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Incompressible N-S Equations –
Numerical Challenge 

0 uContinuity -

 u 21



M t   uuu 2

Re



p

t
Momentum-

No separate equation for pressure

No boundary conditions for pressure 



Incompressible N-S Equations –
Numerical Challenge (Cont.) 
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Benchmark ProblemsBenchmark Problems
Lid-Driven Cubic Cavity
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Benchmark Problems (Cont.)Benchmark Problems (Cont.)
Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)
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Accelerated Coupled Line GaussAccelerated Coupled Line Gauss--
Seidel Smoother (Seidel Smoother (ASAASA--CLGS) CLGS) --22DD

Zeng and Wesseling (1993) – CLGS: 
Horizontal (vertical) sweeping with 
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Feldman and Gelfgat (2008) –
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CLGS andCLGS and ASAASA--CLGS  Efficiency CLGS  Efficiency 
Estimation for Estimation for 22DD

Zeng and Wesseling
(1993) – CLGS: 

Feldman and Gelfgat (2008) –
ASA-CLGS 
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ASAASA--CLGS CLGS --Efficiency Efficiency 
Estimation for Estimation for 33DD
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Domain Decomposition for 3D 
Configuration

 Existance of Analytical Solution for Existance of Analytical Solution for 
the Whole Column Allows for 2D 

Virtual Topology of 3D Configuration
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Virtual Topology of 3D Configuration.
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All volumes located at the sub -volume faces exchange  data with neighbors

All volumes located at the sub -volume vertical edges exchange  data with 

diagonal neighbors



3D Configuration- Data Exchange 
Principle   
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The Method Scalability CharacteristicsThe Method Scalability Characteristics  

3D Lid Driven Cavity, Re=1950 - Multigrid Solution 
(25x25x25, 50x50x50,100x100x100 Grids) 
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The Method Scalability Characteristics (Cont.)y ( )

3D Lid Driven Cavity Re=1950 Single Grid Solution3D Lid Driven Cavity, Re=1950 - Single Grid Solution 
(100x100x100 Grid) 
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Differentially Heated Cavity Gr=3 5x106Differentially Heated Cavity, Gr=3.5x106

Perfectly Conducting Lateral Walls DNS Results for Middle Plane Points  Perfectly Conducting Lateral Walls 
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Leading Mod Frequency and Estimation 
of  Critical  Gr  
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ConclusionsConclusions

 A A l t d S i A l ti l C l d Li I li it G S id l An Accelerated Semi-Analytical Coupled Line Implicit Gauss-Seidel
Smoother (ASA-CLGS) and Full Pressure Coupled Direct Solution
(FPDS) were developed and implemented for the solution of(FPDS) were developed and implemented for the solution of
incompressibel N-S equations.

 The Navier-Stokes and Boussinesq equations are solved withoutq q
pressure-velocity decoupling.

 The code was verified on existing benchmark solutions for the lid-
driven and thermally driven cavities.

 The potential implementation of the developed time marching solvers
t th li t bilit l i t di dto the linear stability analysis was studied.

 The characteristic CPU times consumed for a single time step per one
node and per one CPU are of order 5 ×10-3 msec and 10-2 msec for 2Dnode and per one CPU are of order 5 ×10 msec and 10 msec for 2D

and 3D calculations, respectively.


