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Outline

�Pressure-velocity coupled formulation of the Navier-Stokes equations

�Benchmark problem

�Full Pressure Coupled Direct  (FPCD) time integration
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�Application to the steady state solution

�Application to the linear stability analysis 

�Conclusions



Incompressible N-S Equations –
Numerical Challenge 
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�No separate equation for pressure

�No boundary conditions for pressure 
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Incompressible N-S Equations –
Numerical Challenge (Cont.) 

Pressure-Velocity 
Decoupling Approach

� High numerical robustness

Pressure–Velocity
Coupled Approach

� High rate of numerical convergence

� The ''most natural '' way to 
� Low memory consumption

Slow rate of numerical    

convergence

Non-physical pressure field

Not applicable for flow–
structures interaction problems 

� The ''most natural '' way to 
solve N-S equations

� The obtained pressure is physical

High memory consumption

Not as numerically robust as    
pressure projection methods
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LidLid--Driven Rectangular and Cubic Driven Rectangular and Cubic 
CavityCavity
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�Explicit Discretization
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Realistic Boundary Conditions:

0=u - at all  static walls no slip/no penetration

-at the moving wall the flow velocity is 
equal to that of the moving wall itself

No boundary condition for 
pressure is needed  
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�Semi-Implicit Discretization
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Discretization in time and space
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Conservative second order control volume method

Linearized Navier-Stokes equation;  l.h.s. = Stokes operator
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The Full Pressure Coupled Direct 
(FPCD) Time Integration
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Backward Substitution
to Obtain 

System

Is the Steady 
State or Time 

Limit Reached?
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Obtaining Steady State Solution 

Newton iteration for steady state solution  

For large ∆t

is a preconditioner for N +L
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Difference between two 
consecutive linearized 

time steps   

Difference between two

consecutive time steps

is a preconditioner for NU+L

Krylov Basis Method (BiCGstab)
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Lid Driven Cavity- Steady State

Vx , Re=1000 Vy , Re=1000
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Lid Driven Cavity- Steady State (Cont1)

Vx , Re=4000 Vy , Re=4000
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Vx , Re=8000 Vy , Re=8000 

Lid Driven Cavity- Steady State (Cont2
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Application to the 
Linear Stability Analysis

Inverse formulation with Arnoldi iteration 
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Krylov Basis Method (BICG)
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Difference between two 
consecutive linearized 

time steps   

Difference between two 
consecutive time steps   

of the Stokes operator

Good performance for 2D configuration

Still a challenge for 3D configuration
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Application to the 
Linear Stability Analysis (Cont)
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Re≈8000



3D instability: the most unstable eigenvector

Re≈1920
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3D time-dependent computation
Pressure-velocity coupled + multigrid
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� The FPCD approach, utilizing the LU decomposition of the
Stokes operator, shows competitive computational times for two
dimensional problems, but remains restricted by the available
computer memory when is applied to three-dimensional models.

� A great advantage of the FPCD approach is a constant and a priori 
known CPU time consumed at each time step. Apparently it is not a    

Conclusions

known CPU time consumed at each time step. Apparently it is not a    
case for any iterative solver.

� The approach may be easily parallelized taking advantage of using     
massively parallel platforms and allowing its extension to  3-D
configurations.

� The approach easily extended to Newton iteration based steady state  
solves and stability solvers based on inverse Arnoldi iteration 
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Thank YouThank You
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