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Bifurcations of central symmetry breaking and stability of nonsymmetric states of
buoyancy-driven convection in laterally heated cavities are studied numerically. The
calculations are carried out using two independent numerical approaches. Stability and
weakly nonlinear analysis of the calculated bifurcations are studied by the spectral
Galerkin method. Time-marching calculations are carried out using the finite volume
method. By applying two independent numerical approaches the subcritical steady

flows, their stability,

the transitions between different states and flows at small and

large

supercriticalities are comprehensively investigated. It is shown how these numerical
techniques can be applied for interpreting a particular experimental result.
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1. INTRODUCTION

Oscillatory instability of steady convection in
laterally heated rectangular cavities is a well-known
problem which has significant practical importance
[1,2]. At the same time it is used as a convenient
benchmark problem in computational fluid me-
chanics and heat transfer [1]. Special interest in the
convection of low Prandtl number fluids is con-
nected with the stability of melt flow in crystal
growth processes. It was shown recently [3-6] that
stability properties of such flows strongly depend on
the Prandt] number, aspect ratio of the cavity and
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bifurcation, spectral Galerkin method, buoyancy-driven

boundary conditions. In particular, it was shown
that at certain values of the aspect ratio and the
Prandt! number, the first instability of the flow is a
central-symmetry-breaking steady bifurcation
which results in a steady nonsymmetric flow [4, 6].
The latter becomes oscillatory unstable at larger
values of the Grashof number. Such central-
symmetry breaking bifurcations are the main
objective of the present numerical study.

Two independent numerical approaches are
applied for numerical solution of the system of
the Boussinesq equations of buoyancy driven
convection. The stability analysis is carried out
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by the spectral Galerkin method -with globally
defined basis functions. This permits a significant
reduction of a number of degrees of freedom of the
corresponding dynamical system and reduces
solution to the eigenvalue problem associated with
the linear stability of the fluid flow [7,8). The
straight-forward time-marching calculations are
carried out using the finite volume method {9].
These calculations play the role of a numerical
experiment and permit to validate results of the
stability analysis and to calculate supercritical
oscillatory flows at large supercriticalities, as well
as the cases of subcritical bifurcations.

Application of this numerical technique is
illustrated on the model problem of convection
of a fluid with zero Prandtl number. In spite of the
fact that this model cannot always be used for the
modeling of stability of realistic fluid flows with
low but finite Prandtl number [3-6] it remains a
convenient benchmark problem and permits to
validate the described numerical approach. How-
ever, to compare with experiment (where the
Prandtl number is always finite) we switch to
calculations with the finite Prandt] number corre-
sponding to the experimental liquid. In the present
work, for example, the numerical technique devel-
oped is used for interpretation of the experimental
result of [10] obtained for oscillatory instability of
convection of mercury (whose Prandtl number
Pr = 0.026 is small but finite) in a cavity with the
height:length:width ratio equal to 1:8:8. To the
best of our knowledge this result has not yet been
explained completely in any other study.

The article is organized as follows. Section 2
contains the formulation of the problem. Some
relevant peculiarities of the numerical methods
involved are presented in Section 3. Results and
discussion are presented in Section 4. The conclu-
sions are drawn in Section 5.

2. FORMULATION OF THE PROBLEM

The convective flow in a rectangular cavity
0<x<4,0<y<1 is described by the dimension-

less momentum, energy and continuity equations
for Newtonian Boussinesq fluid

%_,_ (v-V)v=-Vp+Av+Grbe, (1)
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Here v is the fluid velocity, 8 is the temperature, p
is the pressure, Gr=gB(6 —0:)° /5% is the
Grashof number, Pr = /% is the Prandtl number,
A=1L/H is the aspect ratio, § is the gravity
acceleration, 8 is the thermal expansion coefficient,
(61 — 8,) is the temperature difference between the
cold and hot vertical walls, 7 is the kinematic
viscosity, ¥ is the thermal diffusivity, L and H are
respectively the length and the height of the cavity
(the overbar indicates dimensional variables).

The boundary conditions correspond to the
Ra—Ra case of the benchmark defined in [1]. No-
slip boundary conditions for velocity are imposed
on all four boundaries:

+(v-V)o=Pere, Vov=0  (23)

Vx=0,0<y<)=v(x=4,0<y<1)
=v(y=0,0 < x < A4)
=v(y=1,0< x< 4) =0,

(4)

vertical boundaries are isothermal;

G(X'———0,0S}’S 1)=1’

6
B(x=4,0<y<1)=0, (5,6)

and horizontal boundaries are thermally insulated:

£9-9(})=0,03xsz‘1)
oy
Py (M

3. NUMERICAL PROCEDURES

3.1. Spectral Galerkin Method

The Problem (1)~ (7) was solved using the spectral
Galerkin method with the globally defined basis
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functions which were proposed in[7]. The velocity
and the temperature are approximated by the
truncated series

Ny Ny )
VR Z Z ci(B)wij(x, y),
=0 j=0
M, My (8)
0=(1-x)+ Z zdij(t)‘h'j(xv)’)-
=0 j=0

Here c;;(t) and d;;(t) are unknown time-
dependent coefficients, N,, N,, M,, M, arc
numbers of basis functions used for the approx-
imation in the x- and y- directions. The basis
functions w;;(x,y) and g;;(x, y) are defined as

22(1+m) ‘+'"( )ibﬂUj-H—l(y)

m=0

St (5 )iz(fil) iy

m=0

“ii(xvy)=

9)
2 2\ 2
W)=Y pinTiom(5) L tTui). (10
m=0 =0
Here T, and U, are the Chebyshev polynomials
of the first and the second type respectively

Ta(x) = cos|narccos(2x — 1),
_ sin|(rn + 1)arccos(2x — 1)] (an
Un(x) = sin[arccos(2x — 1)]  °

The relation between the Chebyshev polyno-
mials (d/dx)T, + |(x)=2(n+ 1) U,(x) yields V-u;;=0.
Therefore the approximation of the velocity (8) is
analytically divergence-free for any number of
Galerkin modes.

Coefficients aum, by, pim and gy are defined with
the help of computer algebra such that all the
boundary conditions (4)—(7) are satisfied analyti-
cally. The expressions for the coefficients a,,, by,
Pm and gy for different types of boundary
conditions are reported in [7].

Application of the Galerkin method excludes
the pressure gradient from the Navier—Stokes

equation (1) (since (Vp,u;;) = 0 for divergent-free
vectors uy satisfying the no-slip boundary condi-
tions) and reduces the Problems (1)—(7) to a system
of ordinary differential equations (ODEs) for the
time-dependent coefficients ¢;; (f) and dj,(#) that can
be written in the following form (the summation
convention on repeated indices is assumed):

SyX, = 8y dX;t(t) = Fy(X(¢),Gr,Pr, 4)

= LyX; + Np XXy + Q..

(12)

Here i, j, k=1,
(M, + 1) and

2, (Nx + 1) (N, + 1) + (M, + 1)

X, +1)1j+1 =dyj, 0<i<M,;0<j<M,
XM 1)(M, 1)+, +1) 4541 =Chjy 0SISNGOS<N,

(13)

Matrices L;;, Nix, Q; contain coefficients of all
linear, bilinear and free terms of the equations,
respectively. The Gram matrix S‘,-,- =(ww) #I(J
is the identity matrix) arises because the basis
functions are not orthonormal. Multiplication of
the left and the right hand sides of (12) by the
inverse matrix S‘,.‘j‘ reduces the dynamical system
to the following explicit form:

d’g(’) — F(X(1), Gr, Pr, 4)

= ijXj + szkAGXk + Qi

Xi=

(14)

A possible ill-conditioning of the Gram matrix
S;; was checked by calculating the inverse matrix
S"-'j' with single, double and quadruple precisions,
and by the orthonormalization of the basis
functions (9) with Gram— Schmidt procedure. No
significant changes in the results were found.
Therefore, it was concluded that the Gram matrix
S;; is well defined and all further calculations were
carried out using the explicit form (14) of the
dynamical system, which was calculated with the
double precision arithmetic.

The explicit form of system (14) permits to use
standard numerical methods developed for ODEs
both for obtaining stationary and non-stationary



264 A. Yu. GELFGAT et al.

solutions and for investigating the stability of
solutions. If X = X? is a steady solution of (14)
then its linear stability is defined by the eigenvalues
of the Jacobian matrix

X,
Jmk=?—m—=Lmk+(Nmkn+Nmnk)X?x (15)
O0Xx

The steady solution X = X° is unstable if there
exists at least one eigenvalue of Ju with a positive
real part. The study of stability requires to
determine a value of Gr such that the real part
of the dominant eigenvalue (eigenvalue with the
maximal real part) A = A"+ iA’ is zero: A" =
and OA’/OGr #0. If A’ = 0 then a bifurcation from
one steady solution to another can be expected. If
A'#0 then a bifurcation to a periodic solution,
called Hopf bifurcation {11,12] takes place. In the
latter case w., = A’ estimates the circular frequency
of the oscillatory solution which branches from the
steady state after the onset of the oscillatory
instability. The most unstable perturbation of the
dynamical system (14) is defined by eigenvector V
corresponding to the dominant eigenvalue A with
AN =0 (Vi =AVm= iA'V,,). Components of
the eigenvector V redefined as the coefficients c;;
and d;; from (13), define the expansion of the most
unstable perturbation of the flow in the Galerkin
series (8). Similarly the limit cycle of the dynamical
system (14), which develops as a result of Hopf
bifurcation, defines as approximation of the
periodic solution of Problem a-7.

If at Gr = Gr,, the Hopf bifurcation takes place
then the branching oscillatory state may be
asymptotically approximated as [8, 12]

Gr = Gr, + pe® + O(e*), (16a)
T(Gr) = ‘—‘2’—15 147+ 0(eY)), (16b)

X(1; Gr) = X%(Grer)

+ eReal [V exp (2—;5 t)] +0(&).
(16¢)

Here ¢ is a formal positive parameter,
(Gr — Gr,y) is the supercriticality, w, is the critical
circular frequency, T is the period of oscillations,
and X is the asymptotic solution of ODE system
(14) for the Grashof number defined in (16a). The
asymptotic expansion (16) is defined by two
parameters p and 7, which are calculated using
the algorithm of [12]. Details of the applications of
this algorithm to a dynamical system written in the
form (14) are given in {8]. The Floquet exponent,
which defines the stability of the branching limit
cycle, can be asymptotically approximated as [12]:

0= —2uet b

7

oGr Gr=Grer (] )

Growth of A" with the increase of Gr yields OA"/

8Gr > 0, which means that the limit cycle (16) is

stable if pu > 0 (supercritical bifurcation, 8 < 0),

and is unstable if u < 0 (subcritical bifurcation,
B8 > 0).

The calculations by the Galerkin method are
arranged in the following way: first, for an initial
value of the Grashof number Gr° a stationary
solution of ODE system (14) is calculated by the
Newton method; then the cigenvalues of the
Jacobian matrix (15) are calculated using the QR
decomposition algorithm. These two steps are
repeated for the next value of the Grashof number
Gr' > G°. Then the real part of the dominant
eigenvalue A" is considered as a function of Gr, and
the critical value of the real Grashof number is cal-
culated as a solution of the equation AN(Gr,) =0,
which is solved with the secant method. The QR
decomposition algorithm is chosen due to its
independence on the condition number of the
matrix. This algorithm requires the calculation of
all eigenvalues in order to find the dominant one.
To reduce the amount of computations we tried to
use the Arnoldi iteration algorithm for calculating
the dominant eigenvalue only. However, it was
found that correct results can be ensured only
when the number of the Krylov basis vectors
approaches the dimension of the Jacobian matrix
Jo This makes the Arnoldi iteration less effective
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as compared to the standard QR decomposition
algorithm. A possible reason for this is the non-
sparse structure of J..

Various test calculations of steady state flows

and the onset of oscillatory instability were.

reported in [3—7] and are not contained here.
The test calculations included study of convergence
of the Galerkin series (8), comparison with
numerical data available in the literature and with
the calculations based on the finite volume method.

3.2. Finite Volume Method

The finite volume method was chosen for time-
marching computations since it provides conser-
vative numerical schemes (conservation of mass,
momentum and energy). This property is essential
for the numerical study in the vicinity of critical
stability points.

The finite volume schemes are of second order in
space and time. The SIMPLE algorithm [9] is
applied together with the second-order three-time-
level approximation of the time derivative [13].
The finite volume method is used for two main
purposes: to validate the stability results obtained
by the Galerkin method and to calculate super-
critical unsteady flows for large supercriticalities
and in the case of subcritical bifurcations.

The finite volume method is formulated for a
general non-uniform staggered grid. However the
present calculations are carried out with the use of
uniform grid only. The choice of uniform grids is
motivated by the initially unknown number of
convective rolls and the possibility of multiple
steady and oscillatory solutions [4—6]. Since any
possible number of convective rolls and any
possible breaks of symmetry are allowed, the spatial
discretization should be uniform. Thus, uniform
grids appear to be the most reasonable choice.

4. RESULTS

The Problem (1-7) is symmetric with respect to
simultaneous change of the direction of the gravity

force and the replacement of the hot and cold
vertical boundaries. It follows from this symmetry
that if a solution {vo(x, y, 7), Oo(x, y, )} exists then
{—vo(Ad~x,1-y,0), 1-6¢(4—x,1-y,0)} is an-
other solution of the same problem. Both solutions
coincide if they are centrally symmetric. Ob-
viously, at low Grashof numbers a single centrally
symmetric solution exists. However, at higher
Grashof numbers a central symmetry breaking
bifurcation can take place, such that a steady
central symmetric solution becomes non-sym-
metric (steady or oscillatory). These bifurcations
are characterized by the two-sided pitchfork.
Depending on the initial state, the resulting flow
approaches a particular branch of the pitchfork.
Figure 1 shows the calculated regions where the
steady pitchfork bifurcations of central-symmetry-
breaking were found. It was shown [4—6] that in
cavities with four no-slip boundaries there exist
multiple steady state solutions which differ by the
number of convective rolls. For the case of Pr = 0
and 1 < 4 < 10, considered here, a steady sym-
metry-breaking bifurcation was found for each of
the branches containing one, two, three, and four
primary convective rolls. Examples of steady
symmetry and non-symmetric flow patterns are
shown in Figures 2-5.

The non-symmetric steady state flows are stable
inside the shadowed regions shown in Figures
1(a)-(d). Lower boundaries of the shadowed
regions in Figures 1(a)-1(d) correspond to the
steady pitchfork bifurcation from the centrally
symmetric to the non-symmetric steady state
flows. Upper boundaries of the shadowed regions
correspond to the oscillatory instability of the non-
symmetric steady state flows. The neutral curves
aside the shadowed regions correspond to the
oscillatory instability of the centrally symmetric
steady state flows. In the cases of single-, two-, and
three-roll steady states (Figs. 1(a)—(c)) the steady
pitchfork bifurcation is supercritical, such that the
lower boundary of the corresponding shadowed
region conforms to the stability of both symmetric
and non-symmetric states. In the case of four-roll
steady state flows the bifurcation is subcritical,
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Fragments of the stability diagram containing regions of the stability of steady state flows with broken central

symimetry. The non-symmetric steady state flows are stable inside the shadowed regions. (a) single-roll steady state flows, (b) two-roll
steady state flows, (c) three-roll steady state flows, (d) four-roll steady state flows.

such that the lower neutral stability curve of the
steady non-symmetric states is located slightly
below the neutral curve. This curve corresponds to
the transition from symmetric to non-symmetric
four-roll steady states (Fig. 1(d)).

Examples of the transition from centrally
symmetric to non-symmetric steady state flows
are shown in Figures 2—35 for single-, two-, three-
and four-roll states, respectively. Figures 2 and 3
also illustrate comparison between calculations
carried out by the Galerkin and the finite volume
methods. In case of the Galerkin method a single
non-symmetric steady state flow (corresponding to
a certain branch of multiple steady states) was
calculated by the time-marching integration of the
dynamical system (14) at a value of the Grashof

number above the corresponding neutral curve. A
subcritical centrally symmetric flow with an added
small non-symmetric perturbation was used as an
initial guess for this calculation. After one non-
symmetric steady state flow was calculated, all
other non-symmetric solutions were obtained by
the parameter continuation technique. In the case
of the finite volume method centrally symmetric
flow was calculated using the result of the Galerkin
method as an initial guess. Then the increase of the
Grashof number above the corresponding critical
curve and further time-marching calculations leads
to the break of symmetry and the convergence to
non-symmetric steady state flow.

Comparisons of the results obtained by the two
independent numerical approaches (Figs. 2 and 3)
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FIGURE 2 Single-roll steady state flows. 4 = 1.3, Pr = 0. Calculation using the Galerkin (left frames, 30 x 30 basis functions) and
the finite volume (right frames, 75 x'75 uniform grid) methods. (a) Gr = 2.5 x 10° (point S, in Fig. 1a), (b) Gr = 3.8 x 10° (point N,

in Fig. 1a).

(a)

(b)

FIGURE 3 Two-roll steady state flows. 4 = 4.7, Pr = 0. Calculation using the Galerkin (left frames, 50 x 20 basis functions) and
the finite volume (right frames, 200 x 50 uniform grid) methods. (a) Gr = 5 x 10% (point S; in Fig. 1b), (b) Gr = 5.8 x 10° (point N

in Fig. 1b).

illustrate two possibilities of the pitchfork bifurca-
tion. In the case shown in Figure 2(b) the non-
symmetric flows calculated by the Galerkin and
the finite volume methods bifurcate to different
branches of the pitchfork. One of the results can be
transformed into another after rotation by 180°
about the cavity center. In the case shown in
Figure 3(b) both calculations arrive at the same
branch of the pitchfork.

Note that calculation of bifurcations of central-
symmetry-breaking by two independent numerical
approaches approves the existence of such steady
bifurcations. An analogous comparison can also
be performed for the upper parts of the described
regions of stability corresponding to the onset of
the oscillatory instability. In the case of the
supercritical Hopf bifurcation the weakly non-
linear approximation of oscillatory flows (16) can
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FIGURE 4 Three-roll steady state flows. 4 = 7.25, Pr=0.
Calculation using the Galerkin method, 60 x 20 basis functions,
(a) Gr =4.9x 10° (point S; in Fig. 1c), (b) Gr=5.2x 10%
(point N, in Fig. lc).

FIGURE 5 Four-roll steady state flows. A = 8.7, Pr = 0. Cal-
culation using the Galerkin method, 60 x 20 basis functions. (a)
Gr = 8 x 10° (point S, in Fig. 1d), (b) Gr = 9 x 10° (point N4 in
Fig. 1d).

be compared with the result of solution of the full
unsteady problem. The corresponding examples
are shown in Figures 6 and 7. It is seen that the
patterns of the oscillatory flow approximated
asymptotically (the result of the Galerkin method)
are similar to the corresponding patterns calcu-
lated by the finite volume method (the solution of
the full unsteady problem). Besides the patterns of
the oscillatory flows, the frequencies of oscillations
can also be compared. The results are summarized
in Table 1 which shows the critical values Gr,, and
wer, the parameters p and 7 of the asymptotic
approximation (16), and values of the frequencies
approximated asymptotically (the Galerkin meth-
od) and calculated via the time-marching calcula-
tions (the finite volume method) for points Oy -0s
in Figure 1. It is seen that in the cases of
supercritical bifurcations (u > 0) the results of
the asymptotic approximations are close to the
calculated values of the circular frequency. This
provides another validation of the weakly non-
linear analysis.

The weakly nonlinear approximation (16) can-
not be applied in the cases of subcritical bifurca-

FIGURE 6 Snapshots of the streamlines (plotted over the
time intervals equal to 7/5) corresponding to the slightly
supercritical flow at 4 = 1.3, Pr=0, Gr=5.2x 10° (point O,
in Fig. la). Left frames — calculation using the Galerkin
method, 30 x 30 basis functions; right frames - calculation
using the finite volume method, 75 x 75 uniform grid.

tion and for large supercriticalities. In these cases
the solution of the full unsteady problem is the
only way to calculate the oscillatory flows. The
corresponding examples are shown in Figures 8
and 9. Figure 8 shows oscillations corresponding
to the point O (Fig. 1(c)) which result from the
subcritical Hopf bifurcation. The absolute value of
the parameter p in this case is rather small
(see Tab. I) which indicates on that the subcriti-
cality depth is relatively small. Because of this, a
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FIGURE 7 Snapshots of the streamlines (plotted over the time intervals equal to T/6) corresponding to the slightly supercritical
flow at 4 = 4.7, Pr = 0, Gr = 6 x 10° (point O, in Fig. 1b). Left frames - calculation using the Galerkin method, 60 x 20 basis
functions; right frames — calculation using the finite volume method, 200 x 50 uniform grid.

TABLE1 Results of the linear and weakly nonlinear analysis of the Hopf bifurcations (Galerkin method) and the frequencies of
oscillations calculated vig the solution of the full unsteady problem (finite volume method)

A Gr,x10°%  , M T Grx107° w w
(asymptotic approxima- (full unsteady problem,
tion, Galerkin method) finite volume method)

1.3 4.831 2392 700.2 —0.001410 5.2 2583. 2576.

4.7 5.830 799.4 10329. —0.01744 6.0 823. 816.

7.25 5.437 137.3 —-0.3271 0.000520 6.0 - 270.

8.7 9.597 733.0 27906. —-0.024419 10.0 760. 754.

significantly large amplitude of oscillations can be
found at points which are considerably above the
corresponding neutral curve (like point O, in
Fig. 1(c)). Oscillations shown in Figure (9) corre-
spond to point O, in Figure 1(a). In this case the
oscillations remain single-periodic, but the os-
cillatory flow at such supercritically already

cannot be approximated by the first term of the
expansion (16).

Knowledge on the existence of the central-
symmetry-breaking steady bifurcations permits to
interpret the experimental results of [10] obtained
for the convection of mercury (Pr = 0.026) in the
cavity with the aspect ratio and the width ratio



FIGURE 8 Snapshots of the streamlines (plotted over the time intervals equal to T/10) corresponding to oscillatory flow at
A=725Pr=0,Gr==6x 10° (point Oy in Fig. 1c) in case of subcritical bifurcation. Calculation using the finite volume method,

300 x 50 uniform grid.

s equal to 7/10) corresponding to oscillatory flow at
finite volume method, 100 x 100

FIGURE 9 Snapshots of the streamlines (plotted over the time interval
A=14,Pr=0,Gr=6x 10° (point O in Fig. 1c) at large subcriticality. Calculation using the
uniform grid.
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FIGURE 10 Streamlines (a), isotherms (b), amplitude of the most unstable perturbations of the stream function (c) and the
amplitude of the temperature perturbation (d) for non-symmetric two-roll steady state. 4 =8, Pr = 0.026, Gr = 1.45 x 10°.

Calculation using the Galerkin method, 60 x 20 basis functions.

(width/height) W equal to 8. The experimental
results (recalculated for the present definition of
Gr and w) for the onset of the oscillatory
instability  yield GrS® =177 x 105 and
w*P~32.6. The non-dimensional value of w™P
was estimated from the first peak of the frequency
power spectrum shown in Figure 9b of [10] with
the use of the time scale H?/v, where H = 0.81 cm
(reported in [10]) and the value of the kinematic
viscosity v of mercury at 23°C was taken as
v=12x10"%m?/c. We assume here that the
second peak of the frequency power spectrum in
Figure 9(b) of [10] is a harmonic of that one
corresponding to the smallest frequency.
According to the results of [4— 6], several stable
steady states are possible at 4 = 8. Since only
temperature oscillations were measured in the
experiments [10], it is unknown which one of the
multi-roll steady states was observed. Therefore,
to compare with the experimental results, it is
necessary to calculate the critical parameters for
each possible branch of the steady state flows. The
dependence Gr,,(Pr) reported in [6] showed that
comparison with the experiment should be done
for exactly the same value of the Prandtl number.
Therefore, the fixed value of the Prandtl number of
mercury Pr = 0.026, reported in [10], was used in
the present computations. Calculations starting
from the zero Grashof number, at the fixed value
of the aspect ratio 4 =8, lead to the stable
centrally symmetric three-roll steady state flow.
This flow becomes oscillatory unstable at
Gr{)) =2.05 x 10° with the critical circular fre-

quency w® =282 A centrally symmetric four-

roll steady state flow at A = 8 can be calculated by
the following computational path. First, the
Grashof number is increased up to 10® at 4 = 9,
and then the aspect ratio is decreased to 4 = 8.
The critical parameters of the four-roll steady state
flow are Gr'¥ =1.16 x 10° and W = 165.5.
Neither of these critical points fit the experimental
result of [10].

Study of the stability of the centrally symmetric
two-roll steady state flows shows that they become
unstable with respect to a steady bifurcation
(wg) = 0) for 4 2 7.7. Time marching integration
of the dynamical system (14) for 4 > 7.7 with the
use of the two-roll steady state at 4 = 7.7 as an
initial guess yields a two-roll steady state flow with
a broken central symmetry. The region of stability
of non-symmetric two-roll steady state flows
extends beyond the value 4 =8. The critical
parameters at 4 = 8, corresponding to the onset
of the oscillatory instability of this steady state
branch, are Grl? = 1.45 x 105 and w{? = 34.96.
These parameters are much closer to the experi-
mental results of [10]. The patterns of the steady
flow and the corresponding most unstable pertur-
bation are plotted in Figure 10.

The weakly nonlinear analysis of the above
bifurcation permits an additional comparison with
the experimental observations. The parameters of
the asymptotic expansion (16) were found to be
p = 5477 and 7 = 0.004836. A positive value of
the parameter T means that the frequency of the
oscillations decreases (the period increases, see
(16¢)) with the increase of the Grashof number.,
Calculation for Gr = 1.77 x 10° yields w = 33.98,
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which is closer to the experimental' result than
w® = 34.96. Thermal probes in the experiment
[10] were inserted along the central plane y = 0.5,
x= A2 of the cavity. The non-dimensional
amplitude of the temperature oscillations at the
center of the cavity (y=05, x= A[2), was
estimated using (16¢), and found to be approxi-
mately 1% of its averaged value. This yields a
possible explanation for the difference between the
experimental and the calculated critical Grashof
numbers. Since only finite amplitude of the
temperature can be indicated in an experiment, it
is possible that oscillations with smaller ampli-
tudes were not registered by the introduced
thermal probes used.

The results described support the assumption
made in [6] which stated that for convection of low-
Prandt] number fluids, the two-dimensional stabi-
lity analysis provides results comparable with the
experimental data if the width ratio (width/height)
of the expetimental container is sufficiently large.

5. CONCLUSIONS

Use of two independent numerical approaches
(based on the spectral Galerkin and the finite
volume methods) allowed us to obtain validated
results on steady bifurcations of the central
symmetry breaking and on the oscillatory instabil-
ity of non-symmetric steady state flows. It should
be emphasized that both numerical techniques
used here complement each other. The complete
analysis of stability and calculations of the
stability diagrams can be carried out only by the
spectral Galerkin method. The finite volume
method provides not only validation of the
obtained stability results but also permits calcula-
tions in cases of subcritical bifurcations and at
large supercriticalities. Besides this, results of the
Galerkin method can be used as an effective initial
guess for the time-marching computationsof the
finite volume method.

Examples of the steady and oscillatory non-
symmetric flow patterns shown in Figures 2-8, as

well as the parameters shown in Table 1, can be
proposed as benchmark cases for numerical
methods used for analysis of the stability of fluid
flows. Correct calculation of steady and unsteady
bifurcations requires sufficiently good resolution
of both flow and its most unstable perturbation.
Conservation properties of a numerical method
also seem to be a necessary requirement for correct
numerical modeling of instabilities of fluid flows.

The explanation of the experimental result of
[10 proposed here, is in contradiction with the
interpretation given in [10] which stated that the
observed oscillatory instability has completely
three-dimensional origin. The present results show
that the two-dimensional model of the phenom-
enon yields results which are close to the experi-
mental ones. The assumption is that (in this
particular experiment) fluid motion in the width
direction, which obviously exists in the real three-
dimensional flow, has no significant influence on
the transition from steady to oscillatory regime.
This supports the assumption made in [6] which
stated that two-dimensional models of the low-
Prandtl-number fluids convection can reproduce
the experimental results in cases when the width
ratio of the experimental container is sufficiently
large.
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