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The three-dimensional instability of an axisymmetric natural convection flow is investigated
numericaUy using a global spectral Galerkin method. The linear stability problem separates
for different azimuthal modes. This aUowsus to reduce the problem to a sequence of 2D-like
problems. The formulation of the numerical approach and several test calculations are
reported. The numerical results are successfully compared with an experiment on natural
convection of water in a vertical cylinder, which shows an axisymmetry-breaking instability
with a high azimuthal wavenumber.
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INTRODUCTION

Natural convection flows in axisymmetric regions
are common in many technological processes and
are widely used as experimental and numerical
models. When the characteristic temperature differ-
ence increases the laminar axisymmetric flow loses
its stability and becomes three-dimensional. Such
axisymmetry-breaking bifurcations always take
place as a stage in the course of laminar-turbulent

transition. This study is devoted to the numerical
analysis of a particular case when a steady axisym-
metric flow becomes unstable with respect to three-
dimensional perturbations.

The most common way to study the axisymme-
try-breaking instability numerically is by the solu-
tion of the full three-dimensional unsteady problem
where the axisymmetric solution is taken as an
initial state (Neumann, 1990; Wanschura et al.,
1996; Verzicco and Camussi, 1997). A stability
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analysis was applied analytically (Jones and
Moore, 1979) or numerically (Hardin et al., 1990;
Goldstein et al., 1993) only in a particular case
with heating from below, when the initial axisym-
metric state is a motionless fluid. However, the
27r-periodicity of axisymmetric flow allows one to
reduce the 3D stability problem to a sequence of
2D-like problems. This follows from the possibility
to expand the 27r-periodic 3D solution in a trigono-
metric Fourier series in the azimuthal direction. In

view of the orthogonality of the Fourier modes, the
linear stability problem for each mode separates
from other modes. The stability problem for each
azimuthal mode does not depend on the azimuthal
angle, and therefore it is analogous to the axisym-
metric stability problem. Such problems can be
studied numerically by the approach which was
used by Gelfgat et al. (1996) (in the following
referred as G) for an axisymmetric case. This
approach to the analysis of axisymmetry-breaking
bifurcations of convective flows using the global
spectral Galerkin method is discussed in the present
paper. The formulation of the method and several
test calculations are reported. It is illustrated how
the three-dimensional stability analysis may be used
for the explanation of our recent experimental
results (Kowalewski and Cybulski (1997), in the
following referred to as KC).

FORMULATION OF THE PROBLEM

Consider a natural convection flow of a Boussinesq
fluid in a vertical cylindrical enclosure 0:::;r:::;1,
0:::;z:::;A. The dimensionless momentum, continu-
ity and energy equations are
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Here (r, cp,z) are the cylindrical coordinates,
v = (u, v, W)Tis the velocity vector, p is the pressure,
() is the temperature, Gr = gj3f}.OR3/;;2 and
Pr = iJ!X. are the Grashof and the Prandtl

numbers, A = H/R is the aspect ratio, g is the
gravity acceleration, !3 is the thermal expansion
coefficient, f}.O is the characteristic temperature
difference, iJ is the kinematic viscosity, X is the

thermal diffusivity, and Hand R are the height
and the radius of the cavity (the overbar indicates
dimensional variables). We assume that the walls
of the cylinder are stationary, with the usual
boundary conditions, and that there is an arbitrary
(but axisymmetric) thermal boundary condition.
At this stage we leave this condition slightly
general. In the following (see the section Numer-
ical Comparison with Experiment) we shall focus
on specific boundary conditions.

Let the basic axially-symmetric steady natural
convection flow which corresponds to the bound-
ary conditions be the solution of the system (steady
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axisymmetric part of (1)-(5»

uau + Wauar az

= - a::+ ~A ~r~+ ~~~ + ~X - ~) ,

uaw + Wawar az
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au + u + aw = 0,ar r az

uae + Wae =~ (&e +~ ae + &e ). (9)ar az Pr ar2 r ar az2

The main purpose of this study is to find out when
the steady axisymmetric solution {U(r, z), W(r, z),
per, z), e(r, z)} becomes unstable with respect to
three-dimensional perturbations.

Consider infinitely small perturbations {u, v, w,
P, O}of the velocity, the pressure and the tempera-
ture which depend on the three coordinates (r, 'P,z)
and time t. The linearized problem for the perturba-
tions can be defined as
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(8)
with the boundary conditions

a. af + bil
l

= 0,
I an r;

(15)

wherefrepresents one of the functions u, v, w or O.
To complete the formulation it is necessary to add
conditions of 271"-periodicityof all the functions:

f('P + 271")= f('P). (16)

According to linear stability theory, the time
dependence of the perturbation functions {u, v, w,
p, O} may be assumed as rv exp(-\t), where -\
determines the time rate of change of a pertur-
bation. The periodicity conditions (16) allow us to
represent the solution of (10)-(15) as Fourier series
in the azimuthal direction. Thus, the perturbation
functions can be represented as

{u, v, w,p, O} = exp(-\t)

k=oo

X L {uk(r, z), vk(r, z), wk(r, z),Pk(r, z), Ok(r,z)}
k=-oo

x exp(ik'P). (17)

Equations for the Fourier coefficients {Uh Vh Wh

Ph Ok} are obtained after substitution of (17) into
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(10)-(16), and neglecting the higher-order terms:
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The functions {Uk,Vh Wk,Pk,Ok}are Fourier coeffi-
cients which define the eigenvector of (10)-(15) for
each eigenvalue A(k). The integer number k in (17)
plays a role of the azimuthal wavenumber. The
value k = 0 corresponds to the axisymmetric

perturbation.
It is seen that the linear stability problem can be

solved separately for each value of the azimuthal
wavenumber k. This allows us to replace the full
three-dimensional stability problem by a series of
axisymmetric problems for different azimuthal
wavenumbers k.

The main problem of numerical solution of
the system (18)-(22) is caused by the terms

proportional to 1/,1, which lead to a non-
integrable discontinuity at the axis of the cylinder
r = O. Note that this discontinuity is an artifact
introduced by the use of polar coordinates in the
(r,cp) plane. However, this artificial discontinuity
can be easily avoided. Note, that the azimuthal
angle cpis not defined at r = O.This means that a
non-zero value of each function can be assigned at
r = 0 to one ofthe Fourier modes, while all the other

modes can be put equal to zero at the axis. Hence, it
follows for Eqs. (20) and (22), that non-zero values
of the axial velocity and the temperature should be
assigned to the axisymmetric mode k = O. To do the

same for Eqs. (18) and (19), one can express the
terms (2ikuk/r2) and (2ikvk/,1) from the continuity
equation (21) as

2ik Uk = - 2ik (8Uk + ik Vk + 8Wk ) ,
r2 r 8r r 8z

2ik Vk= _~(8Uk + Uk + 8Wk )r2 r 8r r 8z

(23)

and substitute (23) into (18) and (19), which gives
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8r Re 8r2 r 8r r2

&Uk 2 8Wk

)+-
8 2+-- 8 '

z r z (24)
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)

.
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(25)

It is easy to see now, that terms proportional to
l/r2 disappear at k = 1. This gives us a possibility

to assign non-zero values of U and v at r = 0 to the

Fourier components corresponding to k = ::I:1.
Finally, we obtain the following restrictions for
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values of the Fourier modes at r =0:

Uo= 0, Vo= 0, 00 =I0, Wo=I0,

U:l:1=I0, V:l:1=I0, W:l:1;= 0:1:1= 0,

Uk = Vk = Wk = Ok = 0, for Ikl > 1.

(26a)

(26b)

NUMERICAL METHOD

The axisymmetric problem (6)-(9) together with
the three-dimensional linear stability problem (18)-
(22) are solved using the spectral Galerkin method,
as described in detail in G. Here we shall outline

some the main steps.
The system of basis functions of the Galerkin

method is divided into axisymmetric and asym-
metric subsystems. This allows us to extract the
axisymmetric problem for the basis flow as a
separate part and then consider only a three-
dimensional stability problem. Furthermore, it
follows from the continuity equation (21), that
among the three systems of basis functions for Ub
Vk and Wk only two will be linearly independent.
Taking this into account, the resulting Galerkin
expansion of the velocity can be written as
follows:

M, Mz

v= LLAijUij(r,z)
i=1 j=1

+k~ { t~[BtVij(r,z) + et Wij(r,z)]}

x exp(ik<p), (27)

where, Aij, Bt and et and are unknown coefficients.
The vector functions Uij form the basis of the axi-
symmetric part (k = 0) of the 3D flow in the (r, z)

plane. The vector functions Vij and Wij form bases
for the remaining part of the three-dimensional
flow in the (r, <p)and (z, <p)coordinate surfaces
respectively. Components of the basis functions,
normal to the corresponding coordinate surfaces,
vanish: d~) = 0,:,) = w<,~)= o. Com ponents of

IJ I} I}

the basis functions Uij, Vij and Wij are defined as
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linear superpositions of Chebyshev polynomials as
follows:

Uij=

[

(r/2)L~oai/Ti+/(r)L~objIUj+I-I(z/A)

]

. 0 ,

4 - 4
- LI=o ai/Ui+I-1 (r) LI=0(bjtJ2(j + !))1}+/(Z/A)

(28)

Vij=

[

-ikrCt L~o Ci/Ti+/(r)L~o djl1}+/(z/A)

]

4 A 4
LI=O Ci/Ui+/(r) LI=o djl1}+/(Z/ A) ,

0

(29)

Wij=

l

0

]

r2L;=oei/Ti+/(r) L;=o!jlUJ+/-I(z/A) .

-ikr L;=Oei/Ti+I(r)L~o(jjtJ2(j + !))1}+/(Z/ A)

(30)

Here a = 0 for Ikl= 1 and a = 1 for Ikl > 1, Ti and
Uj are the Chebyshev polynomials of the 1st and
the 2nd kind, and

Un(r) = Tn+1(r) + (n + 1)rUn(r),

Un(r) = (a + 1)rCtTn(r)+ 2nrCt+1Un-I (r).
(31)

The coefficients ai/, bjl, eif,hi are used to satisfy all
the boundary conditions. Because of the relation
between the Chebyshev polynomials

d
dx Tn+1(x) = 2(n + I)Un(x), (32)

the basis functions (28)-(30) are analytically diver-
gence-free. Ifthere is no flow through the boundaries
of the flow region, the projection of the pressure
gradient on a solenoidal basis function yields

i Vp.UijdV= i Vp.VijdV

=i Vp.WijdV=O.
(33)
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Therefore, there is no need to determine the pressure
if a solenoidal basis, satisfying no-throughflow
boundary conditions, is used for the global Galerkin
method. All terms containing Fourier modes of the
pressure Pk vanish after projection of the Eqs. (18)-
(22) on the solenoidal bases (28)-(30).

For the temperature (or other transported scalar
property) the Galerkin expansion can be written as
follows:

B=G(r,z)

+ k~{q(k,r) ttnttailTi+/(r)

x ~ 8jm1J+m(~) } exp(ikrp),

q(k, r) = ikr, if k i- 0; q(O,r) = 1.

(34)

The coefficients ail, and 8jmare used to satisfy the
homogeneous boundary conditions (15). The func-

tion G(r, z) is used t,o satisfy non-homogeneous
boundary conditions for the temperature also ex-
pressed as a series of the Chebyshev polynomials

N, N,

(
Z

)G(r,z) = L LgijT;(r)TjA .
i=O j=O

(34*)

This approach was used in G to analyze the
axisymmetric instabilities of a basic rotating flow.
Here we use a similar technique for the non-
axisymmetric instability of a basic non-rotating
flow. Further details of the numerical solution

follow the same steps as in G. The results are given
in the following.

Test Calculations

The first test case considered was the Rayleigh-
Benard instability of motionless fluid in a cylinder
heated from below. Comparison with other results
for a stationary cylinder (Hardin et aI., 1990) and
for a cylinder rotating around its axis (Jones and
Moore, 1979; Goldstein et al., 1993) showed that
the calculated critical Rayleigh number is correct
up to the fifth digit with the use of 10 x 10

basis functions in the r- and z-directions. Details

may be found in Gelfgat and Tanasawa (1993).
However, these tests are not sufficient, because the
convective terms of the momentum equation vanish
in the case of motionless initial state.

The next test case considered was the onset of the

secondary, oscillatory instability of the axisym-
metric Rayleigh-Benard convective flow. A cylin-
der with isothermal top and bottom and perfectly
insulated lateral wall was considered. For aspect
ratio equal to 1, the axisymmetry-breaking bifurca-
tion sets in as a transition to steady 3D flow with the
azimuthal number k = 2. An illustration of the con-

vergence of the critical Rayleigh number (Ra =
GrPr) and a comparison with recent results of
Wanschura et al. (1996) are shown in Table I.

A hysteresis of Racr at k = 2 was found by
Wanschura et al. (1996) for Pr = 1. With the
increase of Ra the axisymmetric flow becomes
unstable with respect to asymmetric perturbations
at a certain value Rai~) and then, with further
increase of the Rayleigh number, it becomes stable
at a larger value Rai;) > Rai~). This result was used
as another test, and was extended further: the third
value Rai~) > Rai;) at which the steady axisym-
metric flow becomes finally unstable was also
calculated. The convergence of all three critical
Rayleigh numbers is shown in Table 11.

TABLE I Critical Rayleigh number for the
azimuthal mode k =2

TABLE 11 First, second, and third critical
Rayleigh numbers for Pr= I, A = I, k=2

N, x Nz R~:) R~;) R~;)

10 x 10
20x20
30 x 30

Wanschura et al. (1996)

3004
3004
3004

3016

25924
25945
25945

7841
7842
7842

7900

N, x Nz Pr=0.02 Pr=1

6x6 2493.74 3003
10 x 10 2493.72 3004
20 x 20 2493.72 3004

Wanschura et al. (1996) 2463 3016

Neumann (1990) 2525
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Further tests of convergence of Racr and Wcr
were made for A = 1, Pr = 0.02 and 1.0,and mode
wavenumbers k = 0, 1,2,3,4, and 5,with numbers of
basis functions running frorp. 6 x 6, 8 x 8, . . ., to
28 x 28, 30 x 30. For all parameter values except
Pr = 0.02, k = 0, the values of Racrandwcrconverged
to four or five significant digits from 14 x 14
functions on. For Pr = 0.02,k = 0 convergencewas
slightly slower and was reached from 28 x 28
functions on. The final converged results are
shown in Tables III(a)-(c). Apart from the issue
of convergence testing, it can be seen that the value
of Racr for k = 2 is lower than that for other k, for
both Pr = 1and Pr = 0.02, i.e., the k = 2 mode is the
most unstable. Furthermore, it is interesting to
observe (Table III(c)) that at low Pr the value of
Racr is quite strongly dependent on Pr.

EXPERIMENT

The onset of convec;tion and the stability of
an initially isothermal fluid in regular cavities

TABLE III Critical Rayleigh numbers for var-
ious azimuthal modes k, and various Prandtl
numbers using 30 x 30 basis functions

*Compare with Neumann (1990) Raer=4100 and
Wanschura et al. (1996) Racr = 4224.
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instantaneously cooled from above have been
extensively investigated for water, both with and
without phase change (see KC). A sketch of the
experimental setup is shown in Fig. 1. A cylinder
(37.1 mm inner diameter by 41 mm inner height)
filled with water was immersed in a thermostatic

water bath held at a hot temperature and was closed
on its top by a metal plate held at a cold temperature.
The walls of the cylinder (side and bottom) were
made of 2.1 mm thick glass. Experiments were
carried out at bath temperatures in the range
Ohot= 10-25°C and top plate temperaturecold,
ranging from slightly below the bath temperature,
viz., Ocold= 20°C, down to below the freezing point,
viz., Ocold= -10°C. In all situations the thermal
stratification resulted in a free convective flow, and
for below-freezing lid temperature an ice front
formed and grew downward from the top. A steady
state flow configuration consists of a single cold
downward jet along the cavity axis and a reverse
upward flow along the side wall.

Observations were made mainly by careful and
detailed measurements of the temperatures and
tracks of liquid crystal tracers, at various vertical
and horizontal cross-sections. The color change of
the tracers convected by the flow allowed us to detect
variations of the thermal field as small as O.I°C,
providing a direct indication of the stability and
structure of the investigated flow field. Details of the
experimental procedure and extensive results are

./metal plate at 9=-
it" i Geoid

FIGURE 1 Sketch of the experimental setup. Glass cylinder
with a cooled lid immersed in a hot bath.

k Raer "'er

(a) Pr= I
0 28469 0
I 4202* 0
2 3004 0
3 23851 11.043
4 17610 0
5 17 392 0

(b)Pr=0.02
0 17442 247.1
I 2662.82 0
2 2493.72 0
3 3313.9 0
4 4908.06 0
5 7406.92 0

(c)k=2
0.19 2625 0
0.2 2493.72 0
0.21 2242 0
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given elsewhere (see KC, also Kowalewski et al.,
1998). Insofar as the present study is concerned, the
interesting observation was that at a certain set of
parameters the temperature field measured in
the fluid in a horizontal cross-section slightly below
the top (z=0.9A) split into a pattern of 16-181
wedge-like sectors extending radially from the axis to
the circumference (Fig. 2). Thus, despite the cylin-
drical geometry the flow underneath the lid became
divided into a regular pattern of radial structures.
Clearly, the basic axisymmetric flow split into a non-
axisymmetric (but quite regular) flow with this high
wavenumber. These structures appeared for pure
water convection for temperature differences /}.()=
()hot - 8cold exceeding 5°c. The corresponding

Grashof number is Gr=2.46 x 104. At larger
temperature difference (/}.()> lO°e) the flow struc-
ture became unstable and the vertical "cold jet"
started to bounce. The previously regular "star-like"
horizontal structure of 16-18 spikes became dis-
turbed, their number and length varied in time.

It is worth noting, that the observed flow pat-
tern remains when the phase change takes place

FIGURE 2 Temperature distribution visualized by liquid
crystals. Color image taken at the horizontal cross-section
z=0.9A, Gr~2.5 x 104.

(freezing of water for ()co1d= -lO°e). The char-
acteristic star-like grooves were well visible in the
ice surface growing under the lid.

NUMERICAL COMPARISON WITH
EXPERIMENT

In view of the experimental observation, the fur-
ther thrust of the present analytical study was to
analyze numerically the splitting of axisymmetry of
this flow.

A secondary, but non-trivial, problem arose in
connection with the definition of the thermal

boundary conditions: In a naive, first-sight descrip-
tion, the system appears to be defined as isothermal
cold top and isothermal hot sidewall and bottom.
However, as pointed out by KC, the conduction
through the glass wall is finite (i.e., the inner wall
surface is neither isothermal nor perfectly insulated)
and there are significant temperature gradients near
the upper corner, where the top plate meets the
cylinder wall. To account for this effect, two
different approaches were taken for the definition
of the thermal boundary conditions:

(a) the boundary conditions at the inner walls
were assumed to be:

o() = - Bi( () - 1) at z = 0;oz ()=O, at z=A; (35)

~~ = Ri (() - [1 - (~r]) at r = 1, (36)

and no-slip conditions for the velocity on all
boundaries. Here ()= (iJ - iJcold)/(iJhot - iJcold), Bi
is a semi-artificial Biot number, and the power
function (z/Ar with the artificial exponent n is
added to smoothen the temperature boundary
conditions at the top edge of the cylinder;

(b) the compound problem of axisymmetric
convection in the cylinder with finite conduction
through the walls was computed by a finite-volume
method (the isothermal conditions were assumed

I The shape of the wedges was not perfectly uniform. A simple count gave 17. The correct number could be either 17 or the nearest
even numbers 16 or 18.
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on the outside of the walls). Then the resulting
temperature distribution on the inner walls was
taken as boundary condition for the non-axisym-

metric stability analysis. .
The details of the two approaches and the results

are described below.

"Artificial" Ri and n

As stated above, the thermal boundary condition at
the inner walls was approximated by assuming (35)
and (36). With these boundary conditions, the
function G(r, z) in (34) was chosen as

G(r,z) = [1- (~) n]

[

Ri 2

] (
z
)

n

(
Z

)+ l+-r - 1--
2 + Ri A A . (37)

The Biot number Bi and the exponent n depend on
heat transfer between the metal plate, the thermo-
static bath, and the entjre enclosure. Unfortunately,

2

1.5

.,.,
b
";<
..p 1

~

0.5

0

0 5
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there is not enough experimental data to determine
accurate values of these parameters. Therefore, Ri
and n were varied with the goal to find whether
there exists a most dominant 3D perturbation
which is divided into 18 similar parts in the
azimuthal direction.

A coarse estimate of the Biot number may be
obtained from the balance of the heat flux at the

inner and outer boundary of the cylindrical wall.
Assuming that the heat transfer coefficient from the
wall to the outer water bath is about 103W/m2K
and that the heat conductivities of glass and water
are 1.02 and 0.566 WImK, respectively, the estimate
is Ri>:::,10. In the following calculations the Biot
number was varied from 0.5 to 20.

Preliminary calculations were done with the
exponent n = 20 in (37). (All computational results
presented from here on are for A = HIR = 2.2 and
Pr = 8.0, which correspond to the parameters of
the experiments.) The dependence of the critical
Grashof number on the azimuthal number k for

different values of Ri is shown in Fig. 3. At Bi = 20

10

k

15 20

FIGURE 3 Critical Grashof number Grcr corresponding to different azimuthal wavenumbers k for n =20 in (36).
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the minimum Grcr(k)corresponds to the dominant
azimuthal mode with k = 5. With the decrease of Ri
the number of the dominant azimuthal mode

grows. At Ri = 2 there is an abrupt decrease to the
dominant azimuthal mode k = 7 from the mode

k = 6 (Fig. 3). With further decrease of the Biot
number this abrupt decrease becomes larger and
occurs at larger k. At Ri = 0.5 the most unstable
azimuthal mode is k = 9.

The axisymmetric convective flow for Ri = 0.5
and n = 20 is shown in Fig. 4 for the critical Grashof
number corresponding to k = 9. Figure 5 shows the

corresponding dominant three-dimensional pertur-
bation of the temperature whose azimuthal period is
27rj9. Figures 6 and 7 illustrate the same but for
Ri = 20 and k = 5. Note, that the most unstable
perturbation (Figs. 5 and 7) consists of a pair of
antisymmetric patterns which are separated by a
plane cp= const. The perturbation of the three-
dimensional velocity is similar.

A comparison of the dominant perturbation
(Figs. 5 and 7) with the distribution of the tem-

r=1 r=O

FIGURE 4 Streamlines and isotherms of 'the axisymmetric
flow Bi=O.5, n=20, Gr=Grcr=40,900.

perature in the mean axisymmetric flow (Figs. 4
and 6) allows us to make some conclusions about
the nature of the instability. It is seen that an
un stably stratified fluid layer is always located
near the upper cold plate. The depth of the layer
depends on the Biot number and on the smoothing
of the temperature at the upper edge (the expo-
nent n). The maximal absolute values of the
perturbation of the temperature are also located
near the upper plate. The patterns of the pertur-
bation of the vector potential of velocity (w(r) and
w(z),not shown in the paper) also look similar. This

r=1

FIGURE 5 Isosurfaces of the 3D perturbation of the tem-
perature. Bi=O.5, n=20, k=9, Gr=Grcr=40,900.
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r=1 r=O r=1

FIGURE 6 Streamlines and isotherms of the axisymmetric
flow Bi=20, n=20, Gr=Grcr=4600.

allows us to conjecture that the observed instability
is caused by a Rayleigh-Benard mechanism in
the un stably stratified fluid layer.

Maximal values of the perturbation appear on
surfaces which have almost rectangular cross
section at the cylindrical wall (Figs. 5 and 7). The
size of these "rectangles" grows with the growth of
the depths of the stratified layers. This means that
for thinner layers the size of the characteristic
patterns of the most unstable perturbation will be
smaller and the corresponding critical azimuthal
number will be larger (the length of each "rectangle"
in the circumferential direction is 7r/k).

The depth of the unstably stratified fluid layer
strongly depends on the heat transfer conditions in
the vicinity of the upper edge of the cylinder. Quan-
titative comparison with the experiment is hardly
possible without better approximation of these
conditions in the calculations (see below, Finite
Wall Conduction Analysis). However, in the frame-
work of the present numerical model it is possible to
control the depth of the stratified layer by varying
the exponent n in (37), which corresponds to

0.3

0.01

0.001

-0.001

-0.01

-0.3

FIGURE 7 Isosurfaces of the 3D perturbation of the tem-
perature. Bi=20, n=20, k=5, Gr= Grcr=4600.

different smoothings of the discontinuity of the
temperature at the upper edge of the cylinder.

It was found that for the values of the Biot

number Ri= 10 or 20 the instability sets in with the
azimuthal number k = 9 if one assigns n = 34 in (37).

This is illustrated in Figs. 8-10 for Ri = 20. It is seen
(Fig. 8) that the critical azimuthal number grows
with the growth of the exponent n, which corre-
sponds to the thinning of the stratified layer. It is
interesting to compare flow patterns with the same
k but different Ri and n. Thus, compare the results
for Ri = 0.5,n = 20, Gr= 40900(Figs. 4 and 5) and
for Ri = 20, n= 34, Gr= 6770(Figs. 9 and 10),both
of which correspond to a dominant instability
with k = 9. The depths of the stratified layers in
Figs. 4 and 9 are almost equal, which leads to the
onset of instability with the same azimuthal number
and with similar perturbations (compare Figs. 5
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4

0

0 5 10

k

15 20

FIGURE 8 Critical Grashof number Grcrcorresponding to different azimuthal numbers k for Hi= 20.

r=O

FIGURE 9 Streamlines and isotherms of the axisymmetric
flow Hi=20, n=34, k=9, Gr=Grcr=6770.

r=l

and 10). Note, that for larger n the critical
azimuthal number is larger (k = 11 for n = 40,
Fig. 8). Obviously, there should be some limit of
the critical k when n tends to infinity.

The results presented so far show that (a) the
analysis of non-axisymmetric instability by the
present Galerkin and mode-separation approach
yields meaningful results and (b) for the natural
convection problem considered here, the axisym-
metry-breaking instability appears to be closely
related to the thickness of the thermally stratified
layer under the lid, nearly regardless of the specific
values of parameters which led to the formation of
that particular thickness.

To further investigate if the k= 16-18 circum-
ferential splitting which was observed in the ex-
periment could be obtained analytically, the
computations were run for a variety of values of
Ri and n. Representative results for Grcr(k) for
Ri = 10,n= 50,60,70 are shown in Fig. 11.
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0.03

0.001

-0.001

-0.03

FIGURE 10 Isosurfaces of the 3D perturbation of the tem-
perature. Si = 20, n = 34, k = 9, Gr = Grcr= 6770.

The isolines of the main flow and of the

perturbation are of the same nature as Figs. 4-7,
9-10 above, but more clustered near the top cover,
as could be expected for the higher value of n. The
behavior for the three values of n is analogous, with
some shift in the characteristic values. The common

result is that a local minimum Gr er appears at k = 13

(n=50), k=14 (n = 60), k=16 (n=70), but a
global minimum Grer appears near k = '" 4. The
question then arises why was the splitting observed
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at k = 16-18, rather than at k = '" 4. The resolution
of this question we hope to find in further more
detailed experiments. Possibly, due to some tran-
sient effect, the instability leads to the k=16-18
mode without first exhibiting the k = '" 4 mode
(perturbations growth rates at Gr = 4 x 104 for
k = 4 and 16 are of the same order of magnitude
'" 101).Alternatively, the k = 16-18 mode could be
the result of non-linear interaction oflower k modes,
since the value of Gr = 2.46 x 104in the experiment
wassignificantlyabove the criticalvaluesof Grcr' In
that case the observed k = 16-18 could be the non-

linear interaction of k = 7, 8, 9,10, etc.

Finite Wall Conduction Analysis

The preceding approximate description of the
thermal boundary condition ("artificial" Ri and n)
indicated that the stability results are, indeed,
sensitive to the details. Therefore in the second

approach the temperature at the inner wall was
computed numerically taking into account finite
conduction in the wall. (The detailed temperature
distribution at the inner wall was not available

experimentally. It is hoped that in future experi-
ments this will be estimated, although the fine
resolution will be difficult.) The numerical study
was done in the following way: First, the coupled
axisymmetric problem of convective flow inside the
container and heat conduction through its walls
was solved using the finite-volume method. Then
the calculated profiles of the temperature at the
inner surface of the side wall and the bottom were

applied as the boundary conditions for the Galerkin
method, such that boundary conditions for the
temperature became

0 = Bbottom (r ) (38)

(39)

at z = 0;

0 = 0, at z = A; 0= Bwall(Z)atr= 1,

and no-slip conditions for the velocity were
imposed on all boundaries. Streamlines and iso-
therms of the flow calculated at Gr = 104 are

illustrated in Fig. 12. Note that the temperature
field extends into the walls, which are indicated by
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FIGURE 11 Critical Grashof number Grcr corresponding to different azimuthal numbers k for Bi= 10.

FIGURE 12 Streamlines (right) and isotherms (left) of the
calculated convective flow. Pr = 8, Gr= 104.

the straight lines. The corresponding profiles of
Owalland °bottom are shown in Fig. 13. Similar
computations (not shown) were carried out for
other values of Gr. The Biot number at the inner

wall was computed from the numerical solution and

was found to be approximately Bi ~ 17 at the
bottom and Bi ~ 18at the side wall.

With the basejlow temperature distribution estab-
lished, the stability study was carried out for three
different boundary conditions for the perturbation
ofthe temperature 0 imposed on the side wall of the
cylindrical container. One assumption was the
vanishing of the perturbation of the temperature:

0 = 0 at r = 1. (40)

The two other assumptions were:

00 = BiO at r = 1,or (41)

where Bi = 0 corresponds to the vanishing of the
perturbation of the heat flux on the wall and Bi = 18

corresponds to the calculated value of Bi.
The calculated values of the critical Grashof

number Grcr for different azimuthal wavenumbers
k are shown in Fig. 14.The general trend is the same
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FIGURE 13 Temperature profiles calculated on the bottom (a) and the sidewall (b) of the cylindrical container. Pr=8,
Gr= 104.
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as for the other model, shown in Figs. 3 and 5. The
assumed boundary conditions have some effect on
the details of the results, but without altering the
trend2. It is seen that, for all three assumptions
regarding the boundary condition at the wall, the
minimal values of the critical Grashof numbers

correspond to k = 7, 8 and 9 and are located close
to Gr = 104. An example of isolines of the pertur-
bation of the temperature at the horizontal cross-
section z = 0.9A (corresponding to the location

of the photograph in Fig. 2) is shown in Fig. 15.
The pattern of the perturbation in this cross-

section contains 8 pairs of maxima and minima
(total 16 regions) and looks similar to the experi-
mental pattern of isotherms (Fig. 2). However, the
agreement with the experiment is not complete,
because the dark areas in Fig. 2 correspond to the
minima of the temperature. Therefore one should

FIGURE 15 Isolines of perturbation of temperature at the
cross-section z = 0.9A. Case of vanishing temperature pertur-
bation at side wall. Grcr= 1.01 x 104,k = 8.

expect the existence of 16, 18 pairs of maxima and
minima in the perturbation of the temperature.

The disagreement of the experimental and
numerical results can be explained if one com-
pares the Grashof number corresponding to Fig. 2
(Gr = 2.46 x 104) with the calculated critical
Grashof number (Grcr~ 104). The experimental
study was carried out at more than 100% super-
criticality, where non-linear interaction of the
dominant modes of the perturbation cannot be
neglected. Thus, the 17 minima of the temperature,
seen in Fig. 2, can be a result of non-linear
interaction of modes with k = 8 and 9, or k = 7
and 10, whose critical Grashof numbers have close
values. On the other hand, modes with k = 16, 18
also become unstable at Gr::::,j2.5 x 104, and can
become dominant at certain conditions.

CONCLUSIONS

It was shown that the global spectral approach
may be successfully applied to numerical studies
of axisymmetry-breaking instabilities. Using this
approach, one can consider a linearized 2-D
stability problem for each circumferential mode
separately, instead of CPU-time-consuming, time-
dependent calculations. The proposed spectral
approach was validated by comparison with the
results of direct numerical simulation. (This
approach is also used to analyze the stability of
rotating flows, which will be reported elsewhere.)

The use of the global spectral approach allowed
us to obtain a qualitative explanation of the recently
reported experimental results (KC) for natural
convection in a cylindrical container, in which an
instability with a relatively high azimuthal number
(k = 16 -;- 18) was observed. The spectral Galerkin
analysis presented here reproduces such instabilities
and provides details of the flow and temperature

2Our experiments also included an investigation in which a slightly insulated ring of 4 mm height (adhesive tape) was wrapped on the
outside of the cylinder just below the cold cover, thus smoothing the temperature discontinuity. We have reproduced this situation in the
computations (not shown). The general trend of the instability is stiU the same, with some differences in detail. Further comparison of
experiment and computation for this situation will be meaningful only when detailed measurements of the temperature in the transition
region become available.
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field. In the absence of detailed experimental data
on the temperature distribution in the critical region
near the upper corner, various approximations
were assumed, all leading to. a splitting of axisym-
metry with high to very high circumferential
wavenumber. The non-simple thermal boundary
conditions of the experiments were approximated
in several ways, including a hybrid numerical
approach, in which the base flow was computed
taking into account wall conduction, and the results
were used to define thermal boundary conditions
for the 3-D stability problem.

The numerical results support the conjecture of
KC that the instabilityisof Rayleigh- Benard type,
generated by the thermal stratification near the
upper corner of the cylinder. The analysis predicts a
high azimuthal number close to that observed in
experiment. A more precise quantitative compar-
ison with the experimental results would require
better resolution of the experimental heat transfer
conditions. This may suggest the line of future
experimental work.
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NOMENCLATURE

A aspect ratio (height/radius) of
the cylinder
Biot numberBi

18'

Gr
H
Pr
R
Ra

Tj(x)

Grashof number

height of the cylindrical cavity
Prandtl number

radius of the cylindrical cavity
Rayleigh number
Chebyshev polynomial of the first

kind

Chebyshev polynomial of the
second kind

gravity acceleration
azimuthal number

pressure
cylindrical coordinates
time

velocity vector in cylindrical
coordinate system

vector potential of velocity
thermal expansion coefficient
kinematic viscosity
thermal diffusivity
temperature

Uj(X)

g
k

p
r, cp, Z
t

v=(u, v, w)

\11

(3
11

x
()
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