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The three-dimensional instability of an axisymmetric nataral convection flow is investigated
psumericaly using & global spectral Galerkin method, The linear stability problem separates
for different azimuthal modes. This allows us fo reduce the probiem to a sequence of 2D-like
problems. The formulation of the numerical appreach and several test calcuiations are
reported. The nmmerical results are saccessfully compared with an experiment on antural
convection of water in a vertical cylinder, which shows an axisymmetry-breaking instability

with a high azimuthal wavenumber,
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INTRODUCTION

Natural convection flows in axisymmetric regions
are common in many technological processes and
are widely used as experimental and numerical
models. When the characteristic temperature differ-
ence increases the laminar axisymmetric flow loses
its stability and becomes three-dimensional. Such
axisymmetry-breaking bifurcations always take
place as a stage in the course of laminar-turbulent

transition. This study is devoted to the numerical
analysis of & particular case when a steady axisym-
metric flow becomes unsiable with respect to three-
dimensional perturbations.

The most common way to study the axisymme-
{ry-breaking instability numerically is by the solu-
iton of the full three-dimensional unsteady problem
where the axisymmetric solution is taken as an
initial state (Neumann, 1990: Wanschura ¢er o,
1996; Verzicco and Camussi, 1997). A stability
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analysis was applied analytically (Jones and
Moore, 1979} or numerically (Hardin er al., 1990;
Goldstein er al, 1993) only in a particular case
with heating from below, when the initial axisym-
metric state is a motionkess fluid. However, the
2r-periodicity of axisymmetric flow allows one to
reduce the 3D stability problem to a sequence of
2D-like problems. This follows from the possibility
to expand the 2m-periodic 3D selution in a trigono-
metric Fourier series in the azimuthal direction. In
view of the orthogonality of the Fourier modes, the
finear stability problem for each mode separates
from other modes. The stability problem for each
azimuthal mode does not depend on the azimuthal
angle, and therefore it is analogous to the axisym-
metric stability problem. Such probiems can be
studied numericaily by the approach which was
used by Gelfgat et al. (1996) (in the foliowing
referred as G) for an axisymmetric case. This
approach fo the analysis of axisymmetry-breaking
bifurcations of convective flows using the global
spectral Galerkin meshod is discussed in the present
paper. The formulation of the method and several
test calculations are reported. It is illustrated how
the three-dimensional stability analysis may be used
for the explanation of our recent experimental
results (Kowalewski and Cybulski (1997), in the
following referred to as K.

FORMULATION OF THE PROBLEM

Consider a natural convection flow of a Boussinesg
fluid in a vertical cylindrical enciosure 6 <r<1,
6 < z < A, The dimensionless momentum, coniinu-
ity and energy equations are
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Here {r,ip,z} are the cylindrical coordinates,
v=(u, v, w) is the velocity vector, p is the pressure,

gravity acceleration, 3 is the thermal expansion
coefficient, AF is the characteristic temperature
difference, ¥ is the kinematic viscosity, ¥ is the
thermal diffusivity, and H and R are the height
and the radius of the cavity (the overbar indicates
dimensional variables). We assume that the walls
of the cylinder are stationary, with the usual
houndary conditions, and that there is an arbitrary
{(but axisymmetric) thermal boundary condition.
At this stage we leave this condition slightly
general. In the following (see the section Numer-
ical Comparison with Experiment) we shall focus
on specific boundary conditions.

Let the basic axially-symmetric steady natural
convection flow which corresponds to the bound-
ary conditions be the solution of the system {steady
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axisymmetric part of (1)~(5)
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The main purpose of this study is to find out when
the steady axisymmetric sohution {U(r, z), W(r, 2},
Pir, ), 0(r, z)} becomes unstable with respect to
three-dimensional perturbations.

Consider infinitely small perturbations {u, v,w,
p. 6} of the velocity, the pressure and the tempera-
ture which depend on the three coordinates (r, i, 7)
and time ¢. The linearized problem for the periurba-
tions can be defined as
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where f represents one of the functions u, v, w or &,
To complete the formulation if is necessary to add
conditions of 2m-periodicity of all the functions:

Flp + 2x) = flp). (16)

According to linear stability theory, the time
dependence of the perturbation functions {u, v, w,
p.8 may be assumed as ~exp{A{f}, where A
determines the time rate of change of a pertur-
bation. The periodicity conditions (16) allow us to
represent the solution of (10)—(15) as Fourier series
in the azimuthal direction. Thus, the perturbation
functions can be represented as

{t, v, w,p, 8} = exp(Ar)

o
x Z Ll 2), vie(r, 2), we(r. 2), pa(r, 20, Ge(r, 2) }
x exp{ike). (17)

Equations for the Fourier coefficients {u,, v, wy.
Pr, &} are obtained after substitution of (17) into
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(1(h—(16), and neglecting the higher-order {erms:
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The functions {ug, vk, We, pr. 05} are Fourier coeffi-
cients which define the eigenvector of (10)—{15) for
each eigenvalue Ak). The integer number k in (17)
plays a role of the azimuthal wavenumber. The
value k=0 corresponds fo the axisymmetric
perturbation.

it is seen that the linear stability problem can be
solved separately for each value of the azimuthal
wavenumber k. This aliows us to replace the full
three-dimensional stability problem by a series of
axisymmetric problems for different azimuthal
wavenumbers k.

The main problem of numerical solution of
the system (18)-(22) is caused by the terms

proportional to 1/r*, which lead to a non-
integrable discontinuity at the axis of the cylinder
r=0. Note that this discontinuity is an artifact
introduced by the use of polar coordinates in the
{r,) plane. However, this artificial discontinuity
can be easily avoided. Note, that the azimuthal
angle o is not defined at r= (0. This means that{ a
non-zero valge of each function can be assigned at
r =0 to one of the Fourier modes, while all the other
modes can be put equal to zero at the axis. Hence, it
follows for Egs. (20) and (22), that non-zero values
of the axial velocity and the temperature should be
asgsigned to the axisymmetric mode k= 0. To do the
same for Egs. (18) and (19), one can express the
terras (2iku/r®) and (ZEkvk/rZ) from the continuity
equation (21) as
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and substitute {23} into (18) and (19), which gives
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It is easy to see now, that terms proportional to
1/r* disappear at k= 1. This gives us a possibility
10 assign non-zero values of u and v at r =0 to the
Fourier components corresponding to k== &1,
Finally, we obtain the following restrictions for
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vaiues of the Fourier modes at r ==

g = 0, vo =0, 8 5 0, wo # 0, (262)
it F 0, vay # 0, way = b4y = 0,
e v = wg = B =0, for i[> 1. (268)

NUMERICAL METHOD

The axisymmetric problem {6)—(9) together with
the three-dimensional linear stability problem (18)—
(22} are solved using the spectral Galerkin method,
as described in detail in G, Here we shall outline
some the main steps.

The system of basis functions of the Galerkin
method is divided into axisymmetric and asym-
meiric subsystems. This allows us to extract the
axisymmetric problem for the basis flow as a
separate part and then consider only a three-
dimensional stability problem. Furthermore, it
follows from the continuity equation {21), that
among the three systems of basis functions for u,
v, and wy only two will be linearly independent.
Taking this into account, the resulting Galerkin
expansion of the velocity can be writien as
follows:
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where, A;;, B and Cf and are unknown coefficients.
The vector functions Uy, form the basis of the axi-
symmetric part (k =0} of the 3D flow in the (r,2)
plane. The vector functions V; and Wy, form bases
for the remaining part of the three-dimensional
flow in the (r,p) and (z,y) coordinate surfaces
respectively. Components of the basis functions,
normal to the corresponding coordinate surfaces,
vanish: Uf V(”} W(’) = (. Components of
the basis funct;ons Uy, V;j and W are defined as

linear superpositions of Chebyshev polynomials as
follows:
Uy

(r/2) St @aTisr(ry g bpUpirr(z/ 4)
¢]

V= Thocalumilr) Tho diTiilz/4) |
&

(29)

0

~ikr Yo es:m:(f) Tholft/ 20+ 1) T2/ 4)
(30}

Here a=0 for jkj=1 and a=1 for ki > 1, T; and
U, are the Chebyshev polynomials of the st and
the 2nd kind, and

ﬁn{r) w= Tt (1) + {0+ DirUn(r}, a0
31
U r) = (o + B Ty(#) + 20090 0, (1),

The coefficients ay, by, ey, f are used to satisfy all
the boundary conditions. Because of the relation
between the Chebyshev polynomials

d
i Thetfx) = 2{n + DU{x}, (323
the basis functions (28)-(30) are analytically diver-
gence-free. {f thereisno flow through the boundaries
of the flow region, the projection of the pressure
gradient on a solenoidal basis function vields

¥ v

mfvp-wgdp'mo. (33)
V
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Therefore, there is no need to determine the pressure
if a solenoidal basis, satisfying no-throughflow
houndary conditions, is used for the global Galerkin
method. AH terms containing Fourier modes of the
pressure py vanish after projection of the Egs. (18)—

For the temperature {or other transportcd scalar
property) the Galerkin expansion can be writien as
follows:

8 == ({r, 2}
breog N, N, 4
) {q(k,r)ZZ DES " 0uTini ()
km—xs sy ful Fs0
xzéfm Tiim(5) § explike), (34)

glk,r) = ikr, £k #0; g(0,r) = 1.

The coefficients oy, and 6, are used to satisfy the
homogeneous boundary conditions (15). The func-
tion ((r,z) is used to satisfy non-homogeneous
boundary conditions for the temperature also ex-
pressed as a series of the Chebyshev polynomials

Gir,z} = ZZ&, r)T()

. jW{!

(34°)

This approach was used in G to analyze the
axisymmertric instabiiities of a basic rotaring flow.
Here we use a similar technique for the non-
axisymmetric instability of a basic non-rotating
flow. Further details of the numerical soiution
follow the same steps as in . The results are given
in the following.

Test Calculations

The first test case considered was the Rayleigh-
Benard instability of motionless fluid in a cylinder
heated from below. Comparison with other results
for a stationary cylinder {Hardin et al., 1990) and
for a cylinder rotating around its axis (Jones and
Moore, 1979; Goldstein er gl., 1993) showed that
the calculafed critical Rayleigh number is correct
up to the fifth digit with the use of 10x 10

basis functions in the r- and z-directions. Details
may be found in Gelfgat and Tanasawa (1993).
However, these tests are not sufficient, because the
convective terms of the momentum equation vanish
in the case of motionless initial state.

‘The next test case considered was the onset of the
secondary, oscillatory instability of the axisym-
metric Rayleigh—Benard convective flow. A cylin-
der with isothermal top and bottom and perfectly
insulated ateral wall was considered. For aspect
ratio equal to 1, the axisymmetry-breaking bifurca-
{ion sets in as a {ransition to steady 3D flow with the
azimuthal nomber k=2, An illustration of the con-
vergence of the critical Rayleigh number (Ra=
GrPry and a comparison with recent results of
Wanschura ef al. (1996) are shown in Table 1.

A hysteresis of Rag at k=2 was found by
Wanschura ef al. (1996) for Pr==}. With the
increase of Ra the axisymmetric flow becomes
unstable with respect to asymmetric perturbations
at a certain value Raii} and then, with further
increase of the Rayleigh number, it becomes stable
af a larger value Rag {2) > Ra ). This result was used
as another fest, and was extended further: the third
value Ral > Ral¥ at which the steady axisym-
metric flow becomes finally unstable was also
caleulated. The convergence of ali three critical
Rayieigh numbers is shown in Table {1

TABLE 1 Critical Rayleigh number for the
anmuthal moede k=2

N.x N, Pr=002 Pr=1
66 249374 30603
101G 2493.72 3004
2% 26 249372 30604
Wanschura ef of, {1996} 2463 i
Neumann {1990} 2525 s

TABLE II First, second, and third critical
Rayieigh numbers for Pr=1, 4wi k=2

N, % N, Ray  RdP R

10 x 10 3004 7841 25924
20 % 20 3004 7842 25945
30 % 30 3004 7842 25945

Wanschura er af. (1996) 3016 7908
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Further tests of convergence of Ra, and wy
were made for 4 =1, Pr=0.02 and 1.0, and mode
wavenumbersk =0, 1,2, 3,4, and 5, with numbers of
basis functions running from 6x 6, 8x8,..., to
28 x 28, 30 x 30. For all parameter values except
Pr=0.02,k =0, the values of Ra,, and w,, converged
to four or five significant digits from 4 x 14
functions on. For Pr=10.02, k =0 convergence was
slightly slower and was reached from 28 x 28
functions on. The final converged resulits are
shown in Tables IlI{a)~{c). Apart {rom the issue
of convergence {esting, it can be seen that the value

both Pre= 1 and Pr=0.02, L.e., the k= 2 mode is the
most unstable. Furthermore, it is interesting to
observe (Table Hi{c)) that at low Pr the value of
Ra.. is quite strongiy dependent on Pr.

EXPERIMENT

The onset of convection and the stability of
an imitially isothermal fluid in regular cavities

TABLE i1l Critical Rayleigh numbers for var-
ious azimuthal modes &k, and various Prandid
numbers asing 30 x 30 basis functions

k Ra.. oy
{28) Pru

] 28469 ]

H 4202* ]

2 3604 ]

3 23851 $1.043
4 17614 0

5 17392 {
(b} Pr=10.02

i 17442 247.%
1 2062.82 1}

2 2491.72 {

3 33138 0
4 4908.66 G

3 T406.92 [
(crk=2

19 2625

c.2 2493.72 ¢
.21 2242 ¢

Wanschura ef af. (1996) Rag, = 4224,

instantaneocusly cooled from above have been
extensively investigated for water, both with and
without phase change {(see KC). A sketch of the
experimental setup is shown in Fig. 1. A cylinder
(37.1 mm inner diametier by 41 mm inner height)
filied with water was immersed in a thermostatic
water bath heid at a hot temperature and was closed
onits top by a metal plate held at a cold temperature,
The walis of the cylinder (side and bottom) were
made of 2.1mm thick glass. Experiments were
carried out at bath temperatures in the range

ranging {rom slightly below the bath temperature,
ViZ., Booiq == 20°C, down to below the freezing point,

stratification resuited in a free convective flow, and
for below-freezing lid temperature an ice front
formed and grew downward from the top. A stcady
state flow configuration consists of a single coid
downward jet along the cavity axis and a reverse
upward flow along the side wall.

Observations were made mainty by careful and
detailed measurements of the temperatures and
tracks of Hqguid crystal tracers, at various vertical
and horizontal cross-sections. The color change of
the tracers convected by the flow allowed us to detect
variations of the thermal field as small as 0.1°C,
providing a direct indication of the stability and
structure of the investigated flow field. Details of the
experimental procedure and extensive results are

metal plate at §=5_,,

water

FIGURE 1 Sketch of the experimental setup. Glass oylinder
with a cooled Hd immersed in a hot bath.
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given elsewhere (sec KC, aiso Kowalewski ef al.,
1998). Insofar as the present study is concerned, the
interesting observation was that at a certain set of
parameters the temperature field measured in
the fluid in a horizontal cross-section slighily below
the top (z=20.94) split into a pattern of 16—18'
wedge-likesectorsextendingradially fromtheaxis to
the circumference (Fig. 2). Thus, despite the cylin-
drical geometry the flow underneath the lid became
divided into a regular pattern of radial structures,
Clearly, the basic axisymmetric flow spiitinto a non-
axisymmetric (but quite regular) flow with this high
wavenumber. These structures appeared for pure
water convection for temperature differences A8 =
Brnot — Beoe  exceeding 5°C. The corresponding
Grashof number is Gr=246x 10%, At larger
temperature difference {A\F > 10°C) the flow struc-
ture became unstable and the vertical “cold jet”
started to bounce. The previously regular “star-like”
horizontal structure of 16—18 spikes became dis-
turbed, their number and length varied in time.

It is worth noting, that the observed flow pat-
tern remains when the phase change takes place

FIGURE 2 Temperature distribution visuahized by liguid
erystals. Color usnage taken at the horizontal cross-section
2=0.94, Graa2.5 % 107,

{freezing of water for f.,0= —10°C). The char-
acteristic star-like grooves were weil visible in the
ice surface growing under the lid.

NUMERICAL COMPARISON WITH
EXPERIMENT

In view of the expenimental observation, the fur-
ther thrust of the present analytical study was to
analyze numerically the splitting of axisymmetry of
this flow.

A secondary, but non-trivial, problem arose in
connection with the definition of the thermal
boundary conditions: In a naive, first-sight descrip-
tion, the system appears ¢ be defined as isothermal
cold top and isothermal hot sidewali and bottom.
However, as pointed out by KC, the conduction
through the glass wall is finite (i.e., the inner wall
surface is neither isothermai nor perfectly insulated)
and there are significant temperature gradients near
the upper corner, where the top plate meets the
cviinder wall. To account for this effect, two
different approaches were taken for the definition
of the thermal boundary conditions:

€z} the boundary conditions at the inner walls
were assumed to be:

a8
oz

%f: Bs‘(u‘?"— [1 _ [%] n]] at r== i, (36)

and no-stip conditions for the velogity on ali
boundaries. Here 8 == (8 — 80101/ (Bhor — Feora), Bi
is a semi-artificial Biot number, and the power
function (z/4)" with the arrificial exponent » is
added to smoothen the temperature boundary
conditions at the top edge of the cylinder;

(b} the compound problem of axisymmetric
convection in the cylinder with finite conduction
through the walls was computed by a finite-volume
method (the isothermal conditions were assumed

=—RBi{f1} atz=0; =0, atz=4; (35

!T'he shape of the wedges was not perfectly uniform. A simplé count gave 17. The correct aumber could be either 17 or the nearest

even numbers 16 or 18,
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on the outside of the walls). Then the resulting
temperature distribution on the inner walls was
taken as boundary condition for the non-axisym-
metric stability analysis. .

The details of the two approaches and the resuits
are described below,

“Artificial” Bi and n

As stated above, the thermal boundary condition at
the inner walls was approximated by assuming (38)
and {36}, With these boundary conditions, the
function G{r, z} in (34) was chosen as

1= ()
+ [2 +2fiBir2] (2 (-3

The Biot number Bi and the exponent n depend on
heat transfer between the metal plate, the thermo-
static bath, and the entire enclosure. Unfortunately,

37)

181

there is not enough experimental data to determine
accurate values of these parameters. Therefore, Bi
and » were varied with the goal to find whether
there exists a most dominant 3D perturbation
which is divided info 18 similar parts in the
azimuthal direction.

A coarse estimate of the Biot number may be
obtained from the balance of the heat flux at the
inner and outer boundary of the cylindrical wall,
Assuming that the heat transfer coefficient from the
wall 1o the outer water bath is about 10° W/m?K
and that the heat conductivities of glass and water
are 1.02 and 0.566 W/mK,, respectively, the estimate
is Bi=:10. In the following calculations the Biot
number was varied from 6.5 to 20.

Preliminary calculations were done with the
exponent » == 20 in (37). (All computational results
presented from here on are for 4= H/R =22 and
Pr:=8.0, which correspond to the parameters of
the experiments.) The dependence of the critical
Grashof number on the azimuthal number & for
different values of Bi is shown in Fig. 3. At Bi=20

2
o Bi=0 5
© Pi=1
b o o 4
i.5 a Bi=3
e o -] a °
° X Bi=70 o
-]
Wi
bl
% ° °
Wb
3 -]
°
-]
 HERA A P S s o ° °* 9
L -]
0.5 2
@
o &
b 4
& & A A & L ¢ F A 4 4
* . ¢ a & 2 & x X
° o a & x *
F x A A+ % x x x
x x x x x % & x x
G
G 5 10 i5 20
k
FIGURE 3 Critical Grashof number Gr,, corresponding to different azimuthal wavenumbers k for » =20 in (36},
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the minimum Gr {k) corresponds to the dominant
azimuthal mode with k= 5. With the decrease of Bi
the number of the dominant azimuthal mode
grows. At Bi=2 there is an abrupt decrease to the
dominant azimuthal mode k=7 {rom the mode
kw6 (Fig. 3). With further decrease of the Biot
number this abrupt decrease becomes larger and
occurs at larger k. At Bi==0.5 the most unstable
azimuthal mode is k=9,

The axisymmetric convective flow for Bi=0.5
and n = 20 1s shown in Fig. 4 for the critical Grashof
number corresponding to & =9. Figure 5 shows the
corresponding dominant three-dimensional pertur-
bation of the temperature whose azimuthal period is
2%/9. Figures 6 and 7 illusirate the same but for
Bi=720 and k=5. Note, that the most unstabie
perturbation {Figs. 5 and 7) consists of a pair of
antisymumetric patterns which are separated by a
plane wu=const. The perturbation of the three-
dimensional velocity is similar.

A comparison of the dominant perturbation
{Figs. 5 and 7} with the distribution of the tem-

=

perature in the mean axisymmetric flow (Figs, 4
and 6) allows us to make some conclusions about
the pature of the instability. It is seen that an
unstably stratified fluid layer is always located
near the upper cold plate. The depth of the layer
depends on the Biot number and on the smoothing
of the temperature at the upper edge {the expo-
nent n). The maximal absolute values of the
perturbation of the temperature are alse located
near the upper plate. The patterns of the pertur-
bation of the vector potential of velocity (¥7 and
U@, not shown in the paper) also ook similar. This

RSN T
A e
JATryiad
Cravalss
»

.05

C.00086
aa -0.0008

-0.05

r=0 paz]

FIGURE 4 Streamlines and isotherms of ‘the axisvmmetric
flow Bi=10.5, n =20, Gr=_Gr, = 46,900,

FIGURE § Tsosurfaces of the 3D perturbarion of the tem-
poyature. Bi=0.5, n=20, k=9, Gr=0r, = 40,900,
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> = -

FIGURE 6 Streamlines and isotherms of the axisymmetric
flow Bi=20, # =20, Gr=0Gr, = 4600,

ailows us 0 confecture that the observed instability
is caused by a Rayleigh~Benard mechanism in
the unsfably stratified flud layer.

Maximal values of the perturbation appear on
surfaces which have almost rectangular cross
section at the cylindrical wall {Figs. 5 and 7). The
size of these “rectangles” grows with the growth of
the depths of the stratified layers. This means that
for thinner layers the size of the characteristic
patierns of the most unstable perturbation wili be
smaller and the corresponding critical azimuthal
number will be larger (the length of each “rectangie”
in the circumferential direction is n/k).

The depth of the unstably stratified fluid layer
strongly depends on the heat transfer conditions i
the vicinity of the upper edge of the cylinder. Quan-
titative comparison with the experiment is hardly
possible without better approximation of these
conditions in the calculations {see below. Finite
Wall Conduction Analysis), However, in the frame-
work of the present numerical model it is possible to
conirol the depth of the stratified layer by varying
the exponent n in {37), which corresponds to

0.3

3.0t

0.001
(3.001
-3.01
3.3

FEGURE 7 Isosurfaces of the 3D pertwrbation of the tem-

different smoothings of the discontinuity of the
temperature at the upper edge of the cylinder.

It was found that for the values of the Biot
number Bi= 10 or 20 the instability sets i with the
azimuthal number k£ =9if one assigns n =341in (37).

{Fig. 8) that the critical azimuthal number grows
with the growth of the exponent n, which corre-
sponds to the thinning of the stratified layer. It is
interesting to compare flow patterns with the same
k but different Bi and #. Thus, compare the results
for Bi=0.5, n=20, Gr=40900 ( Figs. 4 and 5) and
for Bi =20, n== 34, Gr== 6770 {Figs. 9 and 10}, both
of which correspond 10 2 dominant instability
with k=9, The depths of the stratified layers in
Figs. 4 and 9 are almost equal, which leads to the
onset of instabihity with the same azimuthal number
and with similar perturbations {compare Figs. 5
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FIGURE 8 Critical Grashof number ('r,, corresponding to different azimuthal numbers & for Bf =20,

3

and 10). Note, that for larger n the critical
azimuthal number is larger (k=11 for n=40,
Fig. 8). Obviously, there should be some limit of
the critical ¥ when » tends to infinity.

The results presented so far show that (a) the
analysis of non-axisymmetric instability by the
present Galerkin and mode-separation approach
yields meaningful results and (b) for the natural
convection problem considered here, the axisym-
metry-breaking instability appears to be closely
related to the thickness of the thermally stratified
layer under the ld, nearly regardiess of the specific
vahues of parameters which led to the formation of
that particular thickness.

To further investigate if the k= 16-18 circum-
ferential splitting which was observed in the ex-
periment could be obtained analytically, the
computations were run for a variety of values of
Bi and n. Representative results for Gr.fk) for
Bi=10, n= 50,60, 70 are shown in Fig. 11.
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0.03
0.001
-0.001
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FIGURE 10 Isosurfaces of the 3D perturbation of the tem-
perature, Bi=20 n=34, k=9, Gr=Gr =671,

The isolines of the main flow and of the
perturbation are of the same nature as Figs, 47,
9--10 above, but more clhustered near the top cover,
as could be expected for the higher value of ». The
behavior for the three values of nis analogous, with
some shift in the characteristic values. The common
result is that a focal minimuns Gr appearsat k=13
(n=50), k=14 (n=060), k=16 (n=70), but a
global minimum Gr,, appears near k== ~4, The
question then arises why was the splitting observed

atk =16-18, rather than at k == ~ 4, The resolution
of this question we hope fo find in further more
detailed experiments. Possibly, due te some tran-

mode without first exhibiting the k= ~4 mode
(perturbations growth rates at Gr=4x 10° for
k=4 and 16 are of the same order of magnitude
~ 101, Alternatively, the k = 1618 mode could be
the resuit of non-linear interaction of lower £ modes,
since the value of Gr = 2.46 x 10% in the experiment
was significantly above the critical values of Gro,. In
that case the observed k= 1618 could be the non-
linear interaction of £ =7,8, 9, 1, etc.

Finite Wall Conduction Analysis

The preceding approximate description of the
thermal boundary condition (“artificial” Bi and »)
indicated that the stability results are, indeed,
sensitive to the details. Therefore in the second
approach the temperature at the nner wall was
computed numerically taking into account finite
conduction in the wall. (The detailed temperature
distribution at the inner wall was not available
experimentaliy. ¥t is hoped that in future experi-
ments this will be estimated, although the fine
resolution will be difficuit.) The numerical study
was done in the following way: First, the coupled
axisymmetric problem of convective flow inside the
container and heat conduction through is walls
was solved using the finite-volume method. Then
the calculated profiles of the temperature at the
inner surface of the side wali and the botiom were
applied as the boundary conditions for the Galerkin
method, such that boundary conditions for the
temperature became

G = Boora(r) &t z = 0 {38)
=0, atz= A4, 9“»&“9“,311(2) atr=1, {19

and now-slip conditions for the wvelocity were
imposed on all boundaries, Streamlines and iso-
therms of the flow calculated at Gre=10* are
iliustrated in Fig. 12. Note that the temperature
field extends into the walls, which are indicated by
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FIGURE 12 Streamiines {right) and isotherms {lefe} of the
caleulated convective flow, Pr==§, Gr=10%

the straight lines. The corresponding profiles of
Oway 304 Ououom are shown in Fig. 13, Similar
computations {not shown) were carried out for
other values of Gr. The Biot number at the inner

was found to be approximately Bi= 17 at the
bottom and Bi=: 1§ at the side wall.

With the base flow temperature distribution estab-
lished, the stability study was carried out for three
different boundary conditions for the perturbation
of the temperature § imposed on the side wall of the
cylindrical container. One assumption was the
vanishing of the perturbation of the temperature:

=0 atr=1. (40)
The two other assumptions were:
@28;‘9 atr=1, (41)

or

where Bi=( corresponds to the vanishing of the
perturbation of the heat flux on the walland Bi =18
corresponds to the calculated value of Bi.

The calculated values of the critical Grashof
number Gr,, for different azimuthal wavenumbers
k are shown in Fig. 14, The general trend is the same
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as for the other model, shown in Figs. 3and 5. The
assummed boundary conditions have some effect on
the detatls of the resuits, but without altering the
trend®. 1t is seen that, for all three assumptions
regarding the boundary condition at the wall, the
minimal values of the critical Grashof numbers
correspond 1o k=7, 8 and 9 and are located close
to Gr=10%. An example of isolines of the pertur-
bation of the temperature at the horizontal cross-
section z=0.9.4 (cosresponding o the location
of the photograph in Fig. 2} is shown in Fig. 15,
The pattern of the perturbation in this cross-
section contains 8 pairs of maxima and minima
{total 16 regions) and looks simiiar to the experi-
mental pattern of isotherms (Fig. 2). However, the
agreement with the experiment is not complete,
because the dark areas in Fig. 2 correspond to the
minima of the temperature. Therefore one should

: .‘g«“

(ﬁ'«q

£y

5’ 4“\% 'rf“r-- =

i

FIGURE 15 [Isolines of perturbation of temperature at the
cross-section 790,94, Case of vamsﬁmg femperature periufr-
bation at side wall. Gr, =101 x 10 k=§

expect the existence of 16, 18 pairs of maxima and
minima in the perturbation of the temperature,
The disagreement of the experimental and
numerical results can be explained if one com-
pares the Grashof number corresponding to Fig. 2
(Gr==246 x 109 with the calculated critical
Grashof number (Gr.=10%). The experimental
study was carried out at more than 100% super-
criticality, where non-linear interaction of the
dominant modes of the perturbation cannot be
neglected. Thus, the 17 minima of the temperature,
seen in Fig 2, can be a result of non-iincar
interaction of modes with k=8 and 9, or k=7
and 10, whose critical Grashof numbers have close

also bccome unstable at c;mz.s X 204, and can
become dominant at certain conditions.

CONCILUSIONS

It was shown that the global spectral approach
may be successfully applied to numerical studies
of axisymmetry-breaking instabilities, Using this
approach, one can consider a linearized 2-D
stability probiem for each circumferential mode
separately, instead of CPU-time-consuming, time-
dependent calculations. The proposed spectral
approach was validated by comparison with the
resulis of direct numerical simulation. (This
approach is aiso used to analyze the siability of
rotating flows, which will be reported elsewhere.)
The use of the global spectral approach allowed
us to obtain a qualitative explanation of the recently
reported experimental resuits (KC) for natural
convection in a cylindrical container, in which an
instability with a relatively high azimuthal mumber
(k =16+ 18) was observed. The spectral Galerkin
analysis presented here reproduces such instabilities
and provides details of the flow and temperature

? Qur experiments also included an investigation in which & stightly insulated ring of 4 mm height (adhesive tape) was wrapped on the
outside of the cylinder just below the cold cover, thus smoothing the temperature discontinuity. We have reproduced this situation in the
computations (not shown). The general trend of the instability is still the same, with some differences in detail, Further comparisen of
experiment and computation for this situation will be meaningful only when detailed measurements of the temperature in the transition

region beeome available.
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field. In the absence of detailed experimental data
on the temperature distribution in the critical region
near the upper corner, various approximations
were assumed, all leading to. a splitting of axisym-
metry with high to very high circumferential
wavenumber. The non-simple thermal boundary
conditions of the experiments were approximated
in several ways, including a hybrid numerical
approach, in which the base flow was computed
taking into account wall conduction, and the resuits
were used to define thermal boundary conditions
for the 3-I stability probiem.

The numerical resuits support the conjecture of
K that the instability is of Rayleigh—Benard type,
generated by the thermal stratification near the
upper corner of the eylinder. The analysis predicts a
high azimuthal number close to that observed in
experiment. A more precise quantitative compar-
ison with the experimental results would require
better resolution of the experimental heat transfer
conditions, This may suggest the line of future
experimental work.
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NOMENCELATURE

A aspect ratio (height/radius) of
the cylinder

Bi Biot number

Gr Grashof number

H height of the cylindrical cavity

Pr Prandtl number

R radius of the cylindrical cavity

Ra Rayleigh number

Tx) Chebyshev polynomial of the first
kind

Udx) Chebyshev polynomial of the
second kind

g gravity acceleration

k azimuthal number

P pressure

rop,z cylindrical coordinates

t time

¥ u= (3, v, W) velocity vector in cylindrical

coordinate system

¥ vector potential of velocity

A thermal expansion coefficient
v kinematic viscosity

X thermal diffusivity

g {emperature
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