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Abstract

A study of the three-dimensional axisymmetry-breaking instability of an axisymmetric convective #ow associated with
crystal growth from bulk of melt is presented. Convection in a vertical cylinder with a parabolic temperature pro"le on
the sidewall is considered as a representative model. The main objective is the calculation of critical parameters
corresponding to a transition from the steady axisymmetric to the three-dimensional non-axisymmetric (steady or
oscillatory) #ow pattern. A parametric study of the dependence of the critical Grashof number Gr

#3
on the Prandtl

number 0)Pr)0.05 (characteristic for semiconductor melts) and the aspect ratio of the cylinder 1)A)4
(A"height/radius) is carried out. The stability diagram Gr

#3
(Pr,A) corresponding to the axisymmetric * three-

dimensional transition is reported for the "rst time. The calculations are done using the spectral Galerkin method
allowing an e!ective and accurate three-dimensional stability analysis. It is shown that the axisymmetric #ow in relatively
low cylinders tends to be oscillatory unstable, while in tall cylinders the instability sets in due to a steady bifurcation
caused by the Rayleigh}Benard mechanism. The calculated neutral curves are non-monotonous and contain hysteresis
loops. The strong dependence of the critical Grashof number and the azimuthal periodicity of the resulting three-
dimensional #ow indicate the importance of a comprehensive parametric stability analysis in di!erent crystal growth
con"gurations. In particular, it is shown that the "rst instability of the #ow considered is always three-dimen-
sional. ( 2000 Elsevier Science B.V. All rights reserved.
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1. Introduction

Many bulk crystal growth processes are carried
out in axisymmetric geometric con"gurations and
under axisymmetric external conditions. However,

the axisymmetric melt #ows frequently become
unstable and bifurcate to non-axisymmetric steady
or oscillatory states. The instabilities of melt #ow,
lead to the appearance of temperature oscillations
and asymmetric #ow patterns which, in their turn,
lead to inhomogeneities in the structure of the
growing crystals (see Refs.[1}4] and references
therein). Such axisymmetry-breaking instabilities of
axisymmetric #ows can be observed also in simple
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laboratory models (such as, e.g., convection in a cy-
linder heated from below) [5}11] that are usually
considered in numerical studies [7,11}18]. The nu-
merical simulation of such instabilities using vari-
ous time-dependent three-dimensional solvers
[15}22] is exceptionally CPU-time consuming. As
a consequence of computer limitations, this is usu-
ally done on rather coarse grids. The alternative
numerical approach, based on the linear stability
analysis, allows one to avoid the straight-forward
integration in time [11,14,18]. This approach con-
siders all possible three-dimensional in"nitesimal
perturbations and usually provides better under-
standing of the instability phenomena as well as
more precise critical values of the governing para-
meters. At the same time it requires the solution of
a series of eigenproblems of very high order (the
order is equal to the number of scalar unknowns of
a numerical method). The di$culties and a possible
numerical realization of such analysis are discussed
in Ref. [23]. A comprehensive analysis of all pos-
sible instabilities yields a physical explanation of
the experimentally observed phenomena of axisym-
metry breaking (an example of that can be found in
Ref. [11]). The detailed stability results obtained
for hydrodynamic models of crystal growth devices
will allow one to choose operating parameters that
provide a stable melt #ow pattern under the re-
quired technological conditions. Such an analysis
remains a challenge. However, in our opinion, re-
cent development of numerical methods and high-
performance computing will make this possible in
the near future. The present paper considers a sim-
pli"ed example to illustrate the type of results that
can be expected in more complicated cases.

The numerical approach developed in Refs.
[11,23] and devoted to the three-dimensional stab-
ility analysis of an arbitrary axisymmetric #ow is
used in the present study. This approach is still
restricted to a simple cylindrical geometry but
allows one to perform a detailed parametric invest-
igation of stability taking into account all possible
in"nitesimally small perturbations. The present pa-
per describes some preliminary results obtained for
the stability of buoyant convection in a vertical
cylinder with a parabolic temperature pro"le at the
sidewall. We assume that the temperature of the
top and bottom of the cylinder is at the melting

point, while the most intensive heating takes place
at the central part of the sidewall. Such heating is
modeled by a parabolic temperature pro"le on the
sidewall, which has a maximum at the midheight
and vanishes to the melting point at the top and the
bottom. This can be associated with a model of the
vertical Bridgman [24}28] or liquid encapsulated
melt zone [29] techniques. The stability diagrams
showing the dependence of the critical Grashof
number on the Prandtl number (0)Pr)0.05)
and the aspect ratio (1)H/R)4) of the cylinder
are reported. The results obtained are in agreement
with the previously published experimental and
numerical data and show some qualitative tenden-
cies of the axisymmetry}asymmetry transitions in
low and tall cylinders having maximum of the tem-
perature pro"le at the sidewall. Several character-
istic patterns of the most dangerous perturbations
are discussed. It is shown that the instability of the
#ow is three-dimensional for the whole range of
governing parameters studied. Similar to our pre-
vious studies devoted to two-dimensional models
[30,31], it is shown that the stability properties of
a given #ow cannot be completely understood
without a detailed parametric study. In particular,
it is not always possible to extrapolate a particular
result to close but di!erent values of the governing
parameters. Such a strong dependence of the stabil-
ity properties on the governing parameters indi-
cates the necessity of a study of stability when
a crystal growth device is being designed.

2. Formulation of the problem and numerical
technique

We consider the convection of a Boussinesq #uid
in a vertical cylindrical container of radius R and
height H. The #ow is described by the dimension-
less three-dimensional Navier}Stokes, continuity
and energy equations

R*
Rt#(* )+)*"!+p#**#Gr¹e

z
, (1)

+ ) *"0, (2)

R¹
Rt #(* )+)¹"

1

Pr
*¹, (3)

A.Y. Gelfgat et al. / Journal of Crystal Growth 220 (2000) 316}325 317



in the domain 0)r)1, 0)z)A, 0)u)2p.
Here *"Mv

r
, vr , v

z
N, ¹ and p are non-dimensional

velocity, temperature and pressure p, respectively.
The dimensional scales of the time, the velocity and
the pressure are R2/l, l/R and o(l/R)2, respectively.
The temperature is non-dimensionalized as
¹"(¹*!¹

.%-5
)/(¹

.!9
!¹

.%-5
). Other param-

eters are: Gr"gb*¹H3/l2, Grashof number,
Pr"l/s, Prandtl number, g acceleration due to
gravity in the z-direction, b, thermal expansion
coe$cient, l, viscosity, s, heat di!usivity, and o,
density. ¹*is the dimensional temperature, ¹

.!9
is

the maximal temperature at the sidewall and
¹

.%-5
is the melting temperature imposed at the top

and the bottom.
It is assumed that the boundary conditions allow

the existence of an axisymmetric steady solution of
Eqs. (1)}(3). As an example we consider no-slip
boundary conditions for velocity, a parabolic tem-
perature pro"le at the sidewall of the cylinder and
equal constant temperatures at the top and bottom.
This reads

At z"0 and z"A: ¹"0, *"0, (4)

At r"1: ¹"z(1!z/A), *"0. (5)

The boundary conditions at the axis should be
added for the axisymmetric basic state #ow

At r"0:
R¹
Rr "0, l

r
"0, lr"0,

Rl
z
Rr "0.

(6)

Note that the shape of the temperature pro"le at
the sidewall is arbitrary and usually should be more
complicated than a symmetric (with respect to the
midheight) parabola de"ned in Eq. (5). The simpli"-
ed temperature boundary conditions (5) is chosen
here mainly for illustrative purposes.

To investigate the non-axisymmetric perturba-
tions we use the 2p-periodicity of the solution of
Eqs. (1)}(6) to represent it in the form

M*, p,¹N"
k/=
+

k/~=

M*
k
, p

k
,¹

k
N exp(iku), (7)

We are looking for values of the Grashof number
for which the steady axisymmetric solution
M*

0
(r, z), p

0
(r, z),¹

0
(r, z)N becomes unstable with re-

spect to the axisymmetric (k"0) or non-axisym-
metric (kO0) perturbations. The linear stability

problem separates for each value of the azimuthal
wavenumber k [11,23]. Therefore for each k one
has to consider a quasi-axisymmetric problem
which yields the critical Grashof number
Gr

#3
(Pr,A, k). Then the critical Grashof number is

de"ned as Gr
#3

(Pr,A)"min
k
Gr

#3
(Pr,A, k), and the

value k"k
#3

that corresponds to the minimum of
Gr

#3
(Pr,A, k) is the critical wavenumber. In the case

of oscillatory instability the critical frequency of
oscillations u

#3
(the oscillation frequency at

Gr"Gr
#3

) should be added to the set of critical
parameters. The dimensional scale for u

#3
is l/R2.

The calculations were carried out using the glo-
bal Galerkin method described in Refs. [11,23].
Some details about the realization of the method
for more complicated (but still axisymmetric)
boundary conditions, including a "nite heat con-
ductivity of the sidewall, can be found in Ref. [11].
Test calculations for the classical Rayleigh}Benard
problem in a "nite vertical cylinder were performed
in Ref. [13]. Additional tests for stability of the
secondary axisymmetric #ows in the Rayleigh}Be-
nard con"guration are described in Ref. [11]. To
ensure the correctness of results a separate conver-
gence study was performed for the boundary condi-
tions (4)}(6). It showed that truncation of the
Galerkin series to 30]30 basis functions in the r-
and z-direction yields 3}4 correct digits in the criti-
cal Grashof number and the critical frequency.

3. Results

The patterns of the steady-state #ows whose
stability is studied are illustrated in Fig. 1. At all
values of the aspect ratio considered the axisym-
metric steady-state #ow consists of a single toroidal
convective roll. The #uid rises near the sidewall,
where the temperature is maximal and descends
along the axis. One can notice a signi"cant change
in the temperature distribution which happens with
the increase of the aspect ratio. For the lowest
aspect ratio considered (A"1, Fig. 1a) strongly
curved isotherms "ll a large part of the #ow region.
At larger values of the aspect ratio (Figs. 1b and c)
the curved isotherms, related to the temperature
maximum at the sidewall, remain mostly in the
central part of the cylinder. At the same time two
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Fig. 1. Streamlines (left frame) and isotherms (right frame) of
steady-state #ows at the critical values of Grashof number.
Pr"0.015. (a) A"1, Gr

#3
"3.59]105, (b) A"2, Gr

#3
"

1.01]105, (c) A"4, Gr
#3
"5.03]104.

strati"ed #uid layers develop near the top and the
bottom. The strati"cation near the bottom (the
cold #uid below the hot one) is stable, while strati"-
cation near the top (the cold #uid above the hot
one) is unstable. The stability analysis (see below)
shows, in particular, how the presence of strati"ed
layers a!ects the stability properties of the #ow.

First, we consider the dependence of the critical
Grashof number on the Prandtl number for the
"xed value of the aspect ratio A"1. The stability
diagram in Fig. 2a shows Gr

#3
(Pr, k) for 2)k)10.

The values of Gr
#3

corresponding to k"0 and
1 are larger than 106 and are not shown on the
graph. At smaller values of the Prandtl number, for
0)Pr)0.025, the most dangerous mode corres-
ponds to k"4. At Pr*0.025 it is replaced by the
k"3 mode. The critical Grashof numbers, that
correspond to the azimuthal modes with k"2 and
k"5}10, are relatively close and grow rapidly with

the increase of Pr. For low values of the Prandtl
number (Pr(0.02) one can expect an interaction
of several azimuthal modes at relatively large
supercriticalities. For example, at Pr"0.01 the
most dangerous mode with k"4 is excited at
Gr

#3
+3]105, then the k"2 mode would be ex-

cited at Gr+3.7]105 and at Gr+4.5]105 many
additional modes would be excited. This can lead
to a quite complicated three-dimensional #ow pat-
tern. However, already for Pr*0.025 only modes
with k"3 and 4 can interact in the supercritical
regime of a moderate supercriticality. A noticeable
interaction of these modes can be expected for
values of Pr close to 0.025, where both modes
become unstable simultaneously. Both bifurcations
corresponding to k"3 and 4 at A"1 are tran-
sitions from a steady axisymmetric to an oscillatory
three-dimensional #ow via the Hopf bifurcation.
The critical circular frequencies (i.e., frequencies of
oscillations at the critical value of Gr) correspond-
ing to these two modes are shown in Fig. 2b.

Calculations for "xed values of the Prandtl num-
ber and varying aspect ratio were carried out for
Pr"0, 0.015, 0.03 and 0.05 and 1)A)4. An
example of the stability diagram for Pr"0.015 and
0)k)6 is shown in Fig. 3. It is seen that behavior
of the curves Gr

#3
(A, k) is rather complicated and

detailed parametric calculations are required to
complete the study. Thus, the stability diagram
shown in Fig. 3 contains more than 600 calculated
bifurcation points. Obviously, only the lower envel-
ope of the curves Gr

#3
(A, k) is of practical interest.

However, all the curves have to be calculated to
reach the "nal result.

The results containing only the lower envelopes of
the curves Gr

#3
(A, k) for di!erent Prandtl numbers

are collected in Fig. 4. The critical azimuthal
wavenumbers are shown for each particular branch
of the neutral curves. All curves, except the one
corresponding to Pr"0 (i.e., neglected convection
of heat) behave similarly. This indicates the import-
ance of the convective heat transfer for the onset of
the instability even for Prandtl numbers of order
10~2. The critical Grashof numbers, corresponding
to PrO0, decrease with the increase of the aspect
ratio and have rather close values in the interval
1.3)A)2.5. At larger values of A the critical
curves start to diverge showing hysteretic behavior.
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Fig. 2. (a) Dependence of the critical Grashof number on the Prandtl number for the "xed aspect ratio A"1 and di!erent azimuthal
wavenumbers k. (b) Dependence of the critical circular frequency on the Prandtl number for the two most dangerous azimuthal modes
k"3 and 4.

With the increase of the Prandtl number the loca-
tion of the hysteresis loop moves towards smaller
values of the aspect ratio. Knowledge about the

exact location of the hysteresis loops can be im-
portant from a practical viewpoint. Thus, at
Pr"0.015 and A"4 (Fig. 4) the "rst instability
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Fig. 3. Critical Grashof numbers Gr
#3

(A, k) for 1)A)4, 0)k)6 and Pr"0.015.

Fig. 4. The lower envelopes of the curves Gr
#3

(A, k) for 1)A)4 and di!erent Prandtl numbers.
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Fig. 5. Isosurfaces of the perturbation of the temperature. (a) A"1, Pr"0.015, Gr
#3
"3.59]105, k

#3
"4, u

#3
"632.2; (b) A"2,

Pr"0.03, Gr
#3
"9.6]104, k

#3
"2, u

#3
"157.3; (c) A"4, Pr"0.03, Gr

#3
"2.55]104, k

#3
"1, u

#3
"0.

sets in at Gr(1)
#3
+5.03]104. The axisymmetric

steady #ow remains unstable until the Grashof
number exceeds the next critical value
Gr(2)

#3
+1.15]105. Then the axisymmetric steady

#ow becomes stable until the next critical number
Gr(3)

#3
+1.39]105 will be exceeded. Therefore,

the #ow can be kept stable in the interval
Gr(2)

#3
)Gr)Gr(3)

#3
at more than twice larger

Grashof number (temperature di!erence) than
Gr(1)

#3
. Note that in the considered model the

axisymmetric mode k"0 never becomes critical.
This shows the necessity to use three-dimensional
models for calculations in the supercritical regimes.

The case Pr"0.02 and A"2 was studied nu-
merically in Ref. [19] by a straightforward integra-
tion in time. The critical Grashof number was
estimated in these calculations as Gr

#3
+1.25]105

(the Rayleigh number Ra
8

de"ned in Ref. [19]
should be rescaled as Gr"Ra

8
/2A4). The corre-

sponding critical Grashof number calculated in the
present study is slightly below 105 (see Fig. 4). This
is a rather good comparison, since the straight-
forward calculation of Ref. [19] can indicate only
instability with a "nite amplitude, while the present
linear stability analysis provides critical numbers
corresponding to the in"nitesimally small ampli-
tude perturbations. Therefore, the present result
should, indeed, be slightly smaller than the corre-
sponding result of Ref. [19].

Some additional understanding on how the in-
stability sets in can be drawn from the patterns of
the most dangerous perturbation. Generally, each
continuous branch of each neutral curve shown in
Fig. 4 should be characterized by its own perturba-
tion pattern, which is de"ned by the eigenvector of
the linearized stability problem [23]. Some of the
patterns, corresponding to di!erent Pr and equal
k
#3

are similar (e.g., for A"2, k
#3
"2 the perturba-

tion patterns are similar for all values of the Prandtl
number considered), but most of them are not.
Generally, the eigenvector is a complex function.
However, the problem considered is symmetric
with respect to the change of the sign of u. There-
fore, the sign of k

#3
is arbitrary and the most general

expression for the perturbation is

eME(r, z) exp[i(u
#3

t#k
#3

u)]

#EM (r, z) exp[!i(u
#3

t#k
#3

u)]N,
(8)

where e is an unknown small amplitude, E(r, z) is
the eigenvector and the overbar denotes the com-
plex conjugate. The real function de"ned by Eq. (8)
is used here to plot the pattern of the temperature
perturbation (see Refs. [11,23] for details).

Fig. 5 illustrates the three most characteristic
patterns of the temperature perturbation found in
the present study. The two perturbation patterns
shown in Figs. 5a and b correspond to the
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transition from the steady axisymmetric to the os-
cillatory non-axisymmetric #ow due to the Hopf
bifurcation. The critical circular frequencies are
632.2 and 157.3, respectively. The physical meaning
of the bifurcation patterns can be understood if we
represent the supercritical oscillatory #ow as a sum
of the constant averaged and the oscillatory com-
ponents. At low supercriticalities the averaged
component is axisymmetric, while the oscillatory
component coincides with Eq. (8) to within multi-
plication by a complex constant. The patterns of
perturbations (Figs. 5a and b) correspond to Eq. (8)
at t"0 and provide an illustration of the oscilla-
tory component of the slightly supercritical oscilla-
tory three-dimensional #ow (tO0 leads only to
a shift of the pattern in the azimuthal direction).
The levels of the isosurfaces are equally distributed
from the minimal to maximal values. The darker
color corresponds to larger values. It should be
noted that in the case of Hopf bifurcation, i.e.
u

#3
O0, the three-dimensional perturbation (8) has

the form of a traveling wave. Therefore the oscilla-
tory perturbation patterns (as well as the oscilla-
tory component of the #ow) rotate around the axis
with the angular velocity u

#3
/k

#3
.

Comparing Figs. 5a and b one can see a clear
di!erence in the distribution of the amplitude of
three-dimensional oscillations in shorter (Fig. 5a,
A"1) and taller (Fig. 5b, A"2) cylinders. In the
case A"1 (Fig. 5a) the large-amplitude oscillations
are distributed over the almost whole meridional
plane. A similar perturbation pattern is character-
istic for the case Pr"0. Therefore, the instability
has a pure hydrodynamic origin and can be related
to the instability of the circulating #ow. In the case
A"2 the strongest oscillations are located in the
higher part of the cylinder and can be associated
with the developing of the unstably strati"ed #uid
layer (Fig. 1b). Possibly, the oscillatory axisym-
metry-breaking instability in this case is a!ected by
the Rayleigh}Benard mechanism.

At larger values of the aspect ratio the oscillatory
instability is replaced by a steady bifurcation with
k
#3
"1. The characteristic pattern of the temper-

ature perturbation is shown in Fig. 5c. In the case of
a steady axisymmetry-breaking bifurcation the
physical meaning of the perturbation pattern can-
not be associated with the oscillatory part of the

#ow. Here the perturbation shows only the expo-
nentially growing function whose pattern has the
same azimuthal symmetry as the resulting three-
dimensional #ow. As illustrated in Fig. 5c the
temperature perturbation has two extrema located
inside the unstably strati"ed #uid layer (see Fig. 1c).
The pattern of the velocity perturbation (not shown
here) indicates the development of two antisymmet-
ric rolls inside the layer. Obviously, this should be
associated with the Rayleigh}Benard instability of
the unstably strati"ed layer. Note that the
transition due to the Rayleigh}Benard instability is
always a steady pitchfork bifurcation, as is the case
here. The pitchfork is de"ned by the arbitrary sign
of $k

#3
, such that the direction of #uid motion in

each of the Rayleigh}Benard rolls is de"ned with
the probability of 1

2
. Moreover, in the cylinders

heated from below the Rayleigh}Benard instability
sets in as an axisymmetry-breaking steady bifurca-
tion with k

#3
"1 [12,14], exactly as it is observed

here. However, the appearance of the hysteresis
loops on the neutral curves is not usual for the
Rayleigh}Benard instability. Possibly, the hys-
teretic behavior is caused by the interaction of the
secondary Rayleigh}Benard rolls with the main
convective roll or with the lower stably strati"ed
layer. The latter should cause a stabilizing e!ect.

4. Concluding remarks

The simpli"ed model presented here was used as
an illustration of results that a comprehensive stab-
ility study can yield for practical purposes. As was
already mentioned the numerical technique used is
not restricted to a speci"c set of boundary condi-
tions and can be applied for three-dimensional
stability analysis of any axisymmetric #ow in a cy-
lindrical vessel. However, some general qualitative
conclusions can be drawn from the results present-
ed. First, the critical Grashof number, as well as the
critical frequency of oscillations and the critical
azimuthal wavenumber, strongly depend on the
governing parameters of the problem. This repeats
the conclusions made in our previous two-dimen-
sional stability studies [30,31]. Generally, for a
certain convective #ow no estimations of the
critical numbers or azimuthal periodicity can be
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extrapolated from consideration of a similar model
or close values of the Prandtl number and aspect
ratio. A similar strong dependence on the boundary
conditions also can be found [20]. Therefore, the
critical values should be calculated for each par-
ticular case using as precise as possible, boundary
conditions and values of governing parameters.
Since the mathematical models used to describe the
crystal growth processes usually are not very pre-
cise, the calculation of a comprehensive stability
diagram, which shows parametric dependencies,
can be very important and cannot be replaced by
several unconnected critical points. It is also notice-
able that the axisymmetric instability mode was not
found to be critical in the whole range of para-
meters considered. Therefore, the numerical
modeling of supercritical #ow regimes should be
always done in the three-dimensional formulation.

Comparison of the present result with the experi-
mental results of Ref. [9] allows us to note a certain
qualitative tendency for cases when the temper-
ature pro"le on the sidewall has a single maximum.
The temperature boundary conditions on the side-
wall in Ref. [9] di!ered from Eq. (5), but the side-
wall temperature pro"le also had a maximum in
the middle of the wall and decreased to a minimum
towards the top and the bottom. In Ref. [9] the
temperature was uniform (hot) over a region near
midheight of the sidewall, whose upper and lower
parts were thermally insulated. The experimental
results of Ref. [9] showed that the axisymmetry-
breaking transition happens as a steady bifurcation
with k

#3
"1 in the cylinders with A'3 and as an

oscillatory instability in cylinders with A(3. This
qualitatively agrees with the present results. More-
over, larger azimuthal asymmetry of the temper-
ature pro"le was observed in the upper part of the
cylinder, which also indicates the Rayleigh}Benard
instability in the upper unstably strati"ed #uid
layer. Therefore, we assume that in the relatively
short cylinders the axisymmetry-breaking instabil-
ity tends to be oscillatory, while in tall cylinders one
should expect a steady bifurcation caused by the
Rayleigh}Benard instability of the unstably strat-
i"ed #uid layer. As was mentioned, the exact values
of critical Grashof numbers strongly depend on the
governing parameters and on boundary conditions
and therefore should be calculated for each case

separately. Note also that in the vertical Bridgman
growth devices the Grashof number usually is of
order 105}106 [24}28], which corresponds to the
range of critical Grashof numbers obtained here.
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