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Incompressible N-S Equations —
Numerical Challenge

Continuity - V-u=0

Momentun- @+(U.V)u — _Vp+ivzu
ot Re

——  »No separate equation for pressure

»No boundary conditions for pressure
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Incompressible N-S Equations —
Numerical Challenge (Cont.)

Pressure Projection Pressure—\Velocity
Approach Coupled Approach

v" High numerical robustness v" High rate of numerical convergence

v' Low memory consumption ¥' The"most natura" way to
_ solve N-S equations
X Slow rate of numerical

convergence The obtained pressure is physical

X Non-physical pressure fieldX High memory consumption

X Not applicable for liquid — & Not as numerically robust as

solid interface problems pressure projection methods
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Benchmark Problems
Lid-Driven Cubic Cavity

V-u=0
—Y u +(u-V)u:—Vp+iV2u
ot Re

v'Explicit Discretization

(u” : V) u"
‘ *Semi-Implicit Discretization
« l_y __________________
(un ) V) ymte

W Realistic Boundary Conditions:

u=0 - at all static walls no slip/no penetration

U|=v -atthe moving wall the flow velocity is ~ \© Poundary condition for

z=H/W  equal to that of the moving wall itself pressure is needed
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Benchmark Problems (Cont.)

Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)

7 V-u=0
/o — +(u-V)u=-Vp+,|—V-u+0be
/\\v e ax HUY) Ve Z
i 06 1
TS — u-v)o = V26
R ot +( ) Pr/Gr
V9| T
H 5: U v'Explicit Discretization
NS (u"-v)u" (u"-v)or

*Semi-Implicit Discretization
g W (Un°V)Un+1 (Un°V)(9n+1

Boundary Conditions:

1,60 |= O -isothermal vertical walls, n =0or §=1-y -horizontal and
Sl N lateral walls

u=0 -at all walls, No boundary condition for

pressure is needed 22l



Time and spatial discretization

Second order backward differentiation & "™ _3f"™—4f"+ f™* o(a?)
ot 2t

Stokes operator linearization mmp Temperature — velocity decoupling

3 n+ n+ n
Energy- (amk) je(u o T80 =RHR
i,k
Continuity - (u(r:ﬁ) u(?zlj k) ) N (V(ir,likl) - V(i,r}tll,k) ) N (W(ur;rk)l - \N(i,:k-ll) ) _
Hx(i —1) Hy(j—1) Hz(k - 1)

- u 3 n+1 0+1) n
Momentum (aa,j,k)_ﬂj Unik + 2 8o Uiy —VP" V= RHP,

(1K)

Conservative second order control volume method
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The Full Pressure Coupled Direct (FPCD)
Solution

Assembling of
Linearized
OperatorA

for Momentum-
Continuity

System

LU

— Factorization
of A

0"t =0" « 0, |

=V v,

t=u" « u,

UpdatingRHP
of the Energy Equatiol

)

No

8127

Is the Steady
State or Time
Limit Reached~

|

Solution of the Energ
Equation to Obtain

0n+1

l

UpdatingRHP of
the Momentum
Equations

l

to Obtain

1 1 n+1
pn+ ’ Vn+ ’ u

Backward Substitutio

n



The Multigrid Algorithm
Symmetrical Coupled Gausseidehtemidriiging

Operator (SCGS)
S.P. Vanka (1985) — analytical solution fasagle finite volume
"""""" (U v)™ = U,v) ™ + 1, ULV
X : new __ ,old '
__________ IRI L P =p™ +1,p
| | 3 3
| | =a’ — A, =a' —
we TP 1T xe A= 2AT 2= % T oA
__________ S _
o 3
| 3 _ qu
. — U _ =ad, —
X g | A5 =4, IAT Ag > 2A7
A0 0 0 A Y Re | for Stokes operator and
0 A 0 0 A | |U, R. | constanttimestep
0O 0OA 0 A |xlv. |=|R, formulation A, As,As,Aq
0 00 A A, V' R, | areconstants
L A-AR”A-A 0 | p, | Ry ] .




Accelerated Coupled Line Gauss-
Seidel SmootheASA-CLGS) -2D

Zeng and Wesseling (1993) — CLGS: Feldman and Gelfgat (2008) —

Horizontal (vertical) sweeping with ASA-CLGS:Horizontal (vertical) sweeping
horizontally (vertically) adjacent without horizontally (vertically) adjacent
pressure linkage pressure linkage

m i m-2
|

i -6
|
_ - 4 'm-1 [m
1L ><4‘5—’ X 8 9 i rQSEA X 1
! !
|m_7 |
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Accelerated Coupled Line GauSsi8eidel
Smoother ASA-CLGS) -4DI), ((Coontt))

Zeng and Wesseling (1993) — CLGS: Feldman and Gelfgat (2008) —
ASA-CLGS:
(%) ! X) (%)
A+1/2,jull+1/2,j+ +1/2,j pl N I¥+1/2,j A|‘+JJZ] I+]/2,j+ +]/2,] p'| N R +1/2,]
(X) U ' X) () ' X)
Al‘—]jz,j i-1/2j —1/21 pl Jo R(—JJZJ A|‘ JJZjui /2 ]j2j pi g JJZj
(¥) y) ! AV
Al\,j+]/2vij+1/2_ j+]j2(p| J+L pl j) j+1/2 Ij+1/2 Ij+1/2 j+1/2pllj j+1/2

A|£,>j() (ui+1/2, Uiz )+A$y) (\/I, 2z Vi, j—1/2) =0 Aﬁ() (ui+1/2, Ui, )+'Als,>j/) (\/i, Vi j—yz) =0

y) y)
where RIJH/Z F\I‘J+]/2 +3]+]/2 p| JH
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A Schematic Description GRS A-
CLGS Smoother
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CLGS andASA-CLGS Efficiency
Estimation for 2D

Zeng and Wesseling  Feldman and Gelfgat (2008) — Thomas Algorithm
(1993) — CLGS: ASA-CLGS (3-Diagonal Matrix)
l (6-Diagonal Matrix)
I .

Block 3-diagonal matrix _— '
or 7-diagonal matrix pk—l_(cl_v k4T F{_ﬁz qLFL')/ C;

1 =2

LU decomposition U, [=| & [xPat G
_Lf3_ Cé _CilFéi_

| K
~O(15M ) ~O(5M) e ~O(5M)
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ASA-CLGS Himmmoy
Estimation for 3D

W'
V
V
U
U

d

t3 t9 ( f tm-4
4' a 0' N, m-3'
L)‘,ﬁ } 1213 ) B Y _-g‘n,gél_m
| 7 : S S | :
N | N = N1 TTTTRITT SIS « N\
i \\\\5 y \11 [ SNt U m-2
2 '8 ) ) Im-5

—(c!w,+R! +ciR! +CiR, +CcLR! +ciR! +clR} )/ c!

X p'p+

C1aR
CisR
CieRy
R

CisR:

6 corrections for a single volume

e €SUIt iN 17 multiplications and
divisions and 11 summations

l

~O(5M )
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Advantages oASA-CLGS Approach

Zeng and Wesseling (CLGS, 1993)

Feldman and Gelfgat (ASA-CLGS, 2008)

A Still effectivefor stretched grids.
4 Still effectivefor flowswith a dominating direction

x Block three-diagonal system
ISto be solved numerically.

X |ncreased number of
arithmetic operationswhen
transferring from 2D to 3D
geometry

v There exists an analytical solution for
the entire correctionsrow (column).

¥ Only O(5M) oper ations are needed
to obtain the entire row (column)
corrections per one sweep for both
2D and 3D geometries
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The Multigrid Characteristics

o 100

Al-E+03 oo eie Lo 0 2-D Configuration
_én 1.4<10°N e 2x10°N 0 3-D Configuration
= [&]
> (b} 10 |
> 8 S
% g \ IQ,EI'

1.E+02 - £ Nagl
> =
5 Y
o O
§ 0 2-D Configuration

o O 3-D Configuration
1.E+01 T T 0.1 T T
1.E+04 1.E+05 1.E+06 1.E+07 1.0E+04 1.0E+05 1.0E+06 1.0E+07
The Total Nodes Number The Total Nodes Number

a ApproximatelyO(N) of the CPU memory
and time consumption for both 2D and 3D
configurations
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FPCD and Multigrid Approaches —
Pros and Cons

FPCD Multigrid

I ndependent of operating conditions: M Very effectivefor small time steps.
At magnitude, Re, Gr numbers ¥ Very good scalability for both 2D
“1IGood Scalability of LU decomposition and 3D configurations.
¥ Small memory consumption.

— x Extremely memory demanding for 3D x Perfor mance of the method depends
(3D calculationsis still a challenge) on operating conditions

X Still insufficient scalability of back X Performnce of the method dependson

substitution process Initial guess
1727



FPCD and Multigrid Approaches —
Pros and Cons (Cont)

CPU time consumption for onetime step -2D
configuration

10

=
|

Cpu Time (sec)

O
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1.00E+06

The Total Nodes Number
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Cubic lid- driven cavity, grid resolution 1033
Comparison with Albensoeder & Kuhimann, 2005.

Flow at Re=10000

Dimensionless v
velocity component

v velocity distribution along centerline in z direction

Dimensionless z coordinate

(x =0.5, y=0.5) .
0.9 ¢ Albensoeder & Kuhlmann —
[0 present- uniform grid
A present-stretched grid
0.6 [
0.3 i
&
0@ se = &
% &
0.3 a &
0 0.2 0.4 0.6 0.8 1
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Cubic lid-driven cavity, grid resolution 1033 (cont)

Comparison with Albensoeder & Kuhimann, 2005.
Flow at Re=10000

Pressure distribution along centerline in z direction

(x =0.5, y=0.5)
0.036 ‘ ‘
é Q & Albensoeder & Kuhlmann
0.03 = O presented - uniform grid
ﬁ o L A presented-stretched grid
c w 0.024 - |
O -
5 B
0.018 -
=5 a
| 0.012
_ 0.006 - & ﬂ
A
-
0 - ]
0 0.2 0.4 0.6 0.8 1

Dimensionless z coordinate
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Cubic lid-driven cavity, grid resolution 1033 (Cont.2)
Comparison with Experiments of A. Liberzon, 2008.
Flow at Re=10000

Dimensionless v

1.0

04

velocity component

-0.4

0.8 -

0.6

0.2 -

0.0

-0.2

Dimensionless v velocity distribution along
centerline in z direction (x=0.5,y=0.5)

Numerical
= Experimental
[ ]
anal NSNS L
I.-..
0.0 0.2 0.4 0.6 0.8

Dimensionless z coordinate

1.0

Dimensionless w

velocity component

Dimensionless w velocity distribution along
ceterline in y direction (x=0.5,2=0.5)

04

0.2 1

0.0

-0.2

-04

-0.6

Numerical
= Experimental
(L] ™
[ ]
"ngs

=\
[ L]
A\

0.0 0.2 0.4 0.6 0.8 1.0

Dimensionless y coordinate

Subproject : which resolution is necessary to fit experimenttbdvith larger
Reynolds number ?
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Flow Visualization of Cubic Lid-Driven
Cavity. Steady State Flow, 1033 Nodes

flow at Re= 18
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Temperature Distribution in aLaterally Heated
Cubic Cavity, 1033 Nodes

flow at Ra= 10
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Flow Visualization of Laterally Heated
Cavity. Steady State Flow, 103 Nodes

flow at Ra= 10




Application to the Stability Analysis

Newton iteration for steady state solution
L.S. Tuckerman 1999

(N, +Du=(N+LU U«<U-u
(1 —ALL) (14 ANy = 1) Ju=| (1 =AtL) "1+ AN(U) - 1) U
Difference between two Difference between two
— consecutive linearized

_ consecutive time steps
time steps

For large At (1 —AtL) ~L"

IS a preconditioner for N+L 25/27



Application to the
Stability Analysis (Cont)

Inverse power method for the leading eigen value
L.S. Tuckerman 1999

U, =(N, +L) "y,

(1= ALY (1 AN — 1) Ju,, = (1 - AtL) At

Difference between two Difference between two
consecutive linearized consecutive time steps
time steps of the Stokes operator

Good performancefor 2D configuration
Still a challenge for 3D configuration 26/27



Conclusions

v An Accedlerated Semi-Analytical Coupled Line Implicit Gauss-Seidédl
Smoother (ASA-CLGS) and Full Pressure Coupled Direct Solution
(FPDS) were developed and implemented for the solution of
Incompressibel N-S equations.

v The Navier-Stokes and Boussinesg equations are solved without
pressure-velocity decoupling.

v' The code was verified on existing benchmark solutions for the lid-
driven and ther mally driven cavities.

v" The potential implementation of the developed time marching solvers
tothelinear stability analysiswas studied.

v" The characteristic CPU times consumed for a single time step per one
node and per one CPU are of order 5 x10° msec and 102 msec for 2D

and 3D calculations, respectively. —



