaxation sweep at a spe-
cific grid level is propagated by a zigzag (dotted line in Fig. 2),
which results from the double loop in the i- and j-directions. In
one relaxation sweep of ASA-CLGS the pressure is updated once
and the velocity twice. The data communication between overlap-
ping regions of the neighboring processors is implemented by
using synchronous send-and-receive commands and is carried
out each time the corresponding value of pressure or velocity lying
in the overlapping region has been changed. Note also that the data
communication is performed explicitly between all neighbor pro-
cessors including the diagonal neighbors. Such conservative data-
communication approach is essential for two main reasons. The
first one is the proper implementation of the Gauss–Seidel itera-
tion, which implies the use of all the updated values for the forth-
coming computations. The second reason is related to the zigzag
propagation of the relaxation sweep responsible for the need of ex-
plicit data communication between the diagonal located sub-do-
mains. It should be also noted that even a minor difference
between the dimensions of the distributed sub-domains on the
coarsest grid may finally result in a significant difference between
the corresponding sub-domain dimensions on the finest grid. This
is because of utilizing telescoping multigrid approach with dou-
bling of number of grid points at each subsequent grid level. There-
fore, use of the blocking communication approach is mandatory to
ensure a proper Gauss–Seidel process, and therefore good conver-
gence of the parallelized algorithm.

Another important parallelization issue relates to the restriction
and prolongation operators acting on the distributed sub-domains.
Using Brandt’s [17] correction scheme (CS) the data restricted to
x 

uted computational domain.
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Fig. 2. A top view of typical distributed sub-domain with its overlapping region.
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the coarser grid level contains only residual values, while all initial
values of pressure and velocity corrections are set to zero. Thus, the
data from the overlapping regions is involved implicitly via the
residual updating process. In contrast, the prolongation process
utilizes explicitly the pressure and the velocity values possessing
to the overlapping regions. Furthermore, the prolongation operator
acting at the sub-domain corners uses the pressure and the veloc-
ity values that are not involved in the relaxation procedure, but
still must be updated by an explicit communication between the
corresponding neighbor sub-domains. Therefore, data communica-
tion between the overlapping regions should be performed at each
relaxation sweep.

Fig. 3 demonstrates the scalability properties of the parallelized
algorithm estimated both for multi- and single-grid approaches.
The multigrid approach is characterized by a speed up proportional
to Np/ln (Np) while a speed up of the single-grid approach is
proportional to Np/log10(Np) as was also stated by Douglas [4].
According to this estimate the single-grid scalability is ln (Np)/
log10(Np) � ln (10) � 2.3 times more efficient than that of the mul-
tigrid. Our numerical experiments show that single-grid/multigrid
scalability ratio grows from 1.9 for 16 CPUs to 2.7 for 64 CPUs and
continue to grow with further increase of the CPUs number. This is
due to the relative increase of number of communications per-
formed on the coarser grids, as well as due to additional CPU time
consumed for the restriction and prolongation procedures. How-
ever, if there are large changes in the velocity and/or pressure in
consecutive time steps, a large number of single-grid relaxation
sweeps will be needed to attain the required accuracy. This may
obliterate the better efficiency of single-grid approach resulting
in very long computational times in spite of the use of a large num-
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Fig. 3. Scalability of the parallelized algorithm based on version PAR-ASA-CLGS smoothe
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ber of CPUs working in parallel. A representative example of such a
scenario may be the case when a fully developed non-linear flow
regime is calculated by rapidly increasing the Reynolds number.
In such situations the multigrid approach is preferable. A relatively
low number of involved cores whose number is restricted by the
resolution of the coarsest grid will be compensated by a high con-
vergence rate of the multigrid. Once a stable asymptotic regime,
i.e., steady or oscillatory flow state is approached, the differences
between two consecutive time steps for all variables become rela-
tively small, so that further calculations can be performed on the
finest grid only, thus, utilizing the maximal possible number of
CPU cores in the most effective way.

4. Numerical studies

The developed parallelized algorithm was verified by calcula-
tion of a steady state lid-driven flow in a cube at Re = 103. The stea-
dy state flow was obtained by time integration using stretched
staggered grids with equal number of finite volumes in each direc-
tion that was either 152 or 200. It was assumed that the steady
state solution is attained when the maximum point-wise absolute
difference between two consecutive time steps is less than 10�7.
The zero-grid-step limit of the results was then calculated using
the Richardson extrapolation for the both grids. The results are in
a good comparison with the benchmark solutions of Albensoeder
and Kuhlmann [18], as shown in Table 1. A good agreement is ob-
served for the entire range of the center line velocity and pressure
values, which verifies the present calculations.

We complement the benchmark case of [18] by two additional
steady state solutions computed for larger Reynolds numbers,
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r: (a) multigrid approach containing four telescopic grids; (b) single-grid approach.

-grid CFD on massively parallel computers: Numerical experiments on lid-
uids (2010), doi:10.1016/j.compfluid.2010.08.009

http://dx.doi.org/10.1016/j.compfluid.2010.08.009


Table 1
Pressure and velocity values along the centerlines (0, y, 0) and (x, 0, 0): comparison between the reference [18] and present (Richardson extrapolation from 1523 and 2003 grids)
solution.

vx � 103 p � 104 vy � 103 p � 103

y [18] Present [18] Present x [18] Present [18] Present

0.5 103 103 86.45 86.25 0.5 0 0 16.58 16.61
0.4766 589.6 589.5 79.85 79.82 0.4688 �188.6 �188.7 17.52 17.52
0.4688 484.4 484.6 77.55 77.52 0.4609 �240.9 �241.0 17.54 17.55
0.4609 398.2 397.9 75.31 75.28 0.4531 �290.3 �290.2 17.40 17.39
0.4531 331.7 332.0 73.22 73.20 0.4453 �335.1 �335.1 17.05 17.04
0.3516 121.8 121.8 51.61 51.61 0.4063 �434.2 �434.2 12.30 12.29
0.2344 73.34 73.30 25.75 25.76 0.3594 �311.2 �311.2 5.326 5.318
0.1172 39.05 39.02 6.760 6.782 0.3047 �152.2 �152.3 1.560 1.556
0 8.018 8.021 0 0 0 36.74 36.74 0 0
�0.0469 �6.119 �6.131 1.250 1.259 �0.2656 169.9 169.9 8.512 8.511
�0.2187 �110.0 �110.0 41.71 41.72 �0.2734 175.8 175.8 8.976 8.972
�0.3281 �251.6 �251.6 161.8 161.7 �0.3437 229.2 229.2 14.04 14.04
�0.3984 �272.9 �272.9 279.2 279.1 �0.4062 244.1 244.0 18.96 18.96
�0.4297 �237.0 �236.9 315.1 315.0 �0.4219 235.0 235.0 19.93 19.93
�0.4375 �222.8 �222.8 321.2 321.1 �0.4297 227.5 227.4 20.34 20.33
�0.4453 �206.2 �206.2 326.2 326.1 �0.4375 217.4 217.4 20.69 20.69
�0.5 0 0 334.0 334.0 �0.5 0 0 21.76 21.76
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1.5 � 103 and 1.9 � 103, beyond which the flow becomes oscilla-
tory unstable. A series of time-dependent computations on differ-
ent grids allowed us to estimate the critical Reynolds number of
the steady – oscillatory transition as Recr � 1914 [2]. The steady
state stopping criterion was exactly the same as in the previous
case. Tables 2 and 3 present quantitative distribution of pressure
and velocity components along two centerlines of the cubic cavity.
All the reported velocity and pressure values obtained on the 1523,
2003 grids coincide to within 1%, thus establishing grid indepen-
dence of the results. We believe that the Richardson extrapolation
of the obtained results yields benchmark-quality data as it was al-
ready shown for Re = 103. The characteristic (wall-clock) computa-
tion time needed for calculation of a steady state solution at
Re = 1.9 � 103 on 2003 grid employing 2048 cores in single grid
mode, taking the steady state at Re = 103 as an initial condition,
was about 3 h.

Another case that in our opinion should be added to the standard
cubic lid-driven cavity benchmark [18] is a steady flow driven cavity
by the lid moving at 45� to the cube wall (see Fig. 4). This flow has no
any two-dimensional similarities, and the velocity components are
equally large in x- and z-directions. This flow exhibits interesting
Table 2
Pressure and vx velocity along centerline (0, y, 0) obtained on 1523, 2003 grids and their R

y Re = 1500

vx � 103 p � 105

Grid
1523

Grid
2003

Rich.
extrap.

Grid
1523

Grid
2003

Rich.
extrap.

0.5 103 103 103 627.7 628.3 629.1
0.4766 528.0 528.1 528.2 583.5 583.7 584.0
0.4688 420.4 420.8 421.4 568.1 568.3 568.7
0.4609 339.5 339.5 339.5 553.9 554.1 554.4
0.4531 281.2 281.6 282.1 541.2 541.5 541.9
0.3516 118.3 118.5 118.6 394.8 395.1 395.6
0.2344 68.76 68.84 68.94 191.6 191.8 192.1
0.1172 33.89 33.91 33.95 48.84 48.89 48.96
0 7.188 7.206 7.229 0 0 0
�0.0469 �2.950 �2.931 �2.907 4.830 4.930 5.063
�0.2187 �68.83 �68.76 �68.66 171.1 170.7 170.3
�0.3281 �211.3 �211.4 �211.6 775.3 7.74.0 772.1
�0.3984 �293.1 �293.6 �294.3 1770 1771 1774
�0.4297 �272.2 �272.5 �272.9 2177 2180 2185
�0.4375 �259.5 �259.8 �260.2 2253 2257 2261
�0.4453 �243.4 �243.6 �243.9 2316 2320 2325
�0.5 0 0 0 2419 2423 2428
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and not yet studied three-dimensional flow patterns, as is shown
in Fig. 4 for Re = 103. This problem is reflection symmetric with re-
spect to the plane passing through the opposite edges (�0.5, y,
�0.5) and (0.5, y, 0.5). As can be seen from Fig. 4 the flow pattern is
fully three-dimensional and is characterized by one primary and
one secondary downstream eddy whose centers are located on the
symmetry plane. It is noteworthy that in this case there is no evi-
dence of the secondary upstream eddy observed in the ‘‘classical”
lid-driven cavity model. The main vortex is elongated in the direc-
tion of moving lid, while the secondary downstream eddy is located
close to the cavity bottom corner. Table 4 reports velocity and pres-
sure values along the cavity centerline (0, y, 0). Note that due to the
symmetry vx and vz velocity components are equal. Another conse-
quence of the symmetry is the fact that fluid particles located on
the symmetry plane never leave it. At the same time, the particles lo-
cated close to the symmetry plane near the centers of the main and
secondary eddies attain a significant motion in a direction perpen-
dicular to it, moving along a spiral. In this case the time necessary
to calculate the steady state solution on 2003 grid using 2048 cores
is about 5 h, in single grid mode taking the steady state at Re = 100
as the initial condition.
ichardson extrapolation.

Re = 1900

vx � 103 p � 105

Grid
1523

Grid
2003

Rich.
extrap.

Grid
1523

Grid
2003

Rich.
extrap.

103 103 103 519.3 519.9 520.8
488.6 488.7 488.9 482.3 482.5 482.8
381.9 382.5 383.2 470.1 470.4 470.7
306.1 306.2 306.3 459.4 459.6 459.9
254.3 254.8 255.4 450.1 450.4 450.8
117.1 117.3 117.5 330.0 330.3 330.8
67.59 67.69 67.84 154.8 154.9 155.1
31.27 31.30 31.34 36.50 36.51 36.52
5.888 5.892 5.898 0 0 0
�2.871 �2.866 �2.860 4.650 4.750 4.883
�53.54 �53.47 �53.39 116.0 116.0 115.9
�183.7 �183.7 �183.7 487.9 486.6 484.9
�294.8 �295.3 �296.1 1318 1319 1320
�278.1 �278.5 �279.0 1720 1723 1726
�265.2 �265.6 �266.0 1797 1800 1804
�248.7 �249.0 �249.3 1861 1864 1869
0 0 0 1967 1970 1974
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Table 3
Pressure and vy velocity along centerline (x, 0, 0) obtained on 1523, 2003 grids and their Richardson extrapolation.

x Re = 1500 Re = 1900

vy � 103 p � 104 vy � 103 p � 104

Grid
1523

Grid
2003

Rich.
extrap.

Grid
1523

Grid
2003

Rich.
extrap.

Grid
1523

Grid
2003

Rich.
extrap.

Grid
1523

Grid
2003

Rich.
extrap.

0.5 0 0 0 124.0 124.2 124.4 0 0 0 101.3 101.4 101.5
0.4688 �248.4 �248.7 �249.0 129.2 129.4 129.7 �287.6 �288.0 �288.4 104.2 104.3 104.5
0.4609 �310.8 �311.2 �311.6 127.2 127.5 127.8 �352.7 �353.3 �354.0 100.9 101.1 101.3
0.4531 �364.3 �364.4 �364.7 128.5 123.3 116.3 �402.8 �403.1 �403.5 95.32 95.44 95.60
0.4453 �405.4 �405.7 �406.2 116.6 116.8 117.0 �434.0 �434.5 �435.2 87.51 87.62 87.76
0.4063 �399.0 �399.5 �400.2 64.91 64.88 64.83 �346.0 �346.4 �346.9 40.67 40.57 40.44
0.3594 �209.2 �209.1 �209.0 24.03 23.96 23.85 �157.5 �157.3 �157.1 14.81 14.77 14.71
0.3047 �98.41 �98.35 �98.28 8.806 8.800 8.792 �79.42 �79.44 �79.46 5.707 5.703 5.698
0 28.76 28.78 28.81 0 0.0 0.0 27.23 27.28 27.35 0 0 0
�0.2656 137.4 137.4 137.3 51.64 51.60 51.54 115.7 115.6 115.5 38.98 38.96 38.94
�0.2734 143.7 143.6 143.6 54.79 54.74 54.66 121.5 121.5 121.3 41.32 41.29 41.24
�0.3437 211.4 211.6 211.9 94.00 93.99 93.97 194.5 194.7 194.9 72.45 72.43 72.40
�0.4062 250.4 250.9 251.5 142.7 142.9 143.0 248.5 249.0 249.8 118.3 118.4 118.5
�0.4219 246.9 247.3 247.9 154.0 154.1 154.3 245.0 245.6 246.3 129.3 129.5 129.7
�0.4297 241.9 242.3 242.9 158.9 159.1 159.3 239.5 240.1 240.8 134.2 134.3 134.5
�0.4375 234.3 234.8 235.3 163.3 163.5 163.8 231.4 231.9 232.7 138.4 138.6 138.9
�0.5 0 0 0 177.1 177.4 177.7 0 0 0 150.7 151.0 151.3

z x 

y 

z 
x 

y 

Fig. 4. A particle trajectories in a cubic lid-driven cavity with lid moving at 45� to the x axis, Re = 103.

Table 4
Pressure and velocity components along centerline (0, y, 0) obtained on 1523, 2003 grids for Re = 103 and their Richardson extrapolation .

y vx, vz � 103 vy � 103 p � 104

Grid 1523 Grid 2003 Rich. extrap. Grid 1523 Grid 2003 Rich. extrap. Grid 1523 Grid 2003 Rich. extrap.

0.5 707.1 707.1 707.1 0 0 0 56.59 56.63 56.69
0.4766 417.7 417.8 417.9 5.378 5.357 5.328 51.59 51.59 51.57
0.4688 341.3 341.3 341.4 8.803 8.774 8.736 49.87 49.87 49.86
0.4609 277.1 277.2 277.4 12.50 12.47 12.42 48.24 48.24 48.23
0.4531 226.6 226.6 226.6 16.07 16.03 15.98 46.77 46.77 46.77
0.3516 76.74 76.82 76.92 30.36 30.13 29.83 35.18 35.22 35.28
0.2344 62.50 62.56 62.65 22.59 22.28 21.86 21.85 21.88 21.93
0.1172 41.78 41.77 41.76 5.790 5.439 4.975 9.711 9.717 9.725
0 �1.398 �1.649 �1.981 �33.95 �34.41 �35.03 0 0 0
�0.0469 �31.54 �31.93 �32.45 �64.70 �65.23 �65.95 �2.517 �2.518 �2.520
�0.2187 �130.7 �131.0 �131.4 �160.2 �160.5 �160.9 28.24 28.31 28.39
�0.3281 �134.7 �134.7 �134.7 �137.9 �138.0 �138.0 107.0 107.1 107.1
�0.3984 �143.1 �143.0 �143.0 �86.78 �86.68 �86.56 186.5 186.5 186.6
�0.4297 �158.8 �158.8 �158.9 �52.87 �52.73 �52.55 220.0 220.0 220.0
�0.4375 �161.8 �161.9 �161.9 �44.06 �43.93 �43.75 226.9 226.9 226.8
�0.4453 �162.2 162.2 �162.3 �35.52 �35.40 �35.23 232.9 232.9 232.8
�0.5 0 0 0 0 0 0 253.6 253.6 253.6
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5. Conclusions

A parallelized version of multigrid algorithm based on PAR-
ASA-CLGS smoother for time integration of incompressible Na-
vier–Stokes equations on staggered grids has been developed and
successfully verified using the lid driven cubic cavity flow bench-
mark problem. The scalability properties of the algorithm were
studied for up to 2048 cores running in parallel. The speed up of
the algorithm for its single- and multi-grid modes are found to
be O(Np/ln (Np)) and O(Np/log10(Np)), respectively. An explicit data
communication between the diagonal processors is crucial for a
proper implementation of a Gauss–Seidel process and this has a
strong effect on the convergence rate of the parallelized algorithm.
Use of the smoother based on the Gauss–Seidel iteration together
with the two-dimensional virtual topology restricts the minimal
redistributed sub-domain to the size of 3 � 3 in x and z directions
respectively. The maximum number of cores involved in the anal-
ysis is restricted mainly by the coarsest grid size. Therefore, the
multigrid process described is efficient only for those problems
that exhibit a slow convergence to a stable asymptotic regime,
e.g., steady or oscillatory state. When the convergence is fast or
an initial guess can be chosen close to the solution, the single-grid
approach becomes preferable. An example of the latter is time inte-
gration when the current result is used as the initial guess for the
next time step.

Using the developed approach we extended the standard lid-
driven flow in a cube benchmark to larger Reynolds number, as
well as to a new fully three-dimensional configuration where the
lid moves at the angle of 45� with respect to the cube vertical wall.
These extensions can be important for further verification of 3D
CFD codes.
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