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Incompressible N-S Equations —
Numerical Challenge

Continuity - V-u=0

Momentum- a—u+(u-V)u = —Vp—l—ivzu
ot Re

——  >No separate equation for pressure

»No boundary conditions for pressure



Incompressible N-S Equations —
Numerical Challenge (Cont.)

Pressure Projection
Approach

v" High numerical robustness

v Low memory consumption

X Slow rate of numerical

convergence

X Non-physical pressure field

X Not applicable for liquid —
solid interface problems

Pressure—Velocity
Coupled Approach

v" High rate of numerical convergence

v The "most natural " way to
solve N-S equations

v' The obtained pressure is physical

A High memory consumption

X Not as numerically robust as
pressure projection methods



Benchmark Problems
Lid-Driven Cubic Cavity

V-u=0
—Y M +(u-V)u:—Vp+iV2u
ot Re

v'Explicit Discretization

(u"-v)u’
‘ *Semi-Implicit Discretization
« l g b
(un ) V) un+1

W Realistic Boundary Conditions:

u=0 - at all static walls no slip/no penetration

Ul=Vv -atthe moving wall the flow velocity is ~ \© Poundary condition for

z=H/W  equal to that of the moving wall itself pressure is needed



Benchmark Problems (Cont.)

Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)

V-u=0

u +(u-V)u :—Vp+‘/iV2u+9€Z
ot Gr

00 L o

— +(u-V)@=
ot (u-9) Pry/Gr

v'Explicit Discretization

H
(w-v)ur (ur-v)om:
' *Semi-Implicit Discretization
P o (Un°V)Un+l (u”~V)6’”+1
Boundary Conditions:

00 ,
0| =1 60|=0 -isothermal vertical walls, —=00r §=1-y -horizontal and
y=0 y=H/MW 4 lateral walls

No boundary condition for

u=0 -at all walls,
pressure is needed



Accelerated Coupled Line Gauss-
Seidel Smoother (ASA-CLGS) -2D

Zeng and Wesseling (1993) — CLGS: Feldman and Gelfgat (2008) —

Horizontal (vertical) sweeping with ASA-CLGS:Horizontal (vertical) sweeping
horizontally (vertically) adjacent without horizontally (vertically) adjacent
pressure linkage pressure linkage
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CLGS and ASA-CLGS Efficiency
Estimation for 2D

Zeng and Wesseling  Feldman and Gelfgat (2008) — Thomas Algorithm
(1993) — CLGS: ASA-CLGS (3-Diagonal Matrix)
l (6-Diagonal Matrix)

Block 3-diagonal matrix , ' 4
or 7-diagonal matrix Pia :(qLV at I{HZZZ qui)/CsL
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ASA-CLGS -Efficiency
Estimation for 3D
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Domain

Decomposition for 3D
Configuration

v’ Existance of Analytical Solution for
the Whole Column Allows for 2D
Virtual Topology of 3D Configuration.

== A|l volumes located at the sub -volume faces exchange data with neighbors

=) All volumes located at the sub -volume vertical edges exchange data with

diagonal neighbors



3D Configuration- Data Exchange

Principle
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The Method Scalabilitv Characteristi
1 N€ IVIETNOG oCalaniiity LnaraClerisucs

3D Lid Driven Cavity, Re=1950 - Multigrid Solution
(25x25x25, 50x50%x50,100x100x100 Grids)
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Number of Processors , N

Number of CPU is restricted by the coarsest level (8x8=64 CPU)



The Method Scalablility Characteristics (Cont.)

3D Lid Driven Cavity, Re=1950 - Single Grid Solution
(100x100x100 Grid)
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512 CPU ==55.6 msec per time step == only 16 hours for 10° time steps



Niff tiallvy daatnad Caviitny (or—2 BEv1N6
pitierentiaily meatea cavity, blr=o.9X1U"
Perfectly Conducting Lateral Walls DNS Results for Middle Plane Points
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Dimensionless Temperature, T
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Centro symmetry is preserved (opposite phases for opposite corners)



Leading Mod Frequency and Estimation
of Critical Gr
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Gr, =4.44x10



Cnnecliicinnce
UL ITULUVIVI TV

v' An Accelerated Semi-Analytical Coupled Line Implicit Gauss-Seidel
Smoother (ASA-CLGS) and Full Pressure Coupled Direct Solution
(FPDS) were developed and implemented for the solution of
Incompressibel N-S equations.

v' The Navier-Stokes and Boussinesq equations are solved without
pressure-velocity decoupling.

v' The code was verified on existing benchmark solutions for the lid-
driven and thermally driven cavities.

v The potential implementation of the developed time marching solvers
to the linear stability analysis was studied.

v The characteristic CPU times consumed for a single time step per one
node and per one CPU are of order 5 x10-3 msec and 102 msec for 2D

and 3D calculations, respectively.



