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Target: | ncompressible Navier-Stokes equations

Continuity: V-u=0

Momentum: @+ (u-V)u = —Vp+iV2U
ot Re
»No separate equation for pressure
»No boundary conditions for pressure

»Assume: no simplifications possible



Concept: Fixed structured grid ~ +
Pressure-velocity linked formulation

Curved boundaries on fixed grid: Moving boundaries on fixed grid:
Immersed boundary approach Volume-of-Fluid (Hirt & Nichols, 1981)
(Peskin, 1977) or Level Set (Osher, 1988) methods

Choi et al., 2007



Why not to decouple pressure and velocity ?

Pressure-velocity decoupling: Pressure-velocity coupling:

v Good robustness v’ Better convergence

v Low memory consumptic v'This is what the nature asks for

X Slow rate of convergence The obtained pressure is physical

X Non-physical pressure field X High memory consumption

X Not applicable for liquid — | % Not as robust as decoupling methods
solid interface problems




Benchmark Problems

Lid-driven cubic cavity Differentially heated cubic cavity




Staggered gridbiofirirete slalme enetbiba d
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The targetefficient time-stepping

To perform a time step=> inverse of thexokes operator
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Multigrid approach —a possible choice

v'Low memory and CPU time consumpti@(N)

v Pressure-velocity coupling can be utilized

v’ Easily parallelized (by MPI or Open MP tools)
X Non-constant convergence rate

X Sophisticated programming is needed



Multigrid approach —the concept

Typical Multigrid Cycle — Correction Scheme (CS)
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Symmetrical coupled Gaus$e Beicdahaothaiging
operator (SCGS)

S.P. Vanka (1985) — analytical solution fas agle finite volume
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Accelerated Coupled Line GauSsi&eidel
Smoother ASA-CLGS) -2D

Zeng and Wesseling (1993) — CLGS: | Feldman and Gelfgat (2009) — ASA-CLGS:
Horizontal (vertical) sweeping with Horizontal (vertical) sweeping without

horizontally (vertically) adjacent horizontally (vertically) adjacent pressure
pressure linkage: inverse of block — | linkage: analytical solution over single row
tri-diagonal matrix for single row (column)

(column)
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Accelerated coupled line GauSsifeidel
smoother ASA-CLGS) -2D

Zeng and Wesseling (1993) — CLGS: Feldman and Gelfgat (2008) —
ASA-CLGS:
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Analytical solution over a column for

ASA-CLGS smoother
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CLGS andASA-CLGS efficiency estimation for 2D

Zeng and Wesseling  Feldman and Gelfgat (2009) — Thomas Algorithm
(1993) — CLGS: ASA-CLGS (3-Diagonal Matrix)
l (6-Diagonal Matrix)

Block 3-diagonal matrix ,
Pia= (CIIV ka Fi-—l_l_z qLFL )/ le_s
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ASA-CLGS dfimemny estimmetimm flor 3D
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Advantages and limitations é{SA-CLGS Approach

v There exists an analytical solution for x Up to now applicable only for

the entire corrections row (column).  structured Cartesian grids.

¥l Only O(5M) operations are needed ¥ Slow convergence rate for large
to obtain the entire row (column) time steps
corrections per one sweep for both

2D and 3D geometries

¥ Effective for stretched grids.

¥ Effective for flows with a dominating

direction
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Domain decomposition for 3D configuration

Existence of analytical solution
for the whole column allows for
2D virtual topologyof 3D
configuration.

== All vOolumMes located at the sub -volume faces exgkadata with neighbors

=) A|l volumes located at theub -volume vertical edgexchange data with
18

diagonalneighbors



3D Configuration: data exchange principle

---------------- 2 processors

O v, velocity aD0i _
N t y, o overlapping region
N\ .T.jil ffffff e — 5‘/ ® v, velocity
. R 0 N 4 processors
L | | 1 . i ressure . .
; ) ; X pressure s overlapping region
? x ® X >< % @_ . .
- e — Ml et Block relaxation on staggered grid
‘? : _f_______f:r_\_'_"_“;;i % CP l
| CEEREEEEEEE
L SR B i Simultaneous updating of i ,i+1 and j, j+1
— \ = ! ’
4 I \ velocities

!

Dependence on velocity values located at

The size of minimal redistributed sub- <« the grid points i ,i+1, i+2, j, j+1, j+2

domain is 3x3 19



Critical points to enhance algorithm scalability

» Blocking communication between neighboring processs

(synchronoussend-and-receive commands) .

» Explicit data communication between all neighbor pocessors ,

including the diagonal neighbors.

» Utilizing telescoping multigrid approach may cause problems in
proper balancing on the finest grid, thereforeblocking communication

should be used.

»The decoupled energy equation is solved only on thinest grid by a

simple Gauss-Seidel iteration.
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Scalabllity characteristics &SA-CLGS -
multigrid approach

3D Lid driven cavity, Re=1950:
25 50° 10C grids

o« Np/In(Np)

0 16 32 Np 438 64
Number of CPU is restricted by the coarsest level (8x8=64 GPU)



Scalabllity characteristics &SA-CLGS —
single grid approach

3D le driven cavity, Re=1950: 26@rid

1000 5 :
2 100 :
ge) T
8 1
@ 10 E: o« Np/log,,(Np)
1 I LA f L ! LA ! L
1 10 100 1000 10000

Np
2048 CPU applied on 20@rid === 57 .4 msec per time Stes=p
only 16 hours for 10time steps
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General solution strategies

» For alarge number of processors the single-grid scalability is
significantly more efficient than that of the multigrid.

» The efficiency of single-grid approach may be obliterated if at
two consecutive time steps the velocity and/or pressure are
considerably different. In this case a relatively low amount of
iInvolved cores will be compensated by a high convergence
rate of the multigrid.

» Once a stable asymptotic regime is approached, the
calculations can be performed on the single finest grid only
with maximal possible number of CPU cores.

23



Verification: Lid—driven cavity,Re=10°

p, v, and v, distribution along two centerlines

The present solution A and the solution of Albensoeder and Kuhlmann (2005) O
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Validation: Lid—driven cavity, Re=103
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Comparison with experiments of A. Liberzon

Dimensionless vy velocity distribution along

centerline in z direction (x=0.5,y=0.5)
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Steady flow In the cubic lid-driven cavitige=1900

Secondary upstream eddy

N

Primary eddy

Secondary downstream
eddy




Lid-driven cavity with lid moving at 45°
to thex axis,Re=1000.
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=

No evidence of the secondary upstream eddy 27



Oscillatory flow inside cubic lid-driven
Cavity,Re=1970.

Time evaluation of the total

kinetic energy, E,
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Fourier series of the total
kinetic energy, E,
x10°

0.575 1.151 1.726
w

The period of oscillation remains grid-independent

The maximum deviation between the values calculated on 1523 and
2008 grids is less then 0.5%. 28



Oscillatory instability
iIn 2D and 3D lid-driven cavities

2D absolute values of perturbations v, and v',, Re=8700

1

i Y
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0

1

v,

0.05
0.04
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0

The maximum oscillations
for the both perturbations

are at the same place

3D v, and v, oscillations amplitude at the cavity midplane , Re=1970

A(v,)
—> 0.09
0.08
0.07
0.06
0.05
0.04
0.03
0.02

A(v,)
0.06
0.05
0.04
0.03
0.02

0.01
0.01 I ’

The maximum oscillations
for the velocity oscillations

are not at the same place
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|Iso-surface of oscillations amplitude
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the no-slip spanwise boundaries
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Subcritical Character of
Bifurcation

Oscillations of x- andz- velocity components at the point (-0.338,-0.338,0)
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Calculation is preformed on 1043 grid at Re=1945 starting at t=0 from

oscillatory state at Re=1970. 31



Estimation ofRe, for subcritical Hopf bifurcation

Oscillations of f(t) decay ~  exp| (4 +iw)t],4 <0

In
ﬂr = (A</A<_l) A, — k-th maximum of an oscillatory signal
tk o tk—l
Grid Re Richardsor
Resolution of Extrapolation

Re=1925 Re=1955

108 N\, =-399x 103 A, =-4.12x104 1958
w=0.575 w=0.575
Re=1900 Re=1925

1528 A\, =-441x 108 A, =-1.44x 103 1937 Re,~1919
w=0.575 w=0.575
Re=1900 Re=1925

208 A, =-336x10% A =-281x104 1927  Re,<1914
w=0.575 w=0.575 32




Symmetry breaking during the transition from
steady to oscillatory flow

16

=
N

=1970

vy, Re
N

(0]

Time evolution of v, component at a point (-0.391,0, 0.395) for
Re=1970 (solid line), and Re=1900 (bold dashed line)
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||
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16
H at Re=1900, oscillations
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I :
through the midplane.
o
° 5
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A non-zero average value of
= oscillations at Re=1970
Al
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Maximal v, andv,, Oscillation
Amplitudes at the Cavity Mid-Plane
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Lid-driven cavity — Summary

Transition from steady to oscillatory state was studied by ime-
dependent three-dimensional computations on three succage grids of
104, 152 and 200G nodes. Grid independence of the results was
established.

Presen time-dependen computations showec that the oscillatory
Instability of lid driven flow in a cube with no-slip walls ta kes place at
Re,~1914with a dimensionless frequencyw,,=0.575.

The instability sets in via asubcritical Hopf bifurcation.

The transition from steady to oscillatory state is followedby breaking
of the symmetry with respect to the cavity midplane.
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Verification: Differentially heated cavity

Comparison with Wakashima, 2004.

Adiabatic horizontal walls

Ra=10¢ Ra=10 Ra=1¢
Wakashima| Present| Dev. | Wakashima| Present | Dev. | Wakashima | Present | Dev.
12¢° 10¢° (%) 12¢° 10¢° (%) 12¢° 10¢° (%)
U, ma)gz) 0.1984 0.197 0.7 0.1416 0.1434 | 1.26 0.0811 0.0802 | 1.1
(x=0.5,y=0.5) (0.825) (0.825) (0.85) (0.85) (0.8603) (0.8605)
u, ma>(y) 0.2216 0.2202| 0.6 0.2464 0.2464 0 0.2583 0.2575 | 0.3
(x=0.5,z=0.5) (0.177) (0.12) (0.068) (0.063) (0.0323) (0.0337)
Nuhot 2.0624 2.0547| 0.37 4.3665 4.3349| 0.72 8.6973 8.7584 | 0.7
NuColol -------- 2.0547 | - |  ------- 43349 | - | --mmee-- 8.7584 | -----
] 11 00
At the constany plane the average Nu numbgsmu, = “[pr«/ ng_a_Y} dX dz
00 36



Steady flow visualization inside the cubic
differentially heated cavity

Adiabatic horizontal walldRa= 1(°




Temperature distribution in a laterally heated
cubic cavity

———
Adiabatic and perfectly conducting horizontal waRa= 10°
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Ra, for Steady-Oscillatory Transition in a
Differentially Heated Cavity, (1G4rid)

o 0259 | Convergence to
20,0515 3:_ Steady Flow

"""\'...M'«Ivh'-"‘.h"h-"-\';.h'm-mh Ra=3.0510
4}0517% e ' 1.5_ _ f = 0259
00518 05 L L ' 106 time StEPS

: IIIIIIIIIIIIIIIIIIII G ; .
0 730 5?0 750 1500 0 005 01 0.15 @25 03 035 04

sos} o 5s | Oscillatory Flow
wosi| . Ra=3.07x 106
. <3 0317 . £=0.258
_ 1.7x10° time steps
05| 1 N

. .oy
0 300 t 1000 1500 IEJ(J 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4
f
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Experimental Results of Jones and Briggs, 1989 : f, ~0.248Ra, ~3.0x 10



Differentially heated cavity Summary

The code was successfullyerified on existing steady state benchmark
solutions for the wide range of Ra numbers.

Preliminary estimation of critical Gr number for the Hopf bifurcation
on 103 grid was performed. The obtained result is well compared wih
existing experimental data.

The grid independence should be established by use of finer grids.
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Newton iteration with time-stepping
L.S. Tuckerman, 1999

(N, +Lu=(N+L)U U<U-u
-1 -1
(1 —ALL) "(1+ ANy = 1) Ju=| (1 =AtL) "1+ AN(U) - 1) U
Difference getween two Difference bétween two
consecutive linearized consecutive time steps
time steps

For large At, (1 -AtL) " ~L™" | is a preconditioner for N +L
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Linear stability analysis with timstsfgpong
L.S. Tuckerman, 1999

Inverse power method for the leading eigen value
-1
U,,=(Ny, +L) u,

(1= ALY (1 AN — 1) Ju,, = (1 - AtL) At

.

. J
4

Difference between two
consecutive time steps

of the Stokes operator

Difference between two
consecutive linearized

time steps

Good performance for 2D configuration
Still a challenge for 3D configuration
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Conclusions

v" A novel multigrid solver for time-dependent incompressibe Navier-
Stokes equations in pressure-velocity coupled formulatiois developed
and implemented.

v' The characteristic CPU times consumed for a single time steper one
node and per one CPU are of order 5<10° msec and 1& msec for 2D
and 3D calculations respectively.

v' The approach performs well for time-dependent calculatios with a
small time step,

v' Direct Newton and Arnoldi iterations needed for stability analysis
require large time steps, which causes a slow convergencer f8D
problems
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