## AN ACCELERATED MULTIGRID APPROACH FOR TIME-INTEGRATION OF INCOMPRESSIBLE NAVIER-STOKES EQUATIONS

#### Yu. Feldman and A. Gelfgat

School of Mechanical Engineering Faculty of Engineering Tel-Aviv University

7th EUROMECH Fluid Mechanics Conference

## Outline

>Advantages of Multigrid methods

≻Numerical technique

≻Accelerated Semi Analytic (ASA) smoother

Comparison with existing benchmark solutions

➤ Conclusions

## Why Multigrid ?

I Highly effective for linear and non-linear problems (semi-implicit discretization of the convective terms) Memory unrestricted for the state of the art computer recourses Can be easily parallelized (OpenMP or MPI approach) X Numerical convergence rate is a problem and is grid dependent X Numerical convergence rate strongly depends on the time step size **×** Sophisticated programming is needed

## Time and spatial discretization

Second order backward differentiation - 
$$\frac{\partial f^{n+1}}{\partial t} = \frac{3f^{n+1} - 4f^n + f^{n-1}}{2\Delta t} + O(\Delta t^2)$$
Energy - 
$$\left(a_{(i,j,k)}^{\theta} - \frac{3}{2\Delta \tau}\right) \theta_{(i,j,k)}^{n+1} + \sum_{i,j,k} a_{i,j,k}^{\theta} \theta_{i,j,k}^{n+1} = RHP_{\theta}^n$$
Temperature - velocity decoupling
Continuity - 
$$\frac{\left(u_{(i,j,k)}^{n+1} - u_{(i-1,j,k)}^{n+1}\right)}{Hx(i-1)} + \frac{\left(v_{(i,j,k)}^{n+1} - v_{(i,j-1,k)}^{n+1}\right)}{Hy(j-1)} + \frac{\left(w_{(i,j,k)}^{n+1} - w_{(i,j,k-1)}^{n+1}\right)}{Hz(k-1)} = 0$$
Stokes operator linearization
Momentum-
$$\left(a_{(i,j,k)}^{u} - \frac{3}{2\Delta \tau}\right) u_{(i,j,k)}^{n+1} + \sum_{(i,j,k)} a_{(i,j,k)}^{u} u_{(i,j,k)}^{n+1} - \nabla p^{(n+1)} = RHP_{u}^{n}$$
Conservative second order control volume method



S.P. Vanka (1985) – analytical solution for a *single* finite volume



# Accelerated coupled line Gauss-Seidel smoother (ASA-CLGS) -2D

Zeng and Wesseling (1993) – CLGS: Horizontal (vertical) sweeping with horizontally (vertically) adjacent pressure linkage Feldman and Gelfgat (2008) – ASA-CLGS:Horizontal (vertical) sweeping without horizontally (vertically) adjacent pressure linkage





# Accelerated coupled line Gauss-Seidel smoother (ASA-CLGS) -3D



Zeng and Wesseling (CLGS, 1993)

Feldman and Gelfgat (ASA-CLGS, 2008)

☑ Still effective for stretched grids.

☑ Still effective for flows with a dominating direction

- **×** Block three-diagonal system is to be solved numerically.
- Increasing amount of arithmetic operations when passing from 2D to 3D geometry or when solving non-linear problems
- ☑ There exists an analytical solution for the entire corrections row (column ).
- ☑ Only O(5m) operations are needed to obtain the entire row (column) corrections per one sweep for both 2D and 3D geometries

## The Multigrid Characteristics



Approximately O(N) of the CPU memory and time consumption for both 2D and 3D configurations

#### **Cubic lid- driven cavity, grid resolution 103<sup>3</sup>** Comparison with Albensoeder & Kuhlmann, 2005. flow at Re= 1000



## **Cubic lid-driven cavity, grid resolution 103<sup>3</sup> (cont)** Comparison with Albensoeder & Kuhlmann, 2005. flow at Re= 1000



10

## Cubic lid-driven cavity, grid resolution 103<sup>3</sup> (Cont.2) Comparison with experiments of A. Liberzon, 2008. flow at Re= 1000



**Subproject :** which resolution is necessary to fit experimental data with larger Reynolds number ?





#### Conclusions

- ✓ An Accelerated Semi-Analytical Coupled Line Implicit Gauss-Seidel Smoother (ASA-CLGS) was developed and implemented in the inner iteration of the multigrid approach.
- ✓ The Navier-Stokes and Boussinesq equations are solved without pressure-velocity decoupling.
- ✓ The code was validated on existing benchmark solutions for the liddriven and thermally driven cavities.
- ✓ The approach does not require too large computational recourses allowing to perform 3D calculations on a regular PC.
- ✓ The characteristic CPU times consumed for a single time step per one node and per one CPU are of order 5 ×10<sup>-3</sup> msec and 10<sup>-2</sup> msec for 2D and 3D calculations, respectively.
  <sup>14</sup>