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Outline

�Pressure-velocity coupled formulation of Navier-Stokes equations

�Benchmark problem : 3-D lid driven cavity, differential heated cavity 

� Multigrid with an Analytical Solution Accelerated (ASA) smoother

�3D Domain partition and scalability properties  

�Application to linear stability analysis 

�Conclusions



Incompressible N-S Equations –
Numerical Challenge 
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�No separate equation for pressure

�No boundary conditions for pressure 



Incompressible N-S Equations –
Numerical Challenge (Cont.) 

approaches with pressure-
velocity decoupling

� High numerical robustness

� Low memory consumption

pressure–velocity coupled 
approaches

� High rate of numerical convergence

� The ''most natural '' way to 
� Low memory consumption

Slow rate of numerical    

convergence

Non-physical pressure field

Not applicable for liquid –
solid interface problems 

� The ''most natural '' way to 
solve N-S equations

� Calculated pressure is physical

High memory consumption

Not as numerically robust as    
pressure projection methods



Benchmark ProblemsBenchmark Problems
Lid-Driven Cubic Cavity
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�Explicit non-linear terms treatment

vD

Realistic Boundary Conditions:

0=u - at all  static walls no slip/no penetration

-at the moving wall the flow velocity is 
equal to that of the moving wall itself

No boundary condition for 
pressure is needed  
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Accelerated Coupled Line GaussAccelerated Coupled Line Gauss--
Seidel Smoother (Seidel Smoother (ASAASA--CLGS) CLGS) --22DD

Zeng and Wesseling (1993) – CLGS: 

Horizontal (vertical) sweeping with 

horizontally (vertically) adjacent 

pressure linkage

Feldman and Gelfgat (2008) –

ASA-CLGS:Horizontal (vertical) sweeping

without horizontally (vertically)  adjacent 

pressure   linkage

1

2

3

6

7

m-7

m-6

m-3

m-2

m
××××4 5 8 9 m-1m-4m-5m-8



CLGS andCLGS andASAASA--CLGS  Efficiency CLGS  Efficiency 
Estimation for Estimation for 22DD

Zeng and Wesseling

(1993) – CLGS: 

Block 3-diagonal matrix 

Feldman and Gelfgat (2008) –

ASA-CLGS 

(6-Diagonal Matrix)
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ASAASA--CLGS CLGS --Efficiency Efficiency 
Estimation for Estimation for 33DD
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6 corrections for a single volume 

result in 17 multiplications and 

divisions and 11 summations 

(5 )O M≈



Domain Partition for 3D Configuration

The whole domain The partitioned domain

Existence of analytical solution for the whole column 
allows for 2D virtual topology of 3D configuration.  



Domain Partition for 3D 
Configuration ( Cont.)
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All volumes located at the sub -volume faces exchange  data with neighbors

All volumes located at the sub -volume vertical edgesexchange  data with 

diagonalneighbors



3D Configuration- Data Exchange 
Principle   
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Scalability Characteristics of Multi-Grid   

 Multi-grid Solution, Re =1950, Grids 253,503,1003
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O(Np/ln(Np))

Number of CPU is restricted by the coarsest level (8x8=64 CPU)
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Single-grid Solution, Re =1950, 1003 Grid
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Scalability Characteristics of Single-Grid   
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1024 CPU   25.7 msec per time step     only 8 hours for 106 time steps       



Linear Stability Analysis for the 
Lid Driven Cavity

Dimensionless Vy velocity at the left corner of the middle plane  
(0.5, 0.1, 0.9),   1003 Grid

Reynolds number is increasing 
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Estimation of the critical Re number 
for Hopf bifurcation
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Estimation of the critical Re number 
for Hopf bifurcation (Cont.)

Richardson
Extrapolation

Recr Re=1925Re=1900Grid  

Re =1917
1964

λ= −3.8756× 10-3

ω=0.575
λ= −7.0256× 10-3

ω=0.5751003

λ= −1.2417λ= −4.3438 Recr=1917

Recr=1916
1935

λ= −1.2417× 10-3

ω=0.575
λ= −4.3438× 10-3

ω=0.5751503

1927
λ= −2.8473× 10-4

ω=0.575
λ= −3.3512× 10-3

ω=0.5752003

Recr=1916 ωωωωcr=0.575



Type of the obtained bifurcation  

Α

Subcritical Supercritical

Α

Re1 Re

Re1 Hopf bifurcation

Re2 Saddle node  bifurcation

Re1 Hopf  bifurcation

ReRe1Re2



The Character of the obtained 
bifurcation (Cont.)

Decreasing from Re=2000
leads to an oscillatory  flow for Re=1950
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Recr=1964 is a subcritical Hopf bifurcation



The Flow Total Kinetic Energy
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The maximum deviation between the kinetic energy values

calculated on the 1523 and 2003 grids does not exceed 1% 



Benchmark Problems (Cont.)Benchmark Problems (Cont.)
Differently Heated Rectangular and Cubic Cavity (Boussinesq Approximation)
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�Explicit Discretization
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Boundary Conditions:

0=u

0 1or y
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-isothermal vertical walls, -horizontal and  
lateral  walls 

No boundary condition for 
pressure is needed  
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�Explicit Discretization

�Semi-Implicit Discretization
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Differentially Heated Cavity, Gr=3.5x106

Perfectly conducting lateral walls 
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Central symmetry is preserved (opposite phases for opposite corners) 



Conclusions

� An Accelerated Semi-Analytical Coupled Line Implicit Gauss-Seidel

Smoother (ASA-CLGS) was developed and implemented for the

solution of incompressible N-S equations.

� The Navier-Stokes equations are solved without pressure-velocity

decoupling.decoupling.

� The code was successfully parallelized for running on massively

parallel supercomputers. The overall obtained speed up reaches 200

for 1024 processors.

� The multi- and single-grid approaches are scalable as O(Np/ln(Np))

and O(Np/log10(Np)) respectively.

� The potential implementation of the developed parallelized time

marching solver to the linear stability analysis was studied.


