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Incompressible N-S Equations —
Numerical Challenge

Continuity - V-u=0

Momentun- @+(U.V)u — _Vp+ivzu
ot Re

——  »No separate equation for pressure

»No boundary conditions for pressure



Incompressible N-S Equations —
Numerical Challenge (Cont.)

approaches with pressure- pressure—velocity coupled
velocity decoupling approaches

v High numerical robustness ¥ High rate of numerical convergence

v The"most natura" way to

v Low memory consumptic _
solve N-S equations

X Slow rate of numerical . .
v’ Calculated pressure is physical

convergence

X Non-physical pressure field ¥ High memory consumption

X Not as numerically robust as

X Not applicable for liquid — e
pressure projection methods

solid interface problems



Benchmark Problems
Lid-Driven Cubic Cavity

V-u=0
D -V u 1
| E— M +(u-V)u=-Vp+—V-u
L 5 ot Re
v’ Explicit non-linear terms treatment
| (u” -V) u"
H ‘ *Semi-Implicit non-linear terms treatment
« l—y __________________
(un ) V) un+1
I W Realistic Boundary Conditions:

u=0 -atall static walls no slip/no penetration

u|=v -at the moving wall the flow velocity is No bo“ndary,condlg‘? for
z=H/W  aqual to that of the moving wall itself pressure 1s neede



Accelerated Coupled Line Gauss-
Seidel SmootheASA-CLGS) -2D

Zeng and Wesseling (1993) — CLGS: Feldman and Gelfgat (2008) —

Horizontal (vertical) sweeping with ASA-CLGS:Horizontal (vertical) sweeping
horizontally (vertically) adjacent without horizontally (vertically) adjacent
pressure linkage pressure linkage
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CLGS andASA-CLGS Efficiency
Estimation for 2D

Zeng and Wesseling  Feldman and Gelfgat (2008) — Thomas Algorithm
(1993) — CLGS: ASA-CLGS (3-Diagonal Matrix)
l (6-Diagonal Matrix)
I .

Block 3-diagonal matrix _— '
or 7-diagonal matrix pk—l_(cl_v k4T F{_ﬁz qLFL')/ C;

1 =2

LU decomposition U, [=| & [xPat G
_Lf3_ Cé _CilFéi_

| K

~O(15M ) ~O(5M) e ~O(5M)



ASA-CLGS Himmmoy
Estimation for 3D

W'
V
V
U
U

d

t3 t9 ( f tm-4
4' a 0' N, m-3'
L)‘,ﬁ } 1213 ) B Y _-g‘n,gél_m
| 7 : S S | :
N | N = N1 TTTTRITT SIS « N\
i \\\\5 y \11 [ SNt U m-2
2 '8 ) ) Im-5

—(c!w,+R! +ciR! +CiR, +CcLR! +ciR! +clR} )/ c!

X p'p+

C1aR
CisR
CieRy
R

CisR:

6 corrections for a single volume

e €SUIt iN 17 multiplications and
divisions and 11 summations

l

~O(5M )



Domain Partition for 3D Configuration

Existence ofanalytical solution for the whole column

allows for 2D virtual topology of 3D configuration.

The partitioned domain

The whole domain
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Domain Partition for 3D
Configuration ( Cont.)

== All vOolumMes located at the sub -volume faces exgkadata with neighbors
=) A|l volumes located at theub -volume vertical edgexchange data with

diagonalneighbors



Principle

/

3D Configuration- Data Exchange
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Scalability Characteristics of Multi-Grid

Multi-grid Solution, Re =1950, Grids 25°,50°,100°
100 + - 100

- 10 ¢ O(Np/In(Np))

Single Step, t (sec)
-
o
Time Speed Up

0 Speed up

Il & Time Step

0.1 = 1 1 ] ‘ s e e 1

1 10 100
Number of Processors , Np

Number of CPU is restricted by the coarsest level (8x8=64 CPU)



Scalability Characteristics of Single-Grid

Single-grid Solution, Re=1950, 100° Grid

10 ¢ - 1000
&\ ¥
ST N O(Np/log,4(Np))
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Number of processors, Np

1024 CPU 25.7 msec per time step  only 8 hours fatirh® steps



Linear Stability Analysis for the
Lid Driven Cavity

Dimensionless V, velocity at the left corner of the middle plane
(0.5,0.1,0.9), 100° Grid

Reynolds number is increasing
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Estimation of the criticakRe number
for Hopf bifurcation

1002 Grid ~ |Re, ~1964

0.E+00 \ \
1920

Real Component of )\

Re Number



Estimation of the criticakRe number
for Hopf bifurcation (Cont.)

Grid Re=1900 | Re=1925 | Re, | Richardson
Extrapolation
A= —7.0256x 103 | A= —3.8756x 103
10C° w=0.575 w=0575 |1964
., | A=-43438x 103 | A=-1.2417x 10° Re,=1917
150 w=0.575 w=0.575 1935
A=—-3.3512x 103 | A= -2.8473x 10* Re,=1916
2003 w=0.575 w=0.575 1927
Re,=1916 w.,=0.575




Type of the obtained bifurcation

Subcritical

q/
$ >

Supercritical

Re, [, ’Rel

Re, === Hopf bifurcation
Re, === Saddle node bifurcation

Re, Re

Re, === Hopf bifurcation



The Character of the obtained
bifurcation (Cont.)

Dimensionless V,, velocity
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Decreasing from Re=2000

leads to an oscillatory flow for Re=1950
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Re,,=1964 is a subcritical Hopf bifurcation



The Flow Total Kinetic Energy

103 Time Evolution Fourier Transform
a %105
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The maximum deviation between the kinetic energy values

calculated on the 1523 and 2003 grids does not exceed 1%



Benchmark Problems (Cont.)

Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)

7 V-u=0
/o — +(u-V)u=-Vp+,|—V-u+0be
/\\v e ax HUY) Ve Z
i 06 1
TS — u-v)o = V26
R ot +( ) Pr/Gr
V9| T
H 5: U v'Explicit Discretization
NS (u"-v)u" (u"-v)or

*Semi-Implicit Discretization
g W (Un°V)Un+1 (Un°V)(9n+1

Boundary Conditions:

1,60 |= O -isothermal vertical walls, n =0or §=1-y -horizontal and
Sl N lateral walls

u=0 -at all walls, No boundary condition for
pressure is needed



Differentially Heated Cavity(sr=3.5x10

Perfectly conducting lateral walls DNS results for midplane points
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Central symmetry is preserved (opposite phases for opposite corners)



Conclusions

v An Accderated Semi-Analytical Coupled Line Implicit Gauss-Seidél
Smoother (ASA-CLGS) was developed and implemented for the
solution of incompressible N-S equations.

v The Navier-Stokes equations are solved without pressure-velocity
decoupling.

v The code was successfully parallelized for running on massively
parallel supercomputers. The overall obtained speed up reaches 200
for 1024 processors.

v' The multi- and single-grid approaches are scalable as O(Np/In(Np))
and O(Np/log,o(Np)) respectively.

v The potential implementation of the developed paralldized time
marching solver tothelinear stability analysiswas studied.



